I'm trying to learn a bit Java with tutorials and currently I'm struggling with piece of code where I should find on which index is difference between arrays (if there is difference at all)
My code
Scanner scanner = new Scanner(System.in);
int[] arrOne = Arrays.stream(scanner.nextLine().split(" ")).mapToInt(Integer::parseInt).toArray();
int[] arrTwo = Arrays.stream(scanner.nextLine().split(" ")).mapToInt(Integer::parseInt).toArray();
int sumArrOne = 0;
int index = 0;
boolean diff = false;
for (int k : arrOne) {
if (Arrays.equals(arrOne, arrTwo)) {
sumArrOne += k;
} else {
for (int i : arrTwo) {
if (k != i) {
index = i;
diff = true;
break;
}
}
}
}
if (diff) {
System.out.println("Found difference at " + index + " index.");
} else {
System.out.println("Sum: " + sumArrOne);
}
So, if arrays are identical I'm sum array elements in arrOne. If they are not identical -> must show at which index they are not.
With this code when I input
1 2 3 4 5
1 2 4 3 5
I should get that difference is at index 2 instead I've got index 1.
I'm not quite sure why and would be glad if someone point me out where is my mistake.
I updated your code. Looks like you're misunderstanding the concept of indexes yet.
Use one common index to check with in both arrays, in my example it's simply called i:
import java.util.Arrays;
import java.util.Scanner;
public class BadArray {
static private final int INVALID_INDEX = Integer.MIN_VALUE;
public static void main(final String[] args) {
try (final Scanner scanner = new Scanner(System.in);) {
final int[] arrOne = Arrays.stream(scanner.nextLine().split(" ")).mapToInt(Integer::parseInt).toArray();
final int[] arrTwo = Arrays.stream(scanner.nextLine().split(" ")).mapToInt(Integer::parseInt).toArray();
int sumArrOne = 0;
int diffIndex = INVALID_INDEX;
final int minLen = Math.min(arrOne.length, arrTwo.length);
for (int i = 0; i < minLen; i++) {
sumArrOne += arrOne[i];
if (arrOne[i] != arrTwo[i]) {
diffIndex = i;
break;
}
}
if (diffIndex != INVALID_INDEX) {
System.out.println("Found difference at " + diffIndex + " index.");
} else if (arrOne.length != arrTwo.length) {
System.out.println("Arrays are equal but have different length!");
} else {
System.out.println("Sum: " + sumArrOne);
}
}
}
}
I also put the scanner into a try-resource-catch to handle resource releasing properly.
Note you could also do the array lengths comparison right at the start if different array lengths play a more crucial role.
You are trying to find out which index has the first difference so you should iterate via the index rather than using a for-each loop (aka enhanced for loop). The following method should work for this.
/**
* Returns the index of the first element of the two arrays that are not the same.
* Returns -1 if both arrays have the same values in the same order.
* #param left an int[]
* #param right an int[]
* #return index of difference or -1 if none
*/
public int findIndexOfDifference(int[] left, int[] right) {
// short-circuit if we're comparing an array against itself
if (left == right) return -1;
for (int index = 0 ; index < left.length && index < right.length ; ++index) {
if (left[index] != right[index]) {
return index;
}
}
return -1;
}
In your code you compare, where the indexes are different, not the values at the indexes. Also your code has several other issues. I'll try to go through them step by step:
// compare the whole array only once, not inside a loop:
diff = !Arrays.equals(arrOne, arrTwo));
if (!diff) {
// do the summing without a loop
sumArrOne = Arrays.stream(arrOne).sum();
} else {
// find the difference
// it could be the length
index = Math.min(arrOne.length, arrTwo.length);
// or in some different values
for (int i = 0; i < index; i++) { // do a loop with counter
if (arrOne[i] != arrTwo[i]) {
index = i;
break;
}
}
}
It doesn't matter that I set index here above the loop as it's value will be overwritten anyways inside the loop, if relevant.
Related
I am not sure if it's rly possible to check but I have an issue rn where I have an array
let's say: int[] unmarkedSum = new int[100];
Now I put something in this array when a certain condition is true so not in every single iteration. But I know for a fact that at some point the whole array will be filled with any positive values that are not 0 because of how my algorithm works.
My question here is: Is there a way of checking WHEN it's fully filled?
Like I started like this:
for(int i = 0; i < unmarkedSum.length; i++) {
if(unmarkedSum[i] == 0 {
break;
}
else {
// idk tbh
}
}
In Java by default an array of ints is filled with zeros. You can use this to check if the array is fully filled. For example you can create a method which checks for 0 and returns true if there are no 0:
public static bool isArrayFilled(int[] array) {
for(int i = array.length; i >= 0; i--){
if(array[i] == 0) {
return false;
}
}
return true;
}
If array is big enough and filled out of order, you can use advanced algorithms to find at least one 0 value in the array.
I would simply maintain a variable size that keep tracks of how many values have been written to the array.
Example:
int size = 0;
int[] array = new int[100];
Random r = new Random();
while(size < array.length){
int index = r.nextInt(100);
int val = r.nextInt(1000)+500;
if (array[index] == 0){
array[index] = val;
size++;
}
}
System.out.println(Arrays.toString(array));
Per my previous comment, you can share this array with another thread so that one thread can fill the values and another can check the array at the same time. When the second thread finds that there are no default values (or 0s) then it can notify the first thread (or the main thread). Here is how you can do that
import java.util.Arrays;
import java.util.Random;
public class CheckArray {
public static void main(String[] args) throws InterruptedException {
var arr = new int[50];
Thread arrayChecker = new Thread(() -> {
var isZeroPresent = false;
while (true) {
for (int index = 0; index < arr.length; index++) {
isZeroPresent = false;
if (arr[index] == 0) {
isZeroPresent = true;
break;
}
}
if (isZeroPresent == false) {
// if the for loop completed then control will come here
System.out.println("Array has been filled");
System.out.println(Arrays.toString(arr));
System.exit(0);
}
}
});
arrayChecker.start();
// fill random values in the array
// while another thread has been started
Random random = new Random();
while(true) {
Thread.sleep(500);
int index = random.nextInt(arr.length);
arr[index] = random.nextInt(100);
System.out.println(Arrays.toString(arr));
}
}
}
The longest increasing subsequence is the well known problem and I have a solution with the patience algorithm.
Problem is, my solution gives me the "Best longest increasing sequence" instead of the First longest increasing sequence that appears.
The difference is that some of the members of the sequence are larger numbers in the first(but the sequence length is exactly the same).
Getting the first sequence is turning out to be quite harder than expected, because having the best sequence doesn't easily translate into having the first sequence.
I've thought of doing my algorithm then finding the first sequence of length N, but not sure how to.
So, how would you find the First longest increasing subsequence from a sequence of random integers?
My code snippet:
public static void main (String[] args) throws java.lang.Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int inputInt;
int[] intArr;
try {
String input = br.readLine().trim();
inputInt = Integer.parseInt(input);
String inputArr = br.readLine().trim();
intArr = Arrays.stream(inputArr.split(" ")).mapToInt(Integer::parseInt).toArray();
} catch (NumberFormatException e) {
System.out.println("Could not parse integers.");
return;
}
if(inputInt != intArr.length) {
System.out.println("Invalid number of arguments.");
return;
}
ArrayList<ArrayList<Integer>> sequences = new ArrayList<ArrayList<Integer>>();
int sequenceCount = 1;
sequences.add(new ArrayList<Integer>());
sequences.get(0).add(0);
for(int i = 1; i < intArr.length; i++) {
for(int j = 0; j < sequenceCount; j++) {
if(intArr[i] <= intArr[sequences.get(j).get(sequences.get(j).size() - 1)]) {
sequences.get(j).remove(sequences.get(j).size() - 1);
sequences.get(j).add(i);
break;
} else if (j + 1 == sequenceCount) {
sequences.add(new ArrayList<Integer>(sequences.get(j)));
sequences.get(j + 1).add(i);
sequenceCount++;
break; //increasing sequenceCount causes infinite loop
} else if(intArr[i] < intArr[sequences.get(j + 1).get(sequences.get(j + 1).size() - 1)]) {
sequences.set(j+ 1, new ArrayList<Integer>(sequences.get(j)));
sequences.get(j+ 1).add(i);
break;
}
}
}
int bestSequenceLength = sequenceCount;
ArrayList<Integer> bestIndexes = new ArrayList<Integer>(sequences.get(bestSequenceLength - 1));
//build bestSequence, then after it I'm supposed to find the first one instead
int[] bestSequence = Arrays.stream(bestIndexes.toArray()).mapToInt(x -> intArr[(int) x]).toArray();
StringBuilder output = new StringBuilder("");
for(Integer x : bestSequence) {
output.append(x + " ");
}
System.out.println(output.toString().trim());
}
I'm storing indexes instead in preparation for having to access the original array again. Since it's easier to go from indexes to values than vice versa.
Example:
3 6 1 2 8
My code returns: 1 2 8
First sequence is: 3 6 8
Another Example:
1 5 2 3
My code correctly returns: 1 2 3
Basically, my code works as long as the first longest sequence is the same as the best longest sequence. But when you have a bunch of longest sequences of the same length, it grabs the best one not the first one.
Code is self-explanatory. (Have added comments, let me know if you need something extra).
public class Solution {
public static void main(String[] args) {
int[] arr = {3,6,1,2,8};
System.out.println(solve(arr).toString());
}
private static List<Integer> solve(int[] arr){
int[][] data = new int[arr.length][2];
int max_length = 0;
// first location for previous element index (for backtracing to print list) and second for longest series length for the element
for(int i=0;i<arr.length;++i){
data[i][0] = -1; //none should point to anything at first
data[i][1] = 1;
for(int j=i-1;j>=0;--j){
if(arr[i] > arr[j]){
if(data[i][1] <= data[j][1] + 1){ // <= instead of < because we are aiming for the first longest sequence
data[i][1] = data[j][1] + 1;
data[i][0] = j;
}
}
}
max_length = Math.max(max_length,data[i][1]);
}
List<Integer> ans = new ArrayList<>();
for(int i=0;i<arr.length;++i){
if(data[i][1] == max_length){
int curr = i;
while(curr != -1){
ans.add(arr[curr]);
curr = data[curr][0];
}
break;
}
}
Collections.reverse(ans);// since there were added in reverse order in the above while loop
return ans;
}
}
Output:
[3, 6, 8]
I am using this method with the intentions of finding the most common element in an array. It works most of the time but for some reason it doesn't always work. I would also like it to be able to store if there are 2 numbers tied for most common but I am unsure how to do so.
Here is the code for the method: (The variable size is the size of the array)
public static int mostCommon(int size) {
int mostCommon = 0, mostCommonCount = 0, currentCount = 0;
for (int i = 1; i < size; i++) {
if (array[i - 1] == array[i]) {
currentCount++;
if (currentCount > mostCommonCount) {
mostCommonCount = currentCount;
mostCommon = array[i];
}
}
else
currentCount = 0;
}
return mostCommon;
}
This code is in the main and prints out the most common element:
if (mostCommon(size) == 0)
System.out.println("\nAll Elements In Your Array Occur Equally");
else
System.out.println("\nThe Most Common Element In Your Array Is: " + mostCommon(size));
I would really appreciate the help. Thanks!
Guessing this is irrelevant now but thought I would answer anyway.
I don't fully understand why you would pass the size of the array in but not the array itself, anyway, I have a solution, slightly modified from your method signature but if it is still needed then it can be modified to suit your exact situation.
public static Set<Integer> mostCommon()
{
int[] array = new int[] {1,2,3,4,5,5,4,3,4};
Map<Integer, Integer> counts = new HashMap<Integer,Integer>();
Set<Integer> highestCount = new TreeSet<Integer>();
//loop through the array to count common values
for(int numInArray : array)
{
//if number in array already been seen
if(counts.containsKey(numInArray))
{
counts.put(numInArray, counts.get(numInArray)+1);
}
//else set it at one
else
{
counts.put(numInArray, 1);
}
}
//loop through map to count highest occurences
int maxValue = 0;
int maxKey = 0;
for(Integer mapKey : counts.keySet())
{
int value = counts.get(mapKey);
//if value is greater than maxValue then set maxVale=value, also clear highestCount as they are lower now
if(value > maxValue)
{
highestCount.clear();
maxValue = value;
maxKey = mapKey;
}
//if value is the same as maxValue then store it in list, this will allow us to get two of the same max occurences
else if(value == maxValue)
{
highestCount.add(mapKey);
}
}
highestCount.add(maxKey);
System.out.println("counts " + counts);
System.out.println("final answer " + highestCount);
return highestCount;
}
I have tested various values in the array and it seems to work for all I tried.
This is by no means the most efficient method it is just a solution that works.
edit: Seen your other question and the code you posted that was this method and yours works much better than this answer
You can get logic by this solution and language use to solve this problem is SWIFT 4.2
var arrColor = ["red","green","blue","green","red","green","blue","green","red","green","blue","green","blue","green","red","green","blue","blue","green","red","green","blue","blue","blue","blue","blue"]
func mostCommonArray(array:[String])->[String]{
var commonArr = [String]()
var dictColor = [String:Int]()
for color in array{
if let count = dictColor[color]{
dictColor[color] = count + 1
}
else{
dictColor[color] = 1
}
}
let highestValue = dictColor.values.max()
for (color,count) in dictColor{
if dictColor[color] == highestValue{
commonArr.append(color)
}
}
return commonArr
}
As the title reads, I have been thinking about creating multiple nested loops that aim to achieve one purpose. Move two generated random numbers between 0-9 through each possible possition of an array.
For example, App generates first number (fNum) 1 and second number (sNum) 6. It then moves these numbers in the array which containts ABC. However firstNum and secondNum will need to also try all the possible combinations, so each one will need to be different with each loop.
-1ABC6
-A1BC6
-AB1C6
-ABC16
-ABC61
-AB6C1
-A6BC1
-6ABC1
-A6B1C
-A61BC
-A16BC
-A1B6C
-A1BC6
and so on...
I beleive the best way will be to create a method for generating a counter, which increments the numbers which I can call.
private int getNextNumber(int num) {
if (num == 0) {
return num;
} else {
num++;
}
if (num < 10) {
return num;
} else {
return -1;
}
}
Then I will need multiple nested loops... I have decided to go for several loops which will go infinitly.
while (j < maxlen) {
//J = 0 and maxlen = length of text so in this case 3 as it is ABC
//Add two numbers and check against answer
while (fNum != -1 || sNum != -1) {
//incrememnt numbers
fNum = getNextNumber(fNum);
System.out.println(fNum);
sNum = getNextNumber(sNum);
System.out.println(fNum);
}
String textIni = "ABC";
int lenOfText = textIni.length();
char[] split = textIni.toCharArray();
for (int i = 0; i < lenOfText; i++) {
//here it will look at the length of the Text and
//try the possible positions it could be at....
//maybe wiser to do a longer loop but I am not too sure
}
}
Since you don't need to store all possible combinations, we will save some memory using only O(n) storage with an iterative solution. I propose you a basic implementation but don't expect to use it on large arrays since it has a O(n³) complexity.
public static void generateCombinationsIterative(List<Integer> original, int fnum, int snum) {
int size = original.size();
for (int i=0 ; i<=size ; i++) {
List<Integer> tmp = new ArrayList<>(original);
tmp.add(i,fnum);
for (int j=0 ; j<=size + 1 ; j++) {
tmp.add(j,snum);
System.out.print(tmp + (i == size && j == size + 1 ? "" : ", "));
tmp.remove(j);
}
}
}
For your culture, here is an example of a recursive solution, which takes a lot of memory so don't use it if you don't need to generate the lists of results. Nevertheless, this is a more general solution that can deal with any number of elements to insert.
public static List<List<Integer>> generateCombinations(List<Integer> original, Deque<Integer> toAdd) {
if (toAdd.isEmpty()) {
List<List<Integer>> res = new ArrayList<>();
res.add(original);
return res;
}
int element = toAdd.pop();
List<List<Integer>> res = new LinkedList<>();
for (int i=0 ; i<=original.size() ; i++)
// you must make a copy of toAdd, otherwise each recursive call will perform
// a pop() on it and the result will be wrong
res.addAll(generateCombinations(insertAt(original,element,i),new LinkedList<>(toAdd)));
return res;
}
// a helper function for a clear code
public static List<Integer> insertAt(List<Integer> input, int element, int index) {
List<Integer> result = new ArrayList<>(input);
result.add(index,element);
return result;
}
Note that I did not use any array in order to benefit from dynamic data structures, however you can call the methods like this :
int[] arr = { 1,2,3 };
int fnum = 4, snum = 5;
generateCombinationsIterative(Arrays.asList(arr),fnum,snum);
generateCombinations(Arrays.asList(arr),new LinkedList<>(Arrays.asList(fnum,snum));
Note that both methods generate the combinations in the same order.
I have a random set S of integers and the cardinality (n) of this set may vary from 10 to 1000. I need to store all sums of the nCr combinations of size r generated from this set. Usually r range from 3 to 10.
E.g. if S={102,233,344,442,544,613,71289,836,97657,12} and r=4, Then The sums generated will be {0,1,2,3}=102+233+344+442, {0,1,2,4}=102+233+344+544,....so on.
I implemented a findCombi function (below) in Java which gave me all nCr combinations in terms of r sized sets of indices and then I sifted through these sets in another function to generate the sum of corresponding elements.
But the program is giving heapspace error, probably because of exponential nature and I have 100-5000 of such sets, S. Or may be there is a memory leak?
Is there a faster and lesser-memory consuming way to do it?
Note: dsize=n, combiSize=r
List <List<Integer>> findCombi(int dsize,int combiSize) {
if( (combiSize==0) || (dsize==0) ){
return null;
}
long n=dsize;
int r=combiSize;
for(int i=1;i<combiSize;i++) {
n=n*(dsize-i);
r=r*i;
}
int totalcombi=(int) n/r;
List <List<Integer>> combiData=new ArrayList<>(totalcombi);
int pos;
List <Integer> combi=new ArrayList<>(combiSize);
for(int i=0;i<combiSize;i++) {
combi.add(i,i);
}
combiData.add(new ArrayList<>(combi));
pos=combiSize-1;
while(true) {
if(combi.get(pos)<(dsize-combiSize+pos)) {
combi.set(pos,combi.get(pos)+1);
if(pos==(combiSize-1)) {
combiData.add(new ArrayList<>(combi));
}
else {
combi.set(pos+1,combi.get(pos));
pos++;
}
}
else {
pos--;
}
if(pos==-1) {
break;
}
}
return combiData;
}
I needed something like that earlier, so here is some code adapted from the project I made back then. The method allSums builds a list of indices of size r, which is used to represent all the possible combinations. At each step, the current sum is added to the result set, then the next combination is generated. Since the results are put in a set, there is no way a result could appear twice. I included a main method so you can see it work. I hope this is clear, feel free to ask questions.
import java.util.*;
public class Program {
static private Set<Integer> allSums(List<Integer> values, int r) {
HashSet<Integer> res = new HashSet<>();
if ((values.isEmpty()) || r > values.size()) {
return res;
}
// build the list of indices
List<Integer> li = new ArrayList<>();
for (int i = 0; i < r; i++) {
li.add(i);
}
li.add(values.size()); // artificial last index : number of elements in set
while (true) {
// add the current sum to the result
int sum = 0;
for (int i = 0; i < r; i++) {
sum += values.get(li.get(i));
}
res.add(sum);
// move to the next combination
// first, find the last index that can be incremented
int i = r-1;
while ((i >= 0) && (li.get(i) == li.get(i+1)-1)) {
i--;
}
// was such an index found ?
if (i == -1) {
break; // if not, it's over
}
// increment the last index and set all the next indices to their initial value
li.set(i,li.get(i)+1);
for (int j = i+1; j < r; j++) {
li.set(j, li.get(j-1)+1);
}
}
return res;
}
public static void main(String[] args) {
List<Integer> values = new ArrayList<>();
values.add(10);
values.add(100);
values.add(1000);
values.add(10000);
values.add(100000);
Set<Integer> s = allSums(values, 3);
for (int i : s) {
System.out.println(i);
}
}
}