I have an object with a method named StartDownload(), that starts three threads.
How do I get a notification when each thread has finished executing?
Is there a way to know if one (or all) of the thread is finished or is still executing?
There are a number of ways you can do this:
Use Thread.join() in your main thread to wait in a blocking fashion for each Thread to complete, or
Check Thread.isAlive() in a polling fashion -- generally discouraged -- to wait until each Thread has completed, or
Unorthodox, for each Thread in question, call setUncaughtExceptionHandler to call a method in your object, and program each Thread to throw an uncaught Exception when it completes, or
Use locks or synchronizers or mechanisms from java.util.concurrent, or
More orthodox, create a listener in your main Thread, and then program each of your Threads to tell the listener that they have completed.
How to implement Idea #5? Well, one way is to first create an interface:
public interface ThreadCompleteListener {
void notifyOfThreadComplete(final Thread thread);
}
then create the following class:
public abstract class NotifyingThread extends Thread {
private final Set<ThreadCompleteListener> listeners
= new CopyOnWriteArraySet<ThreadCompleteListener>();
public final void addListener(final ThreadCompleteListener listener) {
listeners.add(listener);
}
public final void removeListener(final ThreadCompleteListener listener) {
listeners.remove(listener);
}
private final void notifyListeners() {
for (ThreadCompleteListener listener : listeners) {
listener.notifyOfThreadComplete(this);
}
}
#Override
public final void run() {
try {
doRun();
} finally {
notifyListeners();
}
}
public abstract void doRun();
}
and then each of your Threads will extend NotifyingThread and instead of implementing run() it will implement doRun(). Thus when they complete, they will automatically notify anyone waiting for notification.
Finally, in your main class -- the one that starts all the Threads (or at least the object waiting for notification) -- modify that class to implement ThreadCompleteListener and immediately after creating each Thread add itself to the list of listeners:
NotifyingThread thread1 = new OneOfYourThreads();
thread1.addListener(this); // add ourselves as a listener
thread1.start(); // Start the Thread
then, as each Thread exits, your notifyOfThreadComplete method will be invoked with the Thread instance that just completed (or crashed).
Note that better would be to implements Runnable rather than extends Thread for NotifyingThread as extending Thread is usually discouraged in new code. But I'm coding to your question. If you change the NotifyingThread class to implement Runnable then you have to change some of your code that manages Threads, which is pretty straightforward to do.
Solution using CyclicBarrier
public class Downloader {
private CyclicBarrier barrier;
private final static int NUMBER_OF_DOWNLOADING_THREADS;
private DownloadingThread extends Thread {
private final String url;
public DownloadingThread(String url) {
super();
this.url = url;
}
#Override
public void run() {
barrier.await(); // label1
download(url);
barrier.await(); // label2
}
}
public void startDownload() {
// plus one for the main thread of execution
barrier = new CyclicBarrier(NUMBER_OF_DOWNLOADING_THREADS + 1); // label0
for (int i = 0; i < NUMBER_OF_DOWNLOADING_THREADS; i++) {
new DownloadingThread("http://www.flickr.com/someUser/pic" + i + ".jpg").start();
}
barrier.await(); // label3
displayMessage("Please wait...");
barrier.await(); // label4
displayMessage("Finished");
}
}
label0 - cyclic barrier is created with number of parties equal to the number of executing threads plus one for the main thread of execution (in which startDownload() is being executed)
label 1 - n-th DownloadingThread enters the waiting room
label 3 - NUMBER_OF_DOWNLOADING_THREADS have entered the waiting room. Main thread of execution releases them to start doing their downloading jobs in more or less the same time
label 4 - main thread of execution enters the waiting room. This is the 'trickiest' part of the code to understand. It doesn't matter which thread will enter the waiting room for the second time. It is important that whatever thread enters the room last ensures that all the other downloading threads have finished their downloading jobs.
label 2 - n-th DownloadingThread has finished its downloading job and enters the waiting room. If it is the last one i.e. already NUMBER_OF_DOWNLOADING_THREADS have entered it, including the main thread of execution, main thread will continue its execution only when all the other threads have finished downloading.
You should really prefer a solution that uses java.util.concurrent. Find and read Josh Bloch and/or Brian Goetz on the topic.
If you are not using java.util.concurrent.* and are taking responsibility for using Threads directly, then you should probably use join() to know when a thread is done. Here is a super simple Callback mechanism. First extend the Runnable interface to have a callback:
public interface CallbackRunnable extends Runnable {
public void callback();
}
Then make an Executor that will execute your runnable and call you back when it is done.
public class CallbackExecutor implements Executor {
#Override
public void execute(final Runnable r) {
final Thread runner = new Thread(r);
runner.start();
if ( r instanceof CallbackRunnable ) {
// create a thread to perform the callback
Thread callerbacker = new Thread(new Runnable() {
#Override
public void run() {
try {
// block until the running thread is done
runner.join();
((CallbackRunnable)r).callback();
}
catch ( InterruptedException e ) {
// someone doesn't want us running. ok, maybe we give up.
}
}
});
callerbacker.start();
}
}
}
The other sort-of obvious thing to add to your CallbackRunnable interface is a means to handle any exceptions, so maybe put a public void uncaughtException(Throwable e); line in there and in your executor, install a Thread.UncaughtExceptionHandler to send you to that interface method.
But doing all that really starts to smell like java.util.concurrent.Callable. You should really look at using java.util.concurrent if your project permits it.
Many things have been changed in last 6 years on multi-threading front.
Instead of using join() and lock API, you can use
1.ExecutorService invokeAll() API
Executes the given tasks, returning a list of Futures holding their status and results when all complete.
2.CountDownLatch
A synchronization aid that allows one or more threads to wait until a set of operations being performed in other threads completes.
A CountDownLatch is initialized with a given count. The await methods block until the current count reaches zero due to invocations of the countDown() method, after which all waiting threads are released and any subsequent invocations of await return immediately. This is a one-shot phenomenon -- the count cannot be reset. If you need a version that resets the count, consider using a CyclicBarrier.
3.ForkJoinPool or newWorkStealingPool() in Executors is other way
4.Iterate through all Future tasks from submit on ExecutorService and check the status with blocking call get() on Future object
Have a look at related SE questions:
How to wait for a thread that spawns it's own thread?
Executors: How to synchronously wait until all tasks have finished if tasks are created recursively?
Do you want to wait for them to finish? If so, use the Join method.
There is also the isAlive property if you just want to check it.
You can interrogate the thread instance with getState() which returns an instance of Thread.State enumeration with one of the following values:
* NEW
A thread that has not yet started is in this state.
* RUNNABLE
A thread executing in the Java virtual machine is in this state.
* BLOCKED
A thread that is blocked waiting for a monitor lock is in this state.
* WAITING
A thread that is waiting indefinitely for another thread to perform a particular action is in this state.
* TIMED_WAITING
A thread that is waiting for another thread to perform an action for up to a specified waiting time is in this state.
* TERMINATED
A thread that has exited is in this state.
However I think it would be a better design to have a master thread which waits for the 3 children to finish, the master would then continue execution when the other 3 have finished.
You could also use the Executors object to create an ExecutorService thread pool. Then use the invokeAll method to run each of your threads and retrieve Futures. This will block until all have finished execution. Your other option would be to execute each one using the pool and then call awaitTermination to block until the pool is finished executing. Just be sure to call shutdown() when you're done adding tasks.
I would suggest looking at the javadoc for Thread class.
You have multiple mechanisms for thread manipulation.
Your main thread could join() the three threads serially, and would then not proceed until all three are done.
Poll the thread state of the spawned threads at intervals.
Put all of the spawned threads into a separate ThreadGroup and poll the activeCount() on the ThreadGroup and wait for it to get to 0.
Setup a custom callback or listener type of interface for inter-thread communication.
I'm sure there are plenty of other ways I'm still missing.
I guess the easiest way is to use ThreadPoolExecutor class.
It has a queue and you can set how many threads should be working in parallel.
It has nice callback methods:
Hook methods
This class provides protected overridable beforeExecute(java.lang.Thread, java.lang.Runnable) and afterExecute(java.lang.Runnable, java.lang.Throwable) methods that are called before and after execution of each task. These can be used to manipulate the execution environment; for example, reinitializing ThreadLocals, gathering statistics, or adding log entries. Additionally, method terminated() can be overridden to perform any special processing that needs to be done once the Executor has fully terminated.
which is exactly what we need. We will override afterExecute() to get callbacks after each thread is done and will override terminated() to know when all threads are done.
So here is what you should do
Create an executor:
private ThreadPoolExecutor executor;
private int NUMBER_OF_CORES = Runtime.getRuntime().availableProcessors();
private void initExecutor() {
executor = new ThreadPoolExecutor(
NUMBER_OF_CORES * 2, //core pool size
NUMBER_OF_CORES * 2, //max pool size
60L, //keep aive time
TimeUnit.SECONDS,
new LinkedBlockingQueue<Runnable>()
) {
#Override
protected void afterExecute(Runnable r, Throwable t) {
super.afterExecute(r, t);
//Yet another thread is finished:
informUiAboutProgress(executor.getCompletedTaskCount(), listOfUrisToProcess.size());
}
}
};
#Override
protected void terminated() {
super.terminated();
informUiThatWeAreDone();
}
}
And start your threads:
private void startTheWork(){
for (Uri uri : listOfUrisToProcess) {
executor.execute(new Runnable() {
#Override
public void run() {
doSomeHeavyWork(uri);
}
});
}
executor.shutdown(); //call it when you won't add jobs anymore
}
Inside method informUiThatWeAreDone(); do whatever you need to do when all threads are done, for example, update UI.
NOTE: Don't forget about using synchronized methods since you do your work in parallel and BE VERY CAUTIOUS if you decide to call synchronized method from another synchronized method! This often leads to deadlocks
Hope this helps!
Here's a solution that is simple, short, easy to understand, and works perfectly for me. I needed to draw to the screen when another thread ends; but couldn't because the main thread has control of the screen. So:
(1) I created the global variable: boolean end1 = false; The thread sets it to true when ending. That is picked up in the mainthread by "postDelayed" loop, where it is responded to.
(2) My thread contains:
void myThread() {
end1 = false;
new CountDownTimer(((60000, 1000) { // milliseconds for onFinish, onTick
public void onFinish()
{
// do stuff here once at end of time.
end1 = true; // signal that the thread has ended.
}
public void onTick(long millisUntilFinished)
{
// do stuff here repeatedly.
}
}.start();
}
(3) Fortunately, "postDelayed" runs in the main thread, so that's where in check the other thread once each second. When the other thread ends, this can begin whatever we want to do next.
Handler h1 = new Handler();
private void checkThread() {
h1.postDelayed(new Runnable() {
public void run() {
if (end1)
// resond to the second thread ending here.
else
h1.postDelayed(this, 1000);
}
}, 1000);
}
(4) Finally, start the whole thing running somewhere in your code by calling:
void startThread()
{
myThread();
checkThread();
}
You could also use SwingWorker, which has built-in property change support. See addPropertyChangeListener() or the get() method for a state change listener example.
Look at the Java documentation for the Thread class. You can check the thread's state. If you put the three threads in member variables, then all three threads can read each other's states.
You have to be a bit careful, though, because you can cause race conditions between the threads. Just try to avoid complicated logic based on the state of the other threads. Definitely avoid multiple threads writing to the same variables.
Related
I am writing code where I need to make sure that no threads are currently running in a thread pool before I commit results (to avoid losing data I should have put in the commit). For that, I'm using:
while (_executor.getActiveCount() > 0)
{
try
{
Thread.sleep(10); // milliseconds
}
catch (InterruptedException e)
{
// OK do nothing
}
}
But a colleague pointed out in review that the doc for getActiveCount states:
Returns the approximate number of threads that are actively
executing tasks.
So, is there a risk I would get out of the while loop while there are still active threads in the pool? If so, what would be the correct way to wait for all my worker threads to be done?
Edit: To give some more context: this is an online system, where the task that contains the executor service is left running indefinitely. Work comes in via a messaging system, is put on a thread in the executor, which doesn't need any synchronization, and works come out into another queue for the messaging system. I don't want to kill the executor to wait for completion of tasks.
You might want to consider using a CompletionService (http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CompletionService.html).
A CompletionService wraps an ExecutorService and returns a Future when tasks are submitted. By maintaining a list of these Futures, you can see if the jobs that you're waiting on have completed. It also has the additional advantage that you can have others use the same ExecutorService since you have some means of accounting,
_executor.awaitTermination(); should do the job. Now, it won't actually wait for the threads to shutdown, but rather it would wait for all available tasks to terminate.
You could also provide keepAliveTime to a thread pool constructor to instantly terminate idle threads:
ExecutorService executor = new ThreadPoolExecutor(0, 10, 0L /* keepAlive */,
TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>());
To notify a thread that it should clean up and terminate, use the interrupt method.
t.interrupt();
and it is good to print or have log of your errors from catch block.
When tasks are submitted to the executor, they return Futures, which indicate when they complete. That is the preferred mechanism to use.
You can use JDK ExecutorService shutdown/awaitTermination.
Use case: need to cleanup thread-locals in pool threads upon their completion and this cleanup can take long (e.g. connection close). Only after that the main thread can continue.
A worker thread can register itself in some collection. For that override start() and run() and pass a custom thread factory to ThreadPoolExecutor:
class MyThreadFactory implements ThreadFactory {
#Override
public Thread newThread(final Runnable r) {
return new MyThread(r);
}
...
class Some {
void waitAllThreads() {
Thread worker;
while ((worker = workerThreads.poll()) != null) {
worker.join();
}
}
...
class MyThread extends Thread {
#Override
public synchronized void start() {
if (getState() == State.NEW) {
some.workerThreads.offer(this);
}
super.start();
}
#Override
public void run() {
try {
super.run();
} finally {
some.workerThreads.remove(this);
}
}
...
Assume that I have a thread A in java. This thread continues to perform some task A.
I have another thread B that must perform a task B only after Task A is finished. How do I implement this in Java?
You can use Thread.join() to basically block one thread until another thread terminates:
// In thread B
threadA.join();
doStuff();
Note that this won't work properly if you use a thread pool e.g. via an executor service. If you need to do that (and I'd generally recommend using executors instead of "raw" threads) you'd need to make the executor task notify any listeners that it has completed (e.g. via a CountDownLatch).
If you use Guava, you should look at ListenableFuture, too, which simplifies things.
You can use Thread Exceutor to acieve this. Executor keep the value in thread pool. Refer this link, It may help you
http://www.journaldev.com/1069/java-thread-pool-example-using-executors-and-threadpoolexecutor
see also
How to run thread after completing some specific worker thread
In Java SE 7 you could use CountDownLatch. Here is an example. Good thing that comes with using of CountDownLatch is that you can initialize it with certain number of required countdowns, so you can wait for a set of threads. Also it doesn't require thread to be completed (like in join()), thread can call countDown() in any place you want and continue execution.
Also, another approach is CyclicBarrier.
class Starter {
public static void main(String[] args) {
CountDownLatch signal = new CountDownLatch();
Thread a = new Worker(signal);
Thread b = new AnotherWorker(signal);
a.start();
b.start();
//doSomethingElse
}
}
class Worker extends Thread {
CountDownLatch signal;
Worker(CountDownLatch signal) {
this.signal = signal;
}
public void run(){
//doSomething
signal.await(); //wait until thread b dies
//doSomethingElse
}
}
class AnotherWorker extends Thread {
CountDownLatch signal;
AnotherWorker(CountDownLatch signal) {
this.signal = signal;
}
public void run(){
//doSomething
signal.countDown(); //notify a about finish
}
}
I have a MainClass, a Worker class and a Supervisor class. In MainClass i create 10 Worker classes and a Supervisor class that run in separate threads.
class MainClass {
public static void main(String args[]) {
for (int i=0; i<10 ;i++) {
Thread t = new Thread( new Worker());
t.start();
}
(new Thread(new Supervisor()).start();
}
.
class Worker extends Thread {
public void run() {
while(true) {
if(some_condition) {
//do stuff
} else {
// pause thread execution for undefined time.
}
}
}
}
.
class Supervisor extends Thread {
public void run() {
while(true) {
if(some_condition) {
// restart Workers thread that are paused.
}
// do other stuff
}
}
}
I don't know how to implement this, cause the conditions in every thread are independent from each other so i don't need to synchronize, so i can't use wait-notify.
I don't know how to implement this, cause the conditions in every thread are independent from each other so i don't need to synchronize, so i can't use wait-notify.
Sure you can.
The subtlety here is that presumably Supervisor doesn't actually know whether worker threads are really paused. (If it does, then the conditions are not independent.)
Since Supervisor doesn't know whether the threads are actually paused (by assumption), you have to design what you want to happen if it tries to unpause an already-unpaused thread.
a) Should an unpause do nothing?
b) Or should it immediately unpause the next time a worker tries to pause itself?
If the answer is (b), then you have to worry about thread safety. If the answer is (a), then you don't (unless you have some other data to pass between threads!)
Either way, you can still use wait and notify.
As per my understanding u want to create separate thread pools which consist of 10 workers or number as per your requirement.
As far as pools are concerned you can check for ThreadPoolExecutor in java.util.concurrent api. Internally ThreadPoolexecutor also creates worker Threads for running tasks.
Try reading ThreadPoolExecutor it might help you or please elaborate your question whats your ultimate objective you wish to achieve by this problem.
Is there a way to use ExecutorService to pause/resume a specific thread?
private static ExecutorService threadpool = Executors.newFixedThreadPool(5);
Imagine that I want to stop the thread which as the id=0 (assuming that to each one is assigned an incremental id until the size of the threadpool is reached).
After a while, by pressing a button let's say, I want to resume that specific thread and leave all the other threads with their current status, which can be paused or resumed.
I have found on Java documentation a uncompleted version of PausableThreadPoolExecutor. But it doesn't suit what I need because it resume all the threads in the pool.
If there's no way to do it with the default implementation of the ExecutorService can anyone point me to a Java implementation for this problem?
You are on the wrong track. The thread pool owns the threads and by sharing them with your code could mess things up.
You should focus on making your tasks (passed to the threads cancellable/interruptable) and not interact with the threads owned by the pool directly.
Additionally you would not know what job is being executed at the time you try to interrupt the thread, so I can't see why you would be interested in doing this
Update:
The proper way to cancel your task submitted in the thread pool is via the Future for the task returned by the executor.
1)This way you know for sure that the task you actually aim at is attempted to be cancelled
2)If your tasks are already designed to be cancellable then your are half way there
3) Do not use a flag to indicate cancellation but use Thread.currentThread().interrupt() instead
Update:
public class InterruptableTasks {
private static class InterruptableTask implements Runnable{
Object o = new Object();
private volatile boolean suspended = false;
public void suspend(){
suspended = true;
}
public void resume(){
suspended = false;
synchronized (o) {
o.notifyAll();
}
}
#Override
public void run() {
while(!Thread.currentThread().isInterrupted()){
if(!suspended){
//Do work here
}
else{
//Has been suspended
try {
while(suspended){
synchronized(o){
o.wait();
}
}
}
catch (InterruptedException e) {
}
}
}
System.out.println("Cancelled");
}
}
/**
* #param args
* #throws InterruptedException
*/
public static void main(String[] args) throws InterruptedException {
ExecutorService threadPool = Executors.newCachedThreadPool();
InterruptableTask task = new InterruptableTask();
Map<Integer, InterruptableTask> tasks = new HashMap<Integer, InterruptableTask>();
tasks.put(1, task);
//add the tasks and their ids
Future<?> f = threadPool.submit(task);
TimeUnit.SECONDS.sleep(2);
InterruptableTask theTask = tasks.get(1);//get task by id
theTask.suspend();
TimeUnit.SECONDS.sleep(2);
theTask.resume();
TimeUnit.SECONDS.sleep(4);
threadPool.shutdownNow();
}
Suggestion: Similarly to/instead of the flags you're using, create a semaphore with 1 permit (new Semaphore(1)) for each task you need to pause/unpause. At the beginning of the task's working cycle put a code like this:
semaphore.acquire();
semaphore.release();
This causes the task to acquire a semaphore permit and immediately release it. Now if you want to pause the thread (a button is pressed, for example), call semaphore.acquire() from another thread. Since the semaphore has 0 permits now, your working thread will pause at the beginning of the next cycle and wait until you call semaphore.release() from the other thread.
(The acquire() method throws InterruptedException, if your working thread gets interrupted while waiting. There is another method acquireUninterruptibly(), which also tries to acquire a permit, but doesn't get interrupted.)
One scenario could be, one wants to simulate a number of devices. Devices have functions. Altogether this collection of devices runs concurrently. And now if a thread represents a device ( or one thread for one function of a device ), one might want to control the life cycle of the device like start(), shutdown(), resume()
I am confused on the following:
To use threads in a Java program, the simplest way is to extend Thread class and implement the runnable interface (or simply implement runnable).
To start the thread's execution. we must call the Thread's method start(), which in turn calls method run() of the thread. And so the thread starts.
The method start() (unless I am wrong) must be called exactly and only once for each thread. As a result, thread instances can not be reused unless somehow the run method itself runs in some-short of infinite loop that facilitates a custom implementation of the thread's reusage.
Now the javadoc
link text
says
Calls to execute will reuse previously constructed threads if available
I do not understand how this is implemented.
I provide in the execute method of the executor method my custom thread e.g.
ExecutorService myCachedPool = Executors.newCachedThreadPool();
myCachedPool.execute(new Runnable(){public void run(){
//do something time consuming
}});
How can this custom thread I delegeate to the executor framework be reused?
Is Executor is allowed to call method start() more than 1 time, while we can not in our programs?
Am I misunderstanding something?
Thank you.
Note that it's not Executor that calls start() - it's ExecutorService. And no, it's not calling start() twice. It doesn't start the task that you give it directly using Thread.start()... instead, it starts a thread which knows about that thread pool's queue of work. The thread will basically wait until there's some work to do, then pick it up and execute it, before going back to waiting. So although the thread performs several tasks, Thread.start() is only called once.
EDIT: Judging by the comments, you're a bit confused about the difference between a Runnable (which is a task to be executed) and a Thread (which is what executes tasks).
The same thread can execute multiple tasks. For a very simple example not using a thread pool, consider this:
public class MultiRunnable implements Runnable
{
private final List<Runnable> runnables;
public MultiRunnable(List<Runnable> runnables)
{
this.runnables = runnables;
}
public void run()
{
for (Runnable runnable : runnables)
{
runnable.run();
}
}
}
(Ignore the potential thread safety issues of using a List<T> from multiple threads.)
You could create a whole bunch of Runnable tasks capable of doing different things, then create a single MultiRunnable to run them in turn. Pass that instance of MultiRunnable into the Thread constructor, and then when you start the thread, it will execute each of the original runnable tasks. Does that help?
It is not calling start() more than once; instead the Thread in the pool never completes, but just stays alive---waiting. The source code is available for download if you want to look at it.
Each Thread in the thread pool can simply wait() for the Executor to hand it a new Runnable, but the Thread's own run() method has not completed. It simply waits for a new Runnable to be given to the Executor.
To "start" a thread more than once, create a runnable. For example:
//NO
private class T extends Thread { //not necessary to implement runnable
public void run(){
//...
}
}
void someMethod(){
T a = new T();
a.start();
a.start(); //NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO
}
Instead,
//Yes
private class T implements Runnable {
public void run(){
//...
}
}
void someMethod(){
T a = new T();
new Thread(a).start();
new Thread(a).start(); //YES YES YES
}
It is also possible to do this:
void someMethod(){
final Runnable r = new Runnable(){
public void run(){
//...
}
};
new Thread(r).start();
new Thread(r).start();
}
// r could also be a field of you class.