The longest increasing subsequence is the well known problem and I have a solution with the patience algorithm.
Problem is, my solution gives me the "Best longest increasing sequence" instead of the First longest increasing sequence that appears.
The difference is that some of the members of the sequence are larger numbers in the first(but the sequence length is exactly the same).
Getting the first sequence is turning out to be quite harder than expected, because having the best sequence doesn't easily translate into having the first sequence.
I've thought of doing my algorithm then finding the first sequence of length N, but not sure how to.
So, how would you find the First longest increasing subsequence from a sequence of random integers?
My code snippet:
public static void main (String[] args) throws java.lang.Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int inputInt;
int[] intArr;
try {
String input = br.readLine().trim();
inputInt = Integer.parseInt(input);
String inputArr = br.readLine().trim();
intArr = Arrays.stream(inputArr.split(" ")).mapToInt(Integer::parseInt).toArray();
} catch (NumberFormatException e) {
System.out.println("Could not parse integers.");
return;
}
if(inputInt != intArr.length) {
System.out.println("Invalid number of arguments.");
return;
}
ArrayList<ArrayList<Integer>> sequences = new ArrayList<ArrayList<Integer>>();
int sequenceCount = 1;
sequences.add(new ArrayList<Integer>());
sequences.get(0).add(0);
for(int i = 1; i < intArr.length; i++) {
for(int j = 0; j < sequenceCount; j++) {
if(intArr[i] <= intArr[sequences.get(j).get(sequences.get(j).size() - 1)]) {
sequences.get(j).remove(sequences.get(j).size() - 1);
sequences.get(j).add(i);
break;
} else if (j + 1 == sequenceCount) {
sequences.add(new ArrayList<Integer>(sequences.get(j)));
sequences.get(j + 1).add(i);
sequenceCount++;
break; //increasing sequenceCount causes infinite loop
} else if(intArr[i] < intArr[sequences.get(j + 1).get(sequences.get(j + 1).size() - 1)]) {
sequences.set(j+ 1, new ArrayList<Integer>(sequences.get(j)));
sequences.get(j+ 1).add(i);
break;
}
}
}
int bestSequenceLength = sequenceCount;
ArrayList<Integer> bestIndexes = new ArrayList<Integer>(sequences.get(bestSequenceLength - 1));
//build bestSequence, then after it I'm supposed to find the first one instead
int[] bestSequence = Arrays.stream(bestIndexes.toArray()).mapToInt(x -> intArr[(int) x]).toArray();
StringBuilder output = new StringBuilder("");
for(Integer x : bestSequence) {
output.append(x + " ");
}
System.out.println(output.toString().trim());
}
I'm storing indexes instead in preparation for having to access the original array again. Since it's easier to go from indexes to values than vice versa.
Example:
3 6 1 2 8
My code returns: 1 2 8
First sequence is: 3 6 8
Another Example:
1 5 2 3
My code correctly returns: 1 2 3
Basically, my code works as long as the first longest sequence is the same as the best longest sequence. But when you have a bunch of longest sequences of the same length, it grabs the best one not the first one.
Code is self-explanatory. (Have added comments, let me know if you need something extra).
public class Solution {
public static void main(String[] args) {
int[] arr = {3,6,1,2,8};
System.out.println(solve(arr).toString());
}
private static List<Integer> solve(int[] arr){
int[][] data = new int[arr.length][2];
int max_length = 0;
// first location for previous element index (for backtracing to print list) and second for longest series length for the element
for(int i=0;i<arr.length;++i){
data[i][0] = -1; //none should point to anything at first
data[i][1] = 1;
for(int j=i-1;j>=0;--j){
if(arr[i] > arr[j]){
if(data[i][1] <= data[j][1] + 1){ // <= instead of < because we are aiming for the first longest sequence
data[i][1] = data[j][1] + 1;
data[i][0] = j;
}
}
}
max_length = Math.max(max_length,data[i][1]);
}
List<Integer> ans = new ArrayList<>();
for(int i=0;i<arr.length;++i){
if(data[i][1] == max_length){
int curr = i;
while(curr != -1){
ans.add(arr[curr]);
curr = data[curr][0];
}
break;
}
}
Collections.reverse(ans);// since there were added in reverse order in the above while loop
return ans;
}
}
Output:
[3, 6, 8]
Related
I'm trying to learn a bit Java with tutorials and currently I'm struggling with piece of code where I should find on which index is difference between arrays (if there is difference at all)
My code
Scanner scanner = new Scanner(System.in);
int[] arrOne = Arrays.stream(scanner.nextLine().split(" ")).mapToInt(Integer::parseInt).toArray();
int[] arrTwo = Arrays.stream(scanner.nextLine().split(" ")).mapToInt(Integer::parseInt).toArray();
int sumArrOne = 0;
int index = 0;
boolean diff = false;
for (int k : arrOne) {
if (Arrays.equals(arrOne, arrTwo)) {
sumArrOne += k;
} else {
for (int i : arrTwo) {
if (k != i) {
index = i;
diff = true;
break;
}
}
}
}
if (diff) {
System.out.println("Found difference at " + index + " index.");
} else {
System.out.println("Sum: " + sumArrOne);
}
So, if arrays are identical I'm sum array elements in arrOne. If they are not identical -> must show at which index they are not.
With this code when I input
1 2 3 4 5
1 2 4 3 5
I should get that difference is at index 2 instead I've got index 1.
I'm not quite sure why and would be glad if someone point me out where is my mistake.
I updated your code. Looks like you're misunderstanding the concept of indexes yet.
Use one common index to check with in both arrays, in my example it's simply called i:
import java.util.Arrays;
import java.util.Scanner;
public class BadArray {
static private final int INVALID_INDEX = Integer.MIN_VALUE;
public static void main(final String[] args) {
try (final Scanner scanner = new Scanner(System.in);) {
final int[] arrOne = Arrays.stream(scanner.nextLine().split(" ")).mapToInt(Integer::parseInt).toArray();
final int[] arrTwo = Arrays.stream(scanner.nextLine().split(" ")).mapToInt(Integer::parseInt).toArray();
int sumArrOne = 0;
int diffIndex = INVALID_INDEX;
final int minLen = Math.min(arrOne.length, arrTwo.length);
for (int i = 0; i < minLen; i++) {
sumArrOne += arrOne[i];
if (arrOne[i] != arrTwo[i]) {
diffIndex = i;
break;
}
}
if (diffIndex != INVALID_INDEX) {
System.out.println("Found difference at " + diffIndex + " index.");
} else if (arrOne.length != arrTwo.length) {
System.out.println("Arrays are equal but have different length!");
} else {
System.out.println("Sum: " + sumArrOne);
}
}
}
}
I also put the scanner into a try-resource-catch to handle resource releasing properly.
Note you could also do the array lengths comparison right at the start if different array lengths play a more crucial role.
You are trying to find out which index has the first difference so you should iterate via the index rather than using a for-each loop (aka enhanced for loop). The following method should work for this.
/**
* Returns the index of the first element of the two arrays that are not the same.
* Returns -1 if both arrays have the same values in the same order.
* #param left an int[]
* #param right an int[]
* #return index of difference or -1 if none
*/
public int findIndexOfDifference(int[] left, int[] right) {
// short-circuit if we're comparing an array against itself
if (left == right) return -1;
for (int index = 0 ; index < left.length && index < right.length ; ++index) {
if (left[index] != right[index]) {
return index;
}
}
return -1;
}
In your code you compare, where the indexes are different, not the values at the indexes. Also your code has several other issues. I'll try to go through them step by step:
// compare the whole array only once, not inside a loop:
diff = !Arrays.equals(arrOne, arrTwo));
if (!diff) {
// do the summing without a loop
sumArrOne = Arrays.stream(arrOne).sum();
} else {
// find the difference
// it could be the length
index = Math.min(arrOne.length, arrTwo.length);
// or in some different values
for (int i = 0; i < index; i++) { // do a loop with counter
if (arrOne[i] != arrTwo[i]) {
index = i;
break;
}
}
}
It doesn't matter that I set index here above the loop as it's value will be overwritten anyways inside the loop, if relevant.
I am looking to create an algorithm preferably in Java. I would like to go through following char array and create every possible permutations and lengths out of it.
For example, loop and print the following:
a
aa
aaaa
aaaaa
.... keep going ....
aaaaaaaaaaaaaaaaa ....
ab
aba
abaa .............
Till I hit all possible lengths and permutations from my array.
private void method(){
char[] data = "abcdefghiABCDEFGHI0123456789".toCharArray();
// loop and print each time
}
I think it would be silly to come up with 10s of for loops for this. I am guessing some form of recursion would help here but can't get my head around to even start with. Could I get some help with this please? Even if pointing me to a start or a blog or something. Been Googling and looking around and many permutations examples exists but keeps to fixed max length. None seems to have examples on multiple length + permutations. Please advice. Thanks.
Another way to do it is this:
public class HelloWorld{
public static String[] method(char[] arr, int length) {
if(length == arr.length - 1) {
String[] strArr = new String[arr.length];
for(int i = 0; i < arr.length; i ++) {
strArr[i] = String.valueOf(arr[i]);
}
return strArr;
}
String[] before = method(arr, length + 1);
String[] newArr = new String[arr.length * before.length];
for(int i = 0; i < arr.length; i ++) {
for(int j = 0; j < before.length; j ++) {
if(i == 0)
System.out.println(before[j]);
newArr[i * before.length + j] = (arr[i] + before[j]);
}
}
return newArr;
}
public static void main(String []args){
String[] all = method("abcde".toCharArray(), 0);
for(int i = 0; i < all.length; i ++) {
System.out.println(all[i]);
}
}
}
However be careful you'll probably run out of memory or the program will take a looooong time to compile/run if it does at all. You are trying to print 3.437313508041091e+40 strings, that's 3 followed by 40 zeroes.
Here's the solution also in javascript because it starts running but it needs 4 seconds to get to 4 character permutations, for it to reach 5 character permutations it will need about 28 times that time, for 6 characters it's 4 * 28 * 28 and so on.
const method = (arr, length) => {
if(length === arr.length - 1)
return arr;
const hm = [];
const before = method(arr, length + 1);
for(let i = 0; i < arr.length; i ++) {
for(let j = 0; j < before.length; j ++) {
if(i === 0)
console.log(before[j]);
hm.push(arr[i] + before[j]);
}
}
return hm;
};
method('abcdefghiABCDEFGHI0123456789'.split(''), 0).forEach(a => console.log(a));
private void method(){
char[] data = "abcdefghiABCDEFGHI0123456789".toCharArray();
// loop and print each time
}
With your given input there are 3.43731350804×10E40 combinations. (Spelled result in words is eighteen quadrillion fourteen trillion three hundred ninety-eight billion five hundred nine million four hundred eighty-one thousand nine hundred eighty-four. ) If I remember it correctly the maths is some how
1 + x + x^2 + x^3 + x^4 + ... + x^n = (1 - x^n+1) / (1 - x)
in your case
28 + 28^2 + 28^3 + .... 28^28
cause you will have
28 combinations for strings with length one
28*28 combinations for strings with length two
28*28*28 combinations for strings with length three
...
28^28 combinations for strings with length 28
It will take a while to print them all.
One way I can think of is to use the Generex library, a Java library for generating String that match a given regular expression.
Generex github. Look at their page for more info.
Generex maven repo. Download the jar or add dependency.
Using generex is straight forward if you are somehow familiar with regex.
Example using only the first 5 chars which will have 3905 possible combinations
public static void main(String[] args) {
Generex generex = new Generex("[a-e]{1,5}");
System.out.println(generex.getAllMatchedStrings().size());
Iterator iterator = generex.iterator();
while (iterator.hasNext()) {
System.out.println(iterator.next());
}
}
Meaning of [a-e]{1,5} any combination of the chars a,b,c,d,e wit a min length of 1 and max length of 5
output
a
aa
aaa
aaaa
aaaaa
aaaab
aaaac
aaaad
aaaae
aaab
aaaba
aaabb
aaabc
aaabd
aaabe
aaac
....
eeee
eeeea
eeeeb
eeeec
eeeed
eeeee
You can have a for loop that starts from 1 and ends at array.length and in each iteration call a function that prints all the permutations for that length.
public void printPermutations(char[] array, int length) {
/*
* Create all permutations with length = length and print them
*/
}
public void method() {
char data = "abcdefghiABCDEFGHI0123456789".toCharArray();
for(int i = 1; i <= data.length; i ++) {
printPermutations(data, i);
}
}
I think the following recursion could solve your problem:
public static void main(String[] args) {
final String[] data = {"a", "b", "c"};
sampleWithReplacement(data, "", 1, 5);
}
private static void sampleWithReplacement(
final String[] letters,
final String prefix,
final int currentLength,
final int maxLength
) {
if (currentLength <= maxLength) {
for (String letter : letters) {
final String newPrefix = prefix + letter;
System.out.println(newPrefix);
sampleWithReplacement(letters, newPrefix, currentLength + 1, maxLength);
}
}
}
where data specifies your possible characters to sample from.
Is this what you're talking about?
public class PrintPermutations
{
public static String stream = "";
public static void printPermutations (char[] set, int count, int length)
{
if (count < length)
for (int i = 0; i < set.length; ++i)
{
stream += set[i];
System.out.println (stream);
printPermutations (set, count + 1, length);
stream = stream.substring (0, stream.length() - 1);
}
}
public static void main (String[] args)
{
char[] set = "abcdefghiABCDEFGHI0123456789".toCharArray();
printPermutations (set, 0, set.length);
}
}
Test it using a smaller string first.
On an input string 28 characters long this method is never going to end, but for smaller inputs it will generate all permutations up to length n, where n is the number of characters. It first prints all permutations of length 1, then all of length 2 etc, which is different from your example, but hopefully order doesn't matter.
static void permutations(char[] arr)
{
int[] idx = new int[arr.length];
char[] perm = new char[arr.length];
Arrays.fill(perm, arr[0]);
for (int i = 1; i < arr.length; i++)
{
while (true)
{
System.out.println(new String(perm, 0, i));
int k = i - 1;
for (; k >= 0; k--)
{
idx[k] += 1;
if (idx[k] < arr.length)
{
perm[k] = arr[idx[k]];
break;
}
idx[k] = 0;
perm[k] = arr[idx[k]];
}
if (k < 0)
break;
}
}
}
Test:
permutations("abc".toCharArray());
Output:
a
b
c
aa
ab
ac
ba
bb
bc
ca
cb
cc
I have a homework task as follows:
The bin packing problem is to pack the objects of
various weights into containers. Assume each
container can hold a maximum of 10 pounds. The
program uses an algorithm that places an object into
the first bin in which it would fit. Your program should
prompt the user to enter the total number of objects
and the weight of each object. The program displays
the total number of containers needed to pack the
objects and the content of each container. Here is a
simple run of the program:
Enter the number of objects: 6
Enter the weight of the objects: 7 5 2 3 5 8
Container 1 contains objects with weight: 7 2
Container 2 contains objects with weight: 5 3
Container 3 contains objects with weight: 5
Container 4 contains objects with weight: 8
Now I have decided to try making it smarter and optimize the object allocation. It seemed to be working fine, but when I started testing using more numbers than the sample run I noticed that the highest I can go is 27 objects. Anything higher and I start getting a few containers at the end of the execution that could be merged into a single one. Any ideas and suggestions are welcome. Thank you in advance!
package classwork;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Random;
import java.util.Scanner;
public class BinPacking {
private static final int binLimit = 10;
public static boolean lessThanLimit(int a, int b) {
if (a + b < binLimit) {
return true;
} else {
return false;
}
}
public static boolean perfectFit(int a, int b) {
if (a + b == binLimit) {
return true;
} else {
return false;
}
}
public static boolean weightsLeft(boolean[] a) { // check if there is one more item that has not been binned yet.
for (boolean b : a) {
if (b) {
return true;
}
}
return false;
}
public static ArrayList<int[]> distributeObjects(int[] weights) {
int counter = 0;
boolean[] objectAssigned = new boolean[weights.length]; // array to track which objects have been assigned already
ArrayList<int[]> result = new ArrayList<int[]>(); // list of int[] to be returned
for (int i = 0; i < weights.length; i++) {
ArrayList<Integer> currentBin = new ArrayList<Integer>(); // list to store the values of the weights in currrent bin
int currentBinWeight = 6;
if (!objectAssigned[i]) {
currentBin.add(weights[i]);
currentBinWeight = weights[i];
objectAssigned[i] = true;
} else
counter = 1;
stupidLoopThatWontBreak:
while (currentBinWeight < binLimit && counter < 1) {
counter = 1;
if (!weightsLeft(objectAssigned)) { // break loop if no more weights left
result.add(currentBin.stream().mapToInt(Integer::intValue).toArray());
break stupidLoopThatWontBreak;
}
for (int j = i + 1; j < weights.length; j++) {
if (perfectFit(currentBinWeight, weights[j]) && !objectAssigned[j]) {
currentBin.add(weights[j]);
currentBinWeight += weights[j];
objectAssigned[j] = true;
break stupidLoopThatWontBreak;
}
if (lessThanLimit(currentBinWeight, weights[j]) && !objectAssigned[j]) {
currentBinWeight += weights[j];
currentBin.add(weights[j]);
objectAssigned[j] = true;
}
}
}
// convert arraylist to int[] and add it to result. Java 8+ feature
if (!currentBin.isEmpty()) {
result.add(currentBin.stream().mapToInt(Integer::intValue).toArray());
counter = 0;
}
}
return result;
}
public static void main(String[] args) {
System.err.println("Container weight limit is " + binLimit);
Scanner in = new Scanner(System.in);
//Test numbers 7, 5, 3, 2, 5, 8
// System.out.print("Enter the weights of the objects you want to put into the bins: ");
// String input = in.nextLine();
// in.close();
//========================Random numbers for testing======================
String input = "";
Random ran = new Random();
System.out.print("Enter number of weights to be randomly generated: ");
int num = in.nextInt();
in.close();
for (int i = 0; i < num; i++) {
input += (ran.nextInt(binLimit) + 1) + " "; //+1 to not have zeroes
}
//========================End of random numbers===========================
ArrayList<Integer> list = new ArrayList<Integer>();
String[] str = input.trim().split(" "); // trim surrounding spaces, use space char as separator
for (String a : str) {
list.add(Integer.valueOf(a));
}
// sort the list in a descending order
Collections.sort(list);
Collections.reverse(list); // this could be avoided if I started checking from the last index in distributeObjects()
System.out.println("The generated and sorted descendingly weights are:");
System.out.println("\n" + list.toString() + "\n");
int[] weights = new int[list.size()];
for (int a = 0; a < weights.length; a++) {
weights[a] = list.get(a);
}
ArrayList<int[]> bins = distributeObjects(weights);
for (int i = 0; i < bins.size(); i++) {
System.out.println("Container " + (i + 1) + " contains objects with weight: " + Arrays.toString(bins.get(i)));
}
}
}
Since I cannot comment, I am posing this as an answer -
Run above code with "10 9 8 8 8 7 7 7 6 6 6 5 5 5 4 4 4 4 4 3 3 2 2 2 2 2 2 2 1 1" as input array and you will see the problem being caused by 'counter' variable. If you replace 'counter=1;' from else with 'continue;' it should work for this input. You still need to test this for other inputs. Also, the above code needs refactoring - for example - use either list or weights. Both are nor required.
I tried not to distort your code too much, but this should give you your desired output. The problem was with your second loop, it caused some trouble with the counter variable since counter was never set back to 0 at the end of your loop if the bin should not already be added (when you did not find the first weight that has to be added to the bin).
The easiest way to fix your program is simply to move counter = 0; inside the if statement where you check if there is already a weight inside of the bin or not outside of the if block.
I removed the "stupidLoopThatWouldNotBreak" below and replaced it with another for loop, that looks through all remaining weights if there is one that can fit.
public static ArrayList<int[]> distributeObjects(int[] weights) {
boolean[] objectAssigned = new boolean[weights.length]; // array to track which objects have been assigned already
ArrayList<int[]> result = new ArrayList<int[]>(); // list of int[] to be returned
for (int i = 0; i < weights.length; i++) {
ArrayList<Integer> currentBin = new ArrayList<Integer>(); // list to store the values of the weights in currrent bin
int currentBinWeight = 0;
//This loop searches for the first unused Weight, so you do not need `count` anymore
for (int j = i; j < weights.length; j++) {
if (!objectAssigned[j]) {
currentBin.add(weights[j]);
currentBinWeight = weights[j];
objectAssigned[j] = true;
break;
}
i = j; //You can skip all iterations with used weights
}
for (int j = i; j < weights.length && currentBinWeight < binLimit; j++) {
if (perfectFit(currentBinWeight, weights[j]) && !objectAssigned[j]) {
currentBin.add(weights[j]);
currentBinWeight += weights[j];
objectAssigned[j] = true;
break; //this break gives some performance bonus
}
if (lessThanLimit(currentBinWeight, weights[j]) && !objectAssigned[j]) {
currentBinWeight += weights[j];
currentBin.add(weights[j]);
objectAssigned[j] = true;
}
}
// convert arraylist to int[] and add it to result. Java 8+ feature
if (!currentBin.isEmpty()) {
result.add(currentBin.stream().mapToInt(Integer::intValue).toArray());
}
}
return result;
}
You can further enhance your code if you split this loop up. You can add more functions like the two helperfunctions perfectFit and lessThanlimit. You can for example add another function that will search for the first empty element, maybe even add it to the bin. Also the 2 functions you already have could be merged into one function called addWeight or attemptAdd. Furthermore you could create seperate classes for the bin and for the weights.
As the title reads, I have been thinking about creating multiple nested loops that aim to achieve one purpose. Move two generated random numbers between 0-9 through each possible possition of an array.
For example, App generates first number (fNum) 1 and second number (sNum) 6. It then moves these numbers in the array which containts ABC. However firstNum and secondNum will need to also try all the possible combinations, so each one will need to be different with each loop.
-1ABC6
-A1BC6
-AB1C6
-ABC16
-ABC61
-AB6C1
-A6BC1
-6ABC1
-A6B1C
-A61BC
-A16BC
-A1B6C
-A1BC6
and so on...
I beleive the best way will be to create a method for generating a counter, which increments the numbers which I can call.
private int getNextNumber(int num) {
if (num == 0) {
return num;
} else {
num++;
}
if (num < 10) {
return num;
} else {
return -1;
}
}
Then I will need multiple nested loops... I have decided to go for several loops which will go infinitly.
while (j < maxlen) {
//J = 0 and maxlen = length of text so in this case 3 as it is ABC
//Add two numbers and check against answer
while (fNum != -1 || sNum != -1) {
//incrememnt numbers
fNum = getNextNumber(fNum);
System.out.println(fNum);
sNum = getNextNumber(sNum);
System.out.println(fNum);
}
String textIni = "ABC";
int lenOfText = textIni.length();
char[] split = textIni.toCharArray();
for (int i = 0; i < lenOfText; i++) {
//here it will look at the length of the Text and
//try the possible positions it could be at....
//maybe wiser to do a longer loop but I am not too sure
}
}
Since you don't need to store all possible combinations, we will save some memory using only O(n) storage with an iterative solution. I propose you a basic implementation but don't expect to use it on large arrays since it has a O(n³) complexity.
public static void generateCombinationsIterative(List<Integer> original, int fnum, int snum) {
int size = original.size();
for (int i=0 ; i<=size ; i++) {
List<Integer> tmp = new ArrayList<>(original);
tmp.add(i,fnum);
for (int j=0 ; j<=size + 1 ; j++) {
tmp.add(j,snum);
System.out.print(tmp + (i == size && j == size + 1 ? "" : ", "));
tmp.remove(j);
}
}
}
For your culture, here is an example of a recursive solution, which takes a lot of memory so don't use it if you don't need to generate the lists of results. Nevertheless, this is a more general solution that can deal with any number of elements to insert.
public static List<List<Integer>> generateCombinations(List<Integer> original, Deque<Integer> toAdd) {
if (toAdd.isEmpty()) {
List<List<Integer>> res = new ArrayList<>();
res.add(original);
return res;
}
int element = toAdd.pop();
List<List<Integer>> res = new LinkedList<>();
for (int i=0 ; i<=original.size() ; i++)
// you must make a copy of toAdd, otherwise each recursive call will perform
// a pop() on it and the result will be wrong
res.addAll(generateCombinations(insertAt(original,element,i),new LinkedList<>(toAdd)));
return res;
}
// a helper function for a clear code
public static List<Integer> insertAt(List<Integer> input, int element, int index) {
List<Integer> result = new ArrayList<>(input);
result.add(index,element);
return result;
}
Note that I did not use any array in order to benefit from dynamic data structures, however you can call the methods like this :
int[] arr = { 1,2,3 };
int fnum = 4, snum = 5;
generateCombinationsIterative(Arrays.asList(arr),fnum,snum);
generateCombinations(Arrays.asList(arr),new LinkedList<>(Arrays.asList(fnum,snum));
Note that both methods generate the combinations in the same order.
If the input is 'abba' then the possible palindromes are a, b, b, a, bb, abba.
I understand that determining if string is palindrome is easy. It would be like:
public static boolean isPalindrome(String str) {
int len = str.length();
for(int i=0; i<len/2; i++) {
if(str.charAt(i)!=str.charAt(len-i-1) {
return false;
}
return true;
}
But what is the efficient way of finding palindrome substrings?
This can be done in O(n), using Manacher's algorithm.
The main idea is a combination of dynamic programming and (as others have said already) computing maximum length of palindrome with center in a given letter.
What we really want to calculate is radius of the longest palindrome, not the length.
The radius is simply length/2 or (length - 1)/2 (for odd-length palindromes).
After computing palindrome radius pr at given position i we use already computed radiuses to find palindromes in range [i - pr ; i]. This lets us (because palindromes are, well, palindromes) skip further computation of radiuses for range [i ; i + pr].
While we search in range [i - pr ; i], there are four basic cases for each position i - k (where k is in 1,2,... pr):
no palindrome (radius = 0) at i - k
(this means radius = 0 at i + k, too)
inner palindrome, which means it fits in range
(this means radius at i + k is the same as at i - k)
outer palindrome, which means it doesn't fit in range
(this means radius at i + k is cut down to fit in range, i.e because i + k + radius > i + pr we reduce radius to pr - k)
sticky palindrome, which means i + k + radius = i + pr
(in that case we need to search for potentially bigger radius at i + k)
Full, detailed explanation would be rather long. What about some code samples? :)
I've found C++ implementation of this algorithm by Polish teacher, mgr Jerzy Wałaszek.
I've translated comments to english, added some other comments and simplified it a bit to be easier to catch the main part.
Take a look here.
Note: in case of problems understanding why this is O(n), try to look this way:
after finding radius (let's call it r) at some position, we need to iterate over r elements back, but as a result we can skip computation for r elements forward. Therefore, total number of iterated elements stays the same.
Perhaps you could iterate across potential middle character (odd length palindromes) and middle points between characters (even length palindromes) and extend each until you cannot get any further (next left and right characters don't match).
That would save a lot of computation when there are no many palidromes in the string. In such case the cost would be O(n) for sparse palidrome strings.
For palindrome dense inputs it would be O(n^2) as each position cannot be extended more than the length of the array / 2. Obviously this is even less towards the ends of the array.
public Set<String> palindromes(final String input) {
final Set<String> result = new HashSet<>();
for (int i = 0; i < input.length(); i++) {
// expanding even length palindromes:
expandPalindromes(result,input,i,i+1);
// expanding odd length palindromes:
expandPalindromes(result,input,i,i);
}
return result;
}
public void expandPalindromes(final Set<String> result, final String s, int i, int j) {
while (i >= 0 && j < s.length() && s.charAt(i) == s.charAt(j)) {
result.add(s.substring(i,j+1));
i--; j++;
}
}
So, each distinct letter is already a palindrome - so you already have N + 1 palindromes, where N is the number of distinct letters (plus empty string). You can do that in single run - O(N).
Now, for non-trivial palindromes, you can test each point of your string to be a center of potential palindrome - grow in both directions - something that Valentin Ruano suggested.
This solution will take O(N^2) since each test is O(N) and number of possible "centers" is also O(N) - the center is either a letter or space between two letters, again as in Valentin's solution.
Note, there is also O(N) solution to your problem, based on Manacher's algoritm (article describes "longest palindrome", but algorithm could be used to count all of them)
I just came up with my own logic which helps to solve this problem.
Happy coding.. :-)
System.out.println("Finding all palindromes in a given string : ");
subPal("abcacbbbca");
private static void subPal(String str) {
String s1 = "";
int N = str.length(), count = 0;
Set<String> palindromeArray = new HashSet<String>();
System.out.println("Given string : " + str);
System.out.println("******** Ignoring single character as substring palindrome");
for (int i = 2; i <= N; i++) {
for (int j = 0; j <= N; j++) {
int k = i + j - 1;
if (k >= N)
continue;
s1 = str.substring(j, i + j);
if (s1.equals(new StringBuilder(s1).reverse().toString())) {
palindromeArray.add(s1);
}
}
}
System.out.println(palindromeArray);
for (String s : palindromeArray)
System.out.println(s + " - is a palindrome string.");
System.out.println("The no.of substring that are palindrome : "
+ palindromeArray.size());
}
Output:-
Finding all palindromes in a given string :
Given string : abcacbbbca
******** Ignoring single character as substring palindrome ********
[cac, acbbbca, cbbbc, bb, bcacb, bbb]
cac - is a palindrome string.
acbbbca - is a palindrome string.
cbbbc - is a palindrome string.
bb - is a palindrome string.
bcacb - is a palindrome string.
bbb - is a palindrome string.
The no.of substring that are palindrome : 6
I suggest building up from a base case and expanding until you have all of the palindomes.
There are two types of palindromes: even numbered and odd-numbered. I haven't figured out how to handle both in the same way so I'll break it up.
1) Add all single letters
2) With this list you have all of the starting points for your palindromes. Run each both of these for each index in the string (or 1 -> length-1 because you need at least 2 length):
findAllEvenFrom(int index){
int i=0;
while(true) {
//check if index-i and index+i+1 is within string bounds
if(str.charAt(index-i) != str.charAt(index+i+1))
return; // Here we found out that this index isn't a center for palindromes of >=i size, so we can give up
outputList.add(str.substring(index-i, index+i+1));
i++;
}
}
//Odd looks about the same, but with a change in the bounds.
findAllOddFrom(int index){
int i=0;
while(true) {
//check if index-i and index+i+1 is within string bounds
if(str.charAt(index-i-1) != str.charAt(index+i+1))
return;
outputList.add(str.substring(index-i-1, index+i+1));
i++;
}
}
I'm not sure if this helps the Big-O for your runtime, but it should be much more efficient than trying each substring. Worst case would be a string of all the same letter which may be worse than the "find every substring" plan, but with most inputs it will cut out most substrings because you can stop looking at one once you realize it's not the center of a palindrome.
I tried the following code and its working well for the cases
Also it handles individual characters too
Few of the cases which passed:
abaaa --> [aba, aaa, b, a, aa]
geek --> [g, e, ee, k]
abbaca --> [b, c, a, abba, bb, aca]
abaaba -->[aba, b, abaaba, a, baab, aa]
abababa -->[aba, babab, b, a, ababa, abababa, bab]
forgeeksskeegfor --> [f, g, e, ee, s, r, eksske, geeksskeeg,
o, eeksskee, ss, k, kssk]
Code
static Set<String> set = new HashSet<String>();
static String DIV = "|";
public static void main(String[] args) {
String str = "abababa";
String ext = getExtendedString(str);
// will check for even length palindromes
for(int i=2; i<ext.length()-1; i+=2) {
addPalindromes(i, 1, ext);
}
// will check for odd length palindromes including individual characters
for(int i=1; i<=ext.length()-2; i+=2) {
addPalindromes(i, 0, ext);
}
System.out.println(set);
}
/*
* Generates extended string, with dividors applied
* eg: input = abca
* output = |a|b|c|a|
*/
static String getExtendedString(String str) {
StringBuilder builder = new StringBuilder();
builder.append(DIV);
for(int i=0; i< str.length(); i++) {
builder.append(str.charAt(i));
builder.append(DIV);
}
String ext = builder.toString();
return ext;
}
/*
* Recursive matcher
* If match is found for palindrome ie char[mid-offset] = char[mid+ offset]
* Calculate further with offset+=2
*
*
*/
static void addPalindromes(int mid, int offset, String ext) {
// boundary checks
if(mid - offset <0 || mid + offset > ext.length()-1) {
return;
}
if (ext.charAt(mid-offset) == ext.charAt(mid+offset)) {
set.add(ext.substring(mid-offset, mid+offset+1).replace(DIV, ""));
addPalindromes(mid, offset+2, ext);
}
}
Hope its fine
public class PolindromeMyLogic {
static int polindromeCount = 0;
private static HashMap<Character, List<Integer>> findCharAndOccurance(
char[] charArray) {
HashMap<Character, List<Integer>> map = new HashMap<Character, List<Integer>>();
for (int i = 0; i < charArray.length; i++) {
char c = charArray[i];
if (map.containsKey(c)) {
List list = map.get(c);
list.add(i);
} else {
List list = new ArrayList<Integer>();
list.add(i);
map.put(c, list);
}
}
return map;
}
private static void countPolindromeByPositions(char[] charArray,
HashMap<Character, List<Integer>> map) {
map.forEach((character, list) -> {
int n = list.size();
if (n > 1) {
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
if (list.get(i) + 1 == list.get(j)
|| list.get(i) + 2 == list.get(j)) {
polindromeCount++;
} else {
char[] temp = new char[(list.get(j) - list.get(i))
+ 1];
int jj = 0;
for (int ii = list.get(i); ii <= list
.get(j); ii++) {
temp[jj] = charArray[ii];
jj++;
}
if (isPolindrome(temp))
polindromeCount++;
}
}
}
}
});
}
private static boolean isPolindrome(char[] charArray) {
int n = charArray.length;
char[] temp = new char[n];
int j = 0;
for (int i = (n - 1); i >= 0; i--) {
temp[j] = charArray[i];
j++;
}
if (Arrays.equals(charArray, temp))
return true;
else
return false;
}
public static void main(String[] args) {
String str = "MADAM";
char[] charArray = str.toCharArray();
countPolindromeByPositions(charArray, findCharAndOccurance(charArray));
System.out.println(polindromeCount);
}
}
Try out this. Its my own solution.
// Maintain an Set of palindromes so that we get distinct elements at the end
// Add each char to set. Also treat that char as middle point and traverse through string to check equality of left and right char
static int palindrome(String str) {
Set<String> distinctPln = new HashSet<String>();
for (int i=0; i<str.length();i++) {
distinctPln.add(String.valueOf(str.charAt(i)));
for (int j=i-1, k=i+1; j>=0 && k<str.length(); j--, k++) {
// String of lenght 2 as palindrome
if ( (new Character(str.charAt(i))).equals(new Character(str.charAt(j)))) {
distinctPln.add(str.substring(j,i+1));
}
// String of lenght 2 as palindrome
if ( (new Character(str.charAt(i))).equals(new Character(str.charAt(k)))) {
distinctPln.add(str.substring(i,k+1));
}
if ( (new Character(str.charAt(j))).equals(new Character(str.charAt(k)))) {
distinctPln.add(str.substring(j,k+1));
} else {
continue;
}
}
}
Iterator<String> distinctPlnItr = distinctPln.iterator();
while ( distinctPlnItr.hasNext()) {
System.out.print(distinctPlnItr.next()+ ",");
}
return distinctPln.size();
}
Code is to find all distinct substrings which are palindrome.
Here is the code I tried. It is working fine.
import java.util.HashSet;
import java.util.Set;
public class SubstringPalindrome {
public static void main(String[] args) {
String s = "abba";
checkPalindrome(s);
}
public static int checkPalindrome(String s) {
int L = s.length();
int counter =0;
long startTime = System.currentTimeMillis();
Set<String> hs = new HashSet<String>();
// add elements to the hash set
System.out.println("Possible substrings: ");
for (int i = 0; i < L; ++i) {
for (int j = 0; j < (L - i); ++j) {
String subs = s.substring(j, i + j + 1);
counter++;
System.out.println(subs);
if(isPalindrome(subs))
hs.add(subs);
}
}
System.out.println("Total possible substrings are "+counter);
System.out.println("Total palindromic substrings are "+hs.size());
System.out.println("Possible palindromic substrings: "+hs.toString());
long endTime = System.currentTimeMillis();
System.out.println("It took " + (endTime - startTime) + " milliseconds");
return hs.size();
}
public static boolean isPalindrome(String s) {
if(s.length() == 0 || s.length() ==1)
return true;
if(s.charAt(0) == s.charAt(s.length()-1))
return isPalindrome(s.substring(1, s.length()-1));
return false;
}
}
OUTPUT:
Possible substrings:
a
b
b
a
ab
bb
ba
abb
bba
abba
Total possible substrings are 10
Total palindromic substrings are 4
Possible palindromic substrings: [bb, a, b, abba]
It took 1 milliseconds