This is my Runnable object(which is inside another class) :
private class StopFileCopy implements Runnable
{
ObjectInputStream st;
public Runnable(ObjectInputStream st)
{
this.st = st;
}
public void run()
{
if(st.read())
stopWritingToFile = true; // stopWritingToFile is an instance variable of the
// class that contains this StopFileCopy class
}
}
Now the problem is that a integer may or may not be written to the stream 'st'. If not, then I need to stop this StopFileCopy object instantly from outside the class. How can I accomplish this?
If I understand correctly, then your problem is, that st.read() may block forever. What you can do is that you can interrupt the running thread by calling Thread.interrupt after some time elapsed. (Do this from your main thread, on your runnable thread.) An alternative to this is to use a FutureTask whom you pass your runnable then call its get() with timeout.
Btw, this is a similar question: Is setting a timeout on ObjectInputStream.readObject() safe?
One more thing that is important with interrupting. It won't stop blocking implicitly, you have to subclass Thread instead of implementing Runnable and override interrupt to close the stream (then call super.interrupt). An alternative is to close the stream from an other thread.
Related
I am pretty new to using multithreading, but I want to invoke a method asynchronously (in a separate Thread) rather than invoking it synchronously. The basic idea is that I'm creating a socket server with an object in memory, so for each client I will have to run something like object.getStuff() asynchronously.
The two constructs I found were:
having the class implement Runnable and threading this and
declaring a runnable class within a method.
Additionally this method needs a return value- will it be necessary to use Executor and Callable to achieve this? Could someone point me in the right direction for implementing this?
I have tried implement option 2, but this doesn't appear to be processing concurrently:
public class Test {
private ExecutorService exec = Executors.newFixedThreadPool(10);
public Thing getStuff(){
class Getter implements Callable<Thing>{
public Thing call(){
//do collection stuff
return Thing;
}
}
Callable<Thing> callable = new Getter();
Future<Thing> future = exec.submit(callable);
return future.get();
}
}
I am instantiating a single test object for the server and calling getStuff() for each client connection.
Threading Tutorial
The Java tutorial on concurrency has a good section on this. It's at https://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html. Essentially, you can either implement Runnable or Callable, or inherit from Thread.
Subclassing Thread
You can write a class, including an anonymous inner class, that extends Thread. Instantiate it, then invoke the start() method.
public class MyThread extends Thread {
public void run() {
System.out.println("This is a thread");
}
public static void main(String[] args) {
MyThread m = new MyThread();
m.start();
}
}
Implementing Runnable
You can write a class that implements Runnable, then wrap an instance in a Thread and invoke start(). Very much like the previous.
public class MyRunnable implements Runnable {
public void run() {
System.out.println("This is a thread");
}
public static void main(String[] args) {
MyRunnable r = new MyRunnable();
(new Thread(r)).start();
}
}
Return Value
Runnable doesn't allow for return values. If you need that, you need to implement Callable instead. Callable looks a lot like Runnable, except you override the call() method instead of the run() method, and you need to give it to an ExecutorService.
public class MyCallable implements Callable<Integer> {
public Integer call() {
System.out.println("A thread using Callable<Integer>");
return 42;
}
public static void main(String[] args) {
MyCallable c = new MyCallable();
Future<Integer> f = Executors.newSingleThreadExecutor().submit(c));
System.out.println("The thread returned: " +
f.get());
}
}
The two constructs I found were 1) having the class implement Runnable and threading 'this' and 2) declaring a runnable class within a method.
Option (2) probably is better. Most programs would be improved if they had more classes, not fewer. Each named entity in a program—each package, class, method, whatever—should have just one responsibility. In your option (1), you are asking the class to do two things.
For your option (2), you don't actually have to declare a whole class. You can either use an anonymous inner class, or if you can go with Java8 all the way, you can use a lambda expression. Google for either one to learn more.
Additionally this method needs a return value.
The classic way, is for the Runnable object to return the value through one of its own fields before the thread terminates. Then the parent thread, can examine the object and get the return value afterward.
Will it be necessary to use Executor and Callable to achieve this?
Necessary? A lot of people think that ExecutorService is a Good Thing.
Sounds like you are creating a server that serves multiple clients. Do these clients continually connect and disconnect? The advantage of using a thread pool (i.e., ThreadPoolExecutor) is that it saves your program from continually creating and destroying threads (e.g., every time a client connects/disconnects). Creating and destroying threads is expensive. If you have a lot of clients connecting and disconnecting, then using a thread pool could make a big difference in the performance of your server.
Creating and managing threads by yourself is generally bad approach.
As you already pointed - use Executors utility class to create executor and submit Callables to it.
public class RunWResult implements Runable{
private volatile ResultType var;
//the thread method
public void run(){
...
//generate a result and save it to var
var = someResult();
//notify waiting threads that a result has been generated
synchronized(this){
notify();
}
}
public ResultType runWithResult(){
//run the thread generating a result
Thread t = new Thread(this);
t.start();
//wait for t to create a result
try{
wait();
}catch(InterruptedException e){}
//return the result
return var;
}
}
If I start a thread in a static block. Will the jvm wait for the thread to finish before it loads the class?
static {
System.out.println("static block");
DataRetrievalThread t = new DataRetrievalThread();
t.run();
}
The reason I'm trying this is because
I want to retrieve data from a server and it's taking way too long to get it. So to persist the data I want to retrieve it and store it in a file so that when the client asks for it - it does not need to make the call to the server to get the information.
If I start a thread in a static block. Will the jvm wait for the thread to finish before it loads the class?
Uh. Yes and no and NO.
First off, your code is not forking a thread. So as it is written it will hold up the class construction although technically the class is "loaded" before the static section runs. That's because you are executing the run() method directly in the current main thread. If you want to fork the thread then you should call t.start();.
If you actually fork the thread with t.start() then no, the thread will run in the background and will not hold up the class initialization.
You really should not be doing something like this. It's a tremendously bad pattern. If you explain what you are trying to accomplish, we should be able to really help.
If you are trying to pre-load data into your program then you should just run the load part early on in main() and don't park it in a static initializer in a class. But if you are running it in the main thread, holding up the program, I don't see why this is any faster then making the request on demand.
One thing to consider is to fork (with t.start()) a background thread to load the data and then have a class which holds the data. If the thread finishes in time then it will have pre-loaded the data. When the program needs the data, it should call the class to get it. If the thread hasn't finished it could do a countDownLatch.await(). When the thread finishes the download it could do countDownLatch.countDown(). So you will get some parallelism.
Something like:
public class DataLoader {
private volatile Stuff data;
private final CountDownLatch latch = new CountDownLatch(1);
// start the thread, called early in main()
public void init() {
// you pass in this so it can call setData
DataRetrievalThread t = new DataRetrievalThread(this);
t.start();
}
// called from the DataRetrievalThread
public void setData(Stuff data) {
this.data = data;
latch.countDown();
}
public Stuff getData() {
if (data == null) {
latch.await();
}
return data;
}
}
With run() you execute the method in the current thread, so after that the class will finish loading. You need to call start() to run the method in a new thread.
I have a Runnable implementing class which will be run from a Executors.newFixedThreadPool
Inside the Runnable, I have an infinite-loop running which listens on an UDP Port for incoming data.
I want to gracefully end the Runnable in order to close said UDP Ports.
How can I achieve this?
When extending Thread directly, I have access to interrupt() and isInterupted() etc. on which I can base my infinite loop.
In the Runnable implementing class however, I want to to do something like
#Override
public void run() {
while (active) {
}
}
and have
private boolean active = true;
How can I set active = false when the ThreadPool is terminated?
You can access the interrupt flag of the current thread using the static method Thread.interrupted(), e.g. instead of your active flag use:
public void run() {
try {
// open your ports
while (!Thread.interrupted()) {
// do stuff
}
} finally {
// close your ports in finally-block
// so they get closed even on exceptions
}
}
And when you want to shutdown your ExecutorService, call shutdownNow() on it. This will interrupt() any running worker threads and have your Runnable break out of its loop.
if you get a Future when you submit the task you can cancel(boolean) the future, if you pass true the thread the task is running on will be interrupted
#Override
public void run() {
try{
while (!Thread.interrupted()) {
if(Thread.interrupted())return;//to quit from the middle of the loop
}
}finally{
//cleanup
}
}
note that you'll have to reset the interrupted flag with Thread.currentThread().interrupt(); each time you get a thrown InterruptedException
you can use this
while (!executor.isShutdown) {
//do your job
}
or use an AtomicBoolean in the while loop. (preferable over volatile)
This flag can be set if you want to stop processing manually, from some method like stopProcessing()
I would suggest to not use 'Runnable', rather override 'FutureTask' and implement it's 'done' and 'cancel' (if necessary) methods - where you can make all the necessary clean up operations.
EDIT:
forgot `cancel' method.
I am confused on the following:
To use threads in a Java program, the simplest way is to extend Thread class and implement the runnable interface (or simply implement runnable).
To start the thread's execution. we must call the Thread's method start(), which in turn calls method run() of the thread. And so the thread starts.
The method start() (unless I am wrong) must be called exactly and only once for each thread. As a result, thread instances can not be reused unless somehow the run method itself runs in some-short of infinite loop that facilitates a custom implementation of the thread's reusage.
Now the javadoc
link text
says
Calls to execute will reuse previously constructed threads if available
I do not understand how this is implemented.
I provide in the execute method of the executor method my custom thread e.g.
ExecutorService myCachedPool = Executors.newCachedThreadPool();
myCachedPool.execute(new Runnable(){public void run(){
//do something time consuming
}});
How can this custom thread I delegeate to the executor framework be reused?
Is Executor is allowed to call method start() more than 1 time, while we can not in our programs?
Am I misunderstanding something?
Thank you.
Note that it's not Executor that calls start() - it's ExecutorService. And no, it's not calling start() twice. It doesn't start the task that you give it directly using Thread.start()... instead, it starts a thread which knows about that thread pool's queue of work. The thread will basically wait until there's some work to do, then pick it up and execute it, before going back to waiting. So although the thread performs several tasks, Thread.start() is only called once.
EDIT: Judging by the comments, you're a bit confused about the difference between a Runnable (which is a task to be executed) and a Thread (which is what executes tasks).
The same thread can execute multiple tasks. For a very simple example not using a thread pool, consider this:
public class MultiRunnable implements Runnable
{
private final List<Runnable> runnables;
public MultiRunnable(List<Runnable> runnables)
{
this.runnables = runnables;
}
public void run()
{
for (Runnable runnable : runnables)
{
runnable.run();
}
}
}
(Ignore the potential thread safety issues of using a List<T> from multiple threads.)
You could create a whole bunch of Runnable tasks capable of doing different things, then create a single MultiRunnable to run them in turn. Pass that instance of MultiRunnable into the Thread constructor, and then when you start the thread, it will execute each of the original runnable tasks. Does that help?
It is not calling start() more than once; instead the Thread in the pool never completes, but just stays alive---waiting. The source code is available for download if you want to look at it.
Each Thread in the thread pool can simply wait() for the Executor to hand it a new Runnable, but the Thread's own run() method has not completed. It simply waits for a new Runnable to be given to the Executor.
To "start" a thread more than once, create a runnable. For example:
//NO
private class T extends Thread { //not necessary to implement runnable
public void run(){
//...
}
}
void someMethod(){
T a = new T();
a.start();
a.start(); //NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO
}
Instead,
//Yes
private class T implements Runnable {
public void run(){
//...
}
}
void someMethod(){
T a = new T();
new Thread(a).start();
new Thread(a).start(); //YES YES YES
}
It is also possible to do this:
void someMethod(){
final Runnable r = new Runnable(){
public void run(){
//...
}
};
new Thread(r).start();
new Thread(r).start();
}
// r could also be a field of you class.
I have an object with a method named StartDownload(), that starts three threads.
How do I get a notification when each thread has finished executing?
Is there a way to know if one (or all) of the thread is finished or is still executing?
There are a number of ways you can do this:
Use Thread.join() in your main thread to wait in a blocking fashion for each Thread to complete, or
Check Thread.isAlive() in a polling fashion -- generally discouraged -- to wait until each Thread has completed, or
Unorthodox, for each Thread in question, call setUncaughtExceptionHandler to call a method in your object, and program each Thread to throw an uncaught Exception when it completes, or
Use locks or synchronizers or mechanisms from java.util.concurrent, or
More orthodox, create a listener in your main Thread, and then program each of your Threads to tell the listener that they have completed.
How to implement Idea #5? Well, one way is to first create an interface:
public interface ThreadCompleteListener {
void notifyOfThreadComplete(final Thread thread);
}
then create the following class:
public abstract class NotifyingThread extends Thread {
private final Set<ThreadCompleteListener> listeners
= new CopyOnWriteArraySet<ThreadCompleteListener>();
public final void addListener(final ThreadCompleteListener listener) {
listeners.add(listener);
}
public final void removeListener(final ThreadCompleteListener listener) {
listeners.remove(listener);
}
private final void notifyListeners() {
for (ThreadCompleteListener listener : listeners) {
listener.notifyOfThreadComplete(this);
}
}
#Override
public final void run() {
try {
doRun();
} finally {
notifyListeners();
}
}
public abstract void doRun();
}
and then each of your Threads will extend NotifyingThread and instead of implementing run() it will implement doRun(). Thus when they complete, they will automatically notify anyone waiting for notification.
Finally, in your main class -- the one that starts all the Threads (or at least the object waiting for notification) -- modify that class to implement ThreadCompleteListener and immediately after creating each Thread add itself to the list of listeners:
NotifyingThread thread1 = new OneOfYourThreads();
thread1.addListener(this); // add ourselves as a listener
thread1.start(); // Start the Thread
then, as each Thread exits, your notifyOfThreadComplete method will be invoked with the Thread instance that just completed (or crashed).
Note that better would be to implements Runnable rather than extends Thread for NotifyingThread as extending Thread is usually discouraged in new code. But I'm coding to your question. If you change the NotifyingThread class to implement Runnable then you have to change some of your code that manages Threads, which is pretty straightforward to do.
Solution using CyclicBarrier
public class Downloader {
private CyclicBarrier barrier;
private final static int NUMBER_OF_DOWNLOADING_THREADS;
private DownloadingThread extends Thread {
private final String url;
public DownloadingThread(String url) {
super();
this.url = url;
}
#Override
public void run() {
barrier.await(); // label1
download(url);
barrier.await(); // label2
}
}
public void startDownload() {
// plus one for the main thread of execution
barrier = new CyclicBarrier(NUMBER_OF_DOWNLOADING_THREADS + 1); // label0
for (int i = 0; i < NUMBER_OF_DOWNLOADING_THREADS; i++) {
new DownloadingThread("http://www.flickr.com/someUser/pic" + i + ".jpg").start();
}
barrier.await(); // label3
displayMessage("Please wait...");
barrier.await(); // label4
displayMessage("Finished");
}
}
label0 - cyclic barrier is created with number of parties equal to the number of executing threads plus one for the main thread of execution (in which startDownload() is being executed)
label 1 - n-th DownloadingThread enters the waiting room
label 3 - NUMBER_OF_DOWNLOADING_THREADS have entered the waiting room. Main thread of execution releases them to start doing their downloading jobs in more or less the same time
label 4 - main thread of execution enters the waiting room. This is the 'trickiest' part of the code to understand. It doesn't matter which thread will enter the waiting room for the second time. It is important that whatever thread enters the room last ensures that all the other downloading threads have finished their downloading jobs.
label 2 - n-th DownloadingThread has finished its downloading job and enters the waiting room. If it is the last one i.e. already NUMBER_OF_DOWNLOADING_THREADS have entered it, including the main thread of execution, main thread will continue its execution only when all the other threads have finished downloading.
You should really prefer a solution that uses java.util.concurrent. Find and read Josh Bloch and/or Brian Goetz on the topic.
If you are not using java.util.concurrent.* and are taking responsibility for using Threads directly, then you should probably use join() to know when a thread is done. Here is a super simple Callback mechanism. First extend the Runnable interface to have a callback:
public interface CallbackRunnable extends Runnable {
public void callback();
}
Then make an Executor that will execute your runnable and call you back when it is done.
public class CallbackExecutor implements Executor {
#Override
public void execute(final Runnable r) {
final Thread runner = new Thread(r);
runner.start();
if ( r instanceof CallbackRunnable ) {
// create a thread to perform the callback
Thread callerbacker = new Thread(new Runnable() {
#Override
public void run() {
try {
// block until the running thread is done
runner.join();
((CallbackRunnable)r).callback();
}
catch ( InterruptedException e ) {
// someone doesn't want us running. ok, maybe we give up.
}
}
});
callerbacker.start();
}
}
}
The other sort-of obvious thing to add to your CallbackRunnable interface is a means to handle any exceptions, so maybe put a public void uncaughtException(Throwable e); line in there and in your executor, install a Thread.UncaughtExceptionHandler to send you to that interface method.
But doing all that really starts to smell like java.util.concurrent.Callable. You should really look at using java.util.concurrent if your project permits it.
Many things have been changed in last 6 years on multi-threading front.
Instead of using join() and lock API, you can use
1.ExecutorService invokeAll() API
Executes the given tasks, returning a list of Futures holding their status and results when all complete.
2.CountDownLatch
A synchronization aid that allows one or more threads to wait until a set of operations being performed in other threads completes.
A CountDownLatch is initialized with a given count. The await methods block until the current count reaches zero due to invocations of the countDown() method, after which all waiting threads are released and any subsequent invocations of await return immediately. This is a one-shot phenomenon -- the count cannot be reset. If you need a version that resets the count, consider using a CyclicBarrier.
3.ForkJoinPool or newWorkStealingPool() in Executors is other way
4.Iterate through all Future tasks from submit on ExecutorService and check the status with blocking call get() on Future object
Have a look at related SE questions:
How to wait for a thread that spawns it's own thread?
Executors: How to synchronously wait until all tasks have finished if tasks are created recursively?
Do you want to wait for them to finish? If so, use the Join method.
There is also the isAlive property if you just want to check it.
You can interrogate the thread instance with getState() which returns an instance of Thread.State enumeration with one of the following values:
* NEW
A thread that has not yet started is in this state.
* RUNNABLE
A thread executing in the Java virtual machine is in this state.
* BLOCKED
A thread that is blocked waiting for a monitor lock is in this state.
* WAITING
A thread that is waiting indefinitely for another thread to perform a particular action is in this state.
* TIMED_WAITING
A thread that is waiting for another thread to perform an action for up to a specified waiting time is in this state.
* TERMINATED
A thread that has exited is in this state.
However I think it would be a better design to have a master thread which waits for the 3 children to finish, the master would then continue execution when the other 3 have finished.
You could also use the Executors object to create an ExecutorService thread pool. Then use the invokeAll method to run each of your threads and retrieve Futures. This will block until all have finished execution. Your other option would be to execute each one using the pool and then call awaitTermination to block until the pool is finished executing. Just be sure to call shutdown() when you're done adding tasks.
I would suggest looking at the javadoc for Thread class.
You have multiple mechanisms for thread manipulation.
Your main thread could join() the three threads serially, and would then not proceed until all three are done.
Poll the thread state of the spawned threads at intervals.
Put all of the spawned threads into a separate ThreadGroup and poll the activeCount() on the ThreadGroup and wait for it to get to 0.
Setup a custom callback or listener type of interface for inter-thread communication.
I'm sure there are plenty of other ways I'm still missing.
I guess the easiest way is to use ThreadPoolExecutor class.
It has a queue and you can set how many threads should be working in parallel.
It has nice callback methods:
Hook methods
This class provides protected overridable beforeExecute(java.lang.Thread, java.lang.Runnable) and afterExecute(java.lang.Runnable, java.lang.Throwable) methods that are called before and after execution of each task. These can be used to manipulate the execution environment; for example, reinitializing ThreadLocals, gathering statistics, or adding log entries. Additionally, method terminated() can be overridden to perform any special processing that needs to be done once the Executor has fully terminated.
which is exactly what we need. We will override afterExecute() to get callbacks after each thread is done and will override terminated() to know when all threads are done.
So here is what you should do
Create an executor:
private ThreadPoolExecutor executor;
private int NUMBER_OF_CORES = Runtime.getRuntime().availableProcessors();
private void initExecutor() {
executor = new ThreadPoolExecutor(
NUMBER_OF_CORES * 2, //core pool size
NUMBER_OF_CORES * 2, //max pool size
60L, //keep aive time
TimeUnit.SECONDS,
new LinkedBlockingQueue<Runnable>()
) {
#Override
protected void afterExecute(Runnable r, Throwable t) {
super.afterExecute(r, t);
//Yet another thread is finished:
informUiAboutProgress(executor.getCompletedTaskCount(), listOfUrisToProcess.size());
}
}
};
#Override
protected void terminated() {
super.terminated();
informUiThatWeAreDone();
}
}
And start your threads:
private void startTheWork(){
for (Uri uri : listOfUrisToProcess) {
executor.execute(new Runnable() {
#Override
public void run() {
doSomeHeavyWork(uri);
}
});
}
executor.shutdown(); //call it when you won't add jobs anymore
}
Inside method informUiThatWeAreDone(); do whatever you need to do when all threads are done, for example, update UI.
NOTE: Don't forget about using synchronized methods since you do your work in parallel and BE VERY CAUTIOUS if you decide to call synchronized method from another synchronized method! This often leads to deadlocks
Hope this helps!
Here's a solution that is simple, short, easy to understand, and works perfectly for me. I needed to draw to the screen when another thread ends; but couldn't because the main thread has control of the screen. So:
(1) I created the global variable: boolean end1 = false; The thread sets it to true when ending. That is picked up in the mainthread by "postDelayed" loop, where it is responded to.
(2) My thread contains:
void myThread() {
end1 = false;
new CountDownTimer(((60000, 1000) { // milliseconds for onFinish, onTick
public void onFinish()
{
// do stuff here once at end of time.
end1 = true; // signal that the thread has ended.
}
public void onTick(long millisUntilFinished)
{
// do stuff here repeatedly.
}
}.start();
}
(3) Fortunately, "postDelayed" runs in the main thread, so that's where in check the other thread once each second. When the other thread ends, this can begin whatever we want to do next.
Handler h1 = new Handler();
private void checkThread() {
h1.postDelayed(new Runnable() {
public void run() {
if (end1)
// resond to the second thread ending here.
else
h1.postDelayed(this, 1000);
}
}, 1000);
}
(4) Finally, start the whole thing running somewhere in your code by calling:
void startThread()
{
myThread();
checkThread();
}
You could also use SwingWorker, which has built-in property change support. See addPropertyChangeListener() or the get() method for a state change listener example.
Look at the Java documentation for the Thread class. You can check the thread's state. If you put the three threads in member variables, then all three threads can read each other's states.
You have to be a bit careful, though, because you can cause race conditions between the threads. Just try to avoid complicated logic based on the state of the other threads. Definitely avoid multiple threads writing to the same variables.