I am looking to create an algorithm preferably in Java. I would like to go through following char array and create every possible permutations and lengths out of it.
For example, loop and print the following:
a
aa
aaaa
aaaaa
.... keep going ....
aaaaaaaaaaaaaaaaa ....
ab
aba
abaa .............
Till I hit all possible lengths and permutations from my array.
private void method(){
char[] data = "abcdefghiABCDEFGHI0123456789".toCharArray();
// loop and print each time
}
I think it would be silly to come up with 10s of for loops for this. I am guessing some form of recursion would help here but can't get my head around to even start with. Could I get some help with this please? Even if pointing me to a start or a blog or something. Been Googling and looking around and many permutations examples exists but keeps to fixed max length. None seems to have examples on multiple length + permutations. Please advice. Thanks.
Another way to do it is this:
public class HelloWorld{
public static String[] method(char[] arr, int length) {
if(length == arr.length - 1) {
String[] strArr = new String[arr.length];
for(int i = 0; i < arr.length; i ++) {
strArr[i] = String.valueOf(arr[i]);
}
return strArr;
}
String[] before = method(arr, length + 1);
String[] newArr = new String[arr.length * before.length];
for(int i = 0; i < arr.length; i ++) {
for(int j = 0; j < before.length; j ++) {
if(i == 0)
System.out.println(before[j]);
newArr[i * before.length + j] = (arr[i] + before[j]);
}
}
return newArr;
}
public static void main(String []args){
String[] all = method("abcde".toCharArray(), 0);
for(int i = 0; i < all.length; i ++) {
System.out.println(all[i]);
}
}
}
However be careful you'll probably run out of memory or the program will take a looooong time to compile/run if it does at all. You are trying to print 3.437313508041091e+40 strings, that's 3 followed by 40 zeroes.
Here's the solution also in javascript because it starts running but it needs 4 seconds to get to 4 character permutations, for it to reach 5 character permutations it will need about 28 times that time, for 6 characters it's 4 * 28 * 28 and so on.
const method = (arr, length) => {
if(length === arr.length - 1)
return arr;
const hm = [];
const before = method(arr, length + 1);
for(let i = 0; i < arr.length; i ++) {
for(let j = 0; j < before.length; j ++) {
if(i === 0)
console.log(before[j]);
hm.push(arr[i] + before[j]);
}
}
return hm;
};
method('abcdefghiABCDEFGHI0123456789'.split(''), 0).forEach(a => console.log(a));
private void method(){
char[] data = "abcdefghiABCDEFGHI0123456789".toCharArray();
// loop and print each time
}
With your given input there are 3.43731350804×10E40 combinations. (Spelled result in words is eighteen quadrillion fourteen trillion three hundred ninety-eight billion five hundred nine million four hundred eighty-one thousand nine hundred eighty-four. ) If I remember it correctly the maths is some how
1 + x + x^2 + x^3 + x^4 + ... + x^n = (1 - x^n+1) / (1 - x)
in your case
28 + 28^2 + 28^3 + .... 28^28
cause you will have
28 combinations for strings with length one
28*28 combinations for strings with length two
28*28*28 combinations for strings with length three
...
28^28 combinations for strings with length 28
It will take a while to print them all.
One way I can think of is to use the Generex library, a Java library for generating String that match a given regular expression.
Generex github. Look at their page for more info.
Generex maven repo. Download the jar or add dependency.
Using generex is straight forward if you are somehow familiar with regex.
Example using only the first 5 chars which will have 3905 possible combinations
public static void main(String[] args) {
Generex generex = new Generex("[a-e]{1,5}");
System.out.println(generex.getAllMatchedStrings().size());
Iterator iterator = generex.iterator();
while (iterator.hasNext()) {
System.out.println(iterator.next());
}
}
Meaning of [a-e]{1,5} any combination of the chars a,b,c,d,e wit a min length of 1 and max length of 5
output
a
aa
aaa
aaaa
aaaaa
aaaab
aaaac
aaaad
aaaae
aaab
aaaba
aaabb
aaabc
aaabd
aaabe
aaac
....
eeee
eeeea
eeeeb
eeeec
eeeed
eeeee
You can have a for loop that starts from 1 and ends at array.length and in each iteration call a function that prints all the permutations for that length.
public void printPermutations(char[] array, int length) {
/*
* Create all permutations with length = length and print them
*/
}
public void method() {
char data = "abcdefghiABCDEFGHI0123456789".toCharArray();
for(int i = 1; i <= data.length; i ++) {
printPermutations(data, i);
}
}
I think the following recursion could solve your problem:
public static void main(String[] args) {
final String[] data = {"a", "b", "c"};
sampleWithReplacement(data, "", 1, 5);
}
private static void sampleWithReplacement(
final String[] letters,
final String prefix,
final int currentLength,
final int maxLength
) {
if (currentLength <= maxLength) {
for (String letter : letters) {
final String newPrefix = prefix + letter;
System.out.println(newPrefix);
sampleWithReplacement(letters, newPrefix, currentLength + 1, maxLength);
}
}
}
where data specifies your possible characters to sample from.
Is this what you're talking about?
public class PrintPermutations
{
public static String stream = "";
public static void printPermutations (char[] set, int count, int length)
{
if (count < length)
for (int i = 0; i < set.length; ++i)
{
stream += set[i];
System.out.println (stream);
printPermutations (set, count + 1, length);
stream = stream.substring (0, stream.length() - 1);
}
}
public static void main (String[] args)
{
char[] set = "abcdefghiABCDEFGHI0123456789".toCharArray();
printPermutations (set, 0, set.length);
}
}
Test it using a smaller string first.
On an input string 28 characters long this method is never going to end, but for smaller inputs it will generate all permutations up to length n, where n is the number of characters. It first prints all permutations of length 1, then all of length 2 etc, which is different from your example, but hopefully order doesn't matter.
static void permutations(char[] arr)
{
int[] idx = new int[arr.length];
char[] perm = new char[arr.length];
Arrays.fill(perm, arr[0]);
for (int i = 1; i < arr.length; i++)
{
while (true)
{
System.out.println(new String(perm, 0, i));
int k = i - 1;
for (; k >= 0; k--)
{
idx[k] += 1;
if (idx[k] < arr.length)
{
perm[k] = arr[idx[k]];
break;
}
idx[k] = 0;
perm[k] = arr[idx[k]];
}
if (k < 0)
break;
}
}
}
Test:
permutations("abc".toCharArray());
Output:
a
b
c
aa
ab
ac
ba
bb
bc
ca
cb
cc
Related
The longest increasing subsequence is the well known problem and I have a solution with the patience algorithm.
Problem is, my solution gives me the "Best longest increasing sequence" instead of the First longest increasing sequence that appears.
The difference is that some of the members of the sequence are larger numbers in the first(but the sequence length is exactly the same).
Getting the first sequence is turning out to be quite harder than expected, because having the best sequence doesn't easily translate into having the first sequence.
I've thought of doing my algorithm then finding the first sequence of length N, but not sure how to.
So, how would you find the First longest increasing subsequence from a sequence of random integers?
My code snippet:
public static void main (String[] args) throws java.lang.Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int inputInt;
int[] intArr;
try {
String input = br.readLine().trim();
inputInt = Integer.parseInt(input);
String inputArr = br.readLine().trim();
intArr = Arrays.stream(inputArr.split(" ")).mapToInt(Integer::parseInt).toArray();
} catch (NumberFormatException e) {
System.out.println("Could not parse integers.");
return;
}
if(inputInt != intArr.length) {
System.out.println("Invalid number of arguments.");
return;
}
ArrayList<ArrayList<Integer>> sequences = new ArrayList<ArrayList<Integer>>();
int sequenceCount = 1;
sequences.add(new ArrayList<Integer>());
sequences.get(0).add(0);
for(int i = 1; i < intArr.length; i++) {
for(int j = 0; j < sequenceCount; j++) {
if(intArr[i] <= intArr[sequences.get(j).get(sequences.get(j).size() - 1)]) {
sequences.get(j).remove(sequences.get(j).size() - 1);
sequences.get(j).add(i);
break;
} else if (j + 1 == sequenceCount) {
sequences.add(new ArrayList<Integer>(sequences.get(j)));
sequences.get(j + 1).add(i);
sequenceCount++;
break; //increasing sequenceCount causes infinite loop
} else if(intArr[i] < intArr[sequences.get(j + 1).get(sequences.get(j + 1).size() - 1)]) {
sequences.set(j+ 1, new ArrayList<Integer>(sequences.get(j)));
sequences.get(j+ 1).add(i);
break;
}
}
}
int bestSequenceLength = sequenceCount;
ArrayList<Integer> bestIndexes = new ArrayList<Integer>(sequences.get(bestSequenceLength - 1));
//build bestSequence, then after it I'm supposed to find the first one instead
int[] bestSequence = Arrays.stream(bestIndexes.toArray()).mapToInt(x -> intArr[(int) x]).toArray();
StringBuilder output = new StringBuilder("");
for(Integer x : bestSequence) {
output.append(x + " ");
}
System.out.println(output.toString().trim());
}
I'm storing indexes instead in preparation for having to access the original array again. Since it's easier to go from indexes to values than vice versa.
Example:
3 6 1 2 8
My code returns: 1 2 8
First sequence is: 3 6 8
Another Example:
1 5 2 3
My code correctly returns: 1 2 3
Basically, my code works as long as the first longest sequence is the same as the best longest sequence. But when you have a bunch of longest sequences of the same length, it grabs the best one not the first one.
Code is self-explanatory. (Have added comments, let me know if you need something extra).
public class Solution {
public static void main(String[] args) {
int[] arr = {3,6,1,2,8};
System.out.println(solve(arr).toString());
}
private static List<Integer> solve(int[] arr){
int[][] data = new int[arr.length][2];
int max_length = 0;
// first location for previous element index (for backtracing to print list) and second for longest series length for the element
for(int i=0;i<arr.length;++i){
data[i][0] = -1; //none should point to anything at first
data[i][1] = 1;
for(int j=i-1;j>=0;--j){
if(arr[i] > arr[j]){
if(data[i][1] <= data[j][1] + 1){ // <= instead of < because we are aiming for the first longest sequence
data[i][1] = data[j][1] + 1;
data[i][0] = j;
}
}
}
max_length = Math.max(max_length,data[i][1]);
}
List<Integer> ans = new ArrayList<>();
for(int i=0;i<arr.length;++i){
if(data[i][1] == max_length){
int curr = i;
while(curr != -1){
ans.add(arr[curr]);
curr = data[curr][0];
}
break;
}
}
Collections.reverse(ans);// since there were added in reverse order in the above while loop
return ans;
}
}
Output:
[3, 6, 8]
How can I list all uppercase/lowercase permutations for any letter specified in a character array?
So, say I have an array of characters like so: ['h','e','l','l','o']
and I wanted print out possible combinations for say the letter 'l' so it would print out [hello,heLlo,heLLo,helLo].
This is what I have so far(the only problem is that I can print the permutations however I'm not able to print them inside the actual word. so my code prints [ll,lL,Ll,LL] instead of the example above.
my code:
import java.util.ArrayList;
import java.util.HashSet;
public class Main {
public static void main(String[] args) {
//Sample Word
String word = "Tomorrow-Today";
//Sample Letters for permutation
String rule_char_set = "tw";
ArrayList<Character> test1 = lettersFound(word, rule_char_set);
printPermutations(test1);
}
public static void printPermutations(ArrayList<Character> arrayList) {
char[] chars = new char[arrayList.size()];
int charIterator = 0;
for(int i=0; i<arrayList.size(); i++){
chars[i] = arrayList.get(i);
}
for (int i = 0, n = (int) Math.pow(2, chars.length); i < n; i++) {
char[] permutation = new char[chars.length];
for (int j =0; j < chars.length; j++) {
permutation[j] = (isBitSet(i, j)) ? Character.toUpperCase(chars[j]) : chars[j];
}
System.out.println(permutation);
}
}
public static boolean isBitSet(int n, int offset) {
return (n >> offset & 1) != 0;
}
public static ArrayList<Character> lettersFound(String word, String rule_char_set) {
//Convert the two parameter strings to two character arrays
char[] wordArray = word.toLowerCase().toCharArray();
char[] rule_char_setArray = rule_char_set.toLowerCase().toCharArray();
//ArrayList to hold found characters;
ArrayList<Character> found = new ArrayList<Character>();
//Increments the found ArrayList that stores the existent values.
int foundCounter = 0;
for (int i = 0; i < rule_char_setArray.length; i++) {
for (int k = 0; k < wordArray.length; k++) {
if (rule_char_setArray[i] == wordArray[k]) {
found.add(foundCounter, rule_char_setArray[i]);
foundCounter++;
}
}
}
//Convert to a HashSet to get rid of duplicates
HashSet<Character> uniqueSet = new HashSet<>(found);
//Convert back to an ArrayList(to be returned) after filtration of duplicates.
ArrayList<Character> filtered = new ArrayList<>(uniqueSet);
return filtered;
}
}
You need to make few changes in your program. Your logic is perfect that you need to find first the characters to be changed in the given word. After finding them, find powerset of characters to print all the permutation but this will only print permuatation of the characters of rule-char-set which are present in the given word.
Few changes you need to make is that first find all the indexes of word which contains characters of rule-char-set. Then find all subsets of indexes stored in an ArrayList and then for each element of each of the subsets, make the character present on that index to uppercase letter which will give you all permutation you require.
Consider an example that word = "Hello" and rule-char-set="hl" Then here first you need to find all indexes of h and l in the String word.
So here indexes are 0,2,3. Store it in ArrayList and then find its powerset.Then for each subset ,make the character present on that index to the uppercase letter.
Word[] = {'h','e','l','l','o'}
indexes = 0 , 1 , 2 , 3 , 4
index[]= { 0 , 2 ,3} //Store the indexes of characters which are to be changed
BITSET | SUBSET | word
000 | - | hello
001 | {3} | helLo
010 | {2} | heLlo
011 | {2,3} | heLLo
100 | {0} | Hello
101 | {0,3} | HelLo
110 | {0,2} | HeLlo
111 | {0,2,3} | HeLLo
Code :
import java.util.ArrayList;
import java.util.HashSet;
public class Main {
public static void main(String[] args) {
//Sample Word
String word = "Tomorrow-Today";
//Sample Letters for permutation
String rule_char_set = "tw";
ArrayList<Integer> test1 = lettersFound(word, rule_char_set); //To store the indexes of the characters
printPermutations(word,test1);
}
public static void printPermutations(String word,ArrayList<Integer> arrayList) {
char word_array[]=word.toLowerCase().toCharArray();
int length=word_array.length;
int index[]=new int[arrayList.size()];
for(int i=0; i<arrayList.size(); i++){
index[i] = arrayList.get(i);
}
for (int i = 0, n = (int) Math.pow(2, index.length); i < n; i++) {
char[] permutation = new char[length];
System.arraycopy(word_array,0,permutation,0,length);
//First copy the original array and change
//only those character whose indexes are present in subset
for (int j =0; j < index.length; j++) {
permutation[index[j]] = (isBitSet(i, j)) ? Character.toUpperCase(permutation[index[j]]) : permutation[index[j]];
}
System.out.println(permutation);
}
}
public static boolean isBitSet(int n, int offset) {
return (n >> offset & 1) != 0;
}
public static ArrayList<Integer> lettersFound(String word, String rule_char_set) {
//Convert the two parameter strings to two character arrays
char[] wordArray = word.toLowerCase().toCharArray();
char[] rule_char_setArray = rule_char_set.toLowerCase().toCharArray();
//ArrayList to hold found characters;
ArrayList<Integer> found = new ArrayList<Integer>();
//Increments the found ArrayList that stores the existent values.
int foundCounter = 0;
for (int i = 0; i < rule_char_setArray.length; i++) {
for (int k = 0; k < wordArray.length; k++) {
if (rule_char_setArray[i] == wordArray[k]) {
found.add(foundCounter, k); //Store the index of the character that matches
foundCounter++;
}
}
}
return found;
}
}
Output :
tomorrow-today
Tomorrow-today
tomorrow-Today
Tomorrow-Today
tomorroW-today
TomorroW-today
tomorroW-Today
TomorroW-Today
Sanket Makani answer is perfect.
I may offer a more objective approach of this problem.
As an input you have a string to modify, and characters, which should be replaced with the modified case ( upper or lower ).
As an output you will have all permutated strings.
I would create a structure which contains index, and possible values to change with:
class Change {
int index;
char values[];
}
We will need to make all possible combinations, so lets include field which will tell which character is currently used in to our structure, and add some methods:
class Change {
int index;
char values[];
int cur;
void reset() {cur=0;}
boolen isMax(){return cur==values.length-1;}
void next(){cur++;}
char getValue(){ return values[cur]; }
}
We will have a list or array of these classes then, which we will put in to a separate class
class Combination {
Change changes[];
void reset() { for (Change c: changes) c.reset();}
boolean next() {
for ( int i=0; i<changes.length; i++)
if ( changes[i].isMax())
changes[i].reset(); // next change will be taken in cycle, with "next()"
else {changes[i].next(); return true;}
return false; // all changes are max
}
}
So when you initialize your "Combination" class by your input data, you may use it in cycle then.
Combination c = new Combination();
.... // initialization here
c.reset();
do {
... // update and print your string
} while ( c.next() );
The initialization of "Combination" and using of values for updating the input string I leave after you :)
For the permutation case, I think recursion is the best fit in terms of readability, taking into account that maybe is not best in terms of performance.
My approach would be this:
public static void main(String[] args) {
generateCombinations("hello", "l", "");
}
public static void generateCombinations(String text, String changingLetters, String current) {
if (0 == text.length()) {
System.out.println(current);
return;
}
String currentLetter = text.substring(0, 1);
if (changingLetters.contains(currentLetter)) {
generateCombinations(text.substring(1), changingLetters, current + currentLetter.toUpperCase());
}
generateCombinations(text.substring(1), changingLetters, current + currentLetter);
}
The output for the main execution will be:
heLLo
heLlo
helLo
hello
In Java, having a number like 0b1010, I would like to get a list of numbers "composing" this one: 0b1000 and 0b0010 in this example: one number for each bit set.
I'm not sure about the best solution to get it. Do you have any clue ?
Use a BitSet!
long x = 0b101011;
BitSet bs = BitSet.valueOf(new long[]{x});
for (int i = bs.nextSetBit(0); i >=0 ; i = bs.nextSetBit(i+1)) {
System.out.println(1 << i);
}
Output:
1
2
8
32
If you really want them printed out as binary strings, here's a little hack on the above method:
long x = 0b101011;
char[] cs = new char[bs.length()];
Arrays.fill(cs, '0');
BitSet bs = BitSet.valueOf(new long[]{x});
for (int i = bs.nextSetBit(0); i >=0 ; i = bs.nextSetBit(i+1)) {
cs[bs.length()-i-1] = '1';
System.out.println(new String(cs)); // or whatever you want to do with this String
cs[bs.length()-i-1] = '0';
}
Output:
000001
000010
001000
100000
Scan through the bits one by one using an AND operation. This will tell you if a bit at one position is set or not. (https://en.wikipedia.org/wiki/Bitwise_operation#AND). Once you have determined that some ith-Bit is set, make up a string and print it. PSEUDOCODE:
public static void PrintAllSubbitstrings(int number)
{
for(int i=0; i < 32; i++) //32 bits maximum for an int
{
if( number & (1 << i) != 0) //the i'th bit is set.
{
//Make up a bitstring with (i-1) zeroes to the right, then one 1 on the left
String bitString = "1";
for(int j=0; j < (i-1); j++) bitString += "0";
System.out.println(bitString);
}
}
}
Here is a little test that works for me
public static void main(String[] args) {
int num = 0b1010;
int testNum = 0b1;
while(testNum < num) {
if((testNum & num) >0) {
System.out.println(testNum + " Passes");
}
testNum *= 2;
}
}
If the input is 'abba' then the possible palindromes are a, b, b, a, bb, abba.
I understand that determining if string is palindrome is easy. It would be like:
public static boolean isPalindrome(String str) {
int len = str.length();
for(int i=0; i<len/2; i++) {
if(str.charAt(i)!=str.charAt(len-i-1) {
return false;
}
return true;
}
But what is the efficient way of finding palindrome substrings?
This can be done in O(n), using Manacher's algorithm.
The main idea is a combination of dynamic programming and (as others have said already) computing maximum length of palindrome with center in a given letter.
What we really want to calculate is radius of the longest palindrome, not the length.
The radius is simply length/2 or (length - 1)/2 (for odd-length palindromes).
After computing palindrome radius pr at given position i we use already computed radiuses to find palindromes in range [i - pr ; i]. This lets us (because palindromes are, well, palindromes) skip further computation of radiuses for range [i ; i + pr].
While we search in range [i - pr ; i], there are four basic cases for each position i - k (where k is in 1,2,... pr):
no palindrome (radius = 0) at i - k
(this means radius = 0 at i + k, too)
inner palindrome, which means it fits in range
(this means radius at i + k is the same as at i - k)
outer palindrome, which means it doesn't fit in range
(this means radius at i + k is cut down to fit in range, i.e because i + k + radius > i + pr we reduce radius to pr - k)
sticky palindrome, which means i + k + radius = i + pr
(in that case we need to search for potentially bigger radius at i + k)
Full, detailed explanation would be rather long. What about some code samples? :)
I've found C++ implementation of this algorithm by Polish teacher, mgr Jerzy Wałaszek.
I've translated comments to english, added some other comments and simplified it a bit to be easier to catch the main part.
Take a look here.
Note: in case of problems understanding why this is O(n), try to look this way:
after finding radius (let's call it r) at some position, we need to iterate over r elements back, but as a result we can skip computation for r elements forward. Therefore, total number of iterated elements stays the same.
Perhaps you could iterate across potential middle character (odd length palindromes) and middle points between characters (even length palindromes) and extend each until you cannot get any further (next left and right characters don't match).
That would save a lot of computation when there are no many palidromes in the string. In such case the cost would be O(n) for sparse palidrome strings.
For palindrome dense inputs it would be O(n^2) as each position cannot be extended more than the length of the array / 2. Obviously this is even less towards the ends of the array.
public Set<String> palindromes(final String input) {
final Set<String> result = new HashSet<>();
for (int i = 0; i < input.length(); i++) {
// expanding even length palindromes:
expandPalindromes(result,input,i,i+1);
// expanding odd length palindromes:
expandPalindromes(result,input,i,i);
}
return result;
}
public void expandPalindromes(final Set<String> result, final String s, int i, int j) {
while (i >= 0 && j < s.length() && s.charAt(i) == s.charAt(j)) {
result.add(s.substring(i,j+1));
i--; j++;
}
}
So, each distinct letter is already a palindrome - so you already have N + 1 palindromes, where N is the number of distinct letters (plus empty string). You can do that in single run - O(N).
Now, for non-trivial palindromes, you can test each point of your string to be a center of potential palindrome - grow in both directions - something that Valentin Ruano suggested.
This solution will take O(N^2) since each test is O(N) and number of possible "centers" is also O(N) - the center is either a letter or space between two letters, again as in Valentin's solution.
Note, there is also O(N) solution to your problem, based on Manacher's algoritm (article describes "longest palindrome", but algorithm could be used to count all of them)
I just came up with my own logic which helps to solve this problem.
Happy coding.. :-)
System.out.println("Finding all palindromes in a given string : ");
subPal("abcacbbbca");
private static void subPal(String str) {
String s1 = "";
int N = str.length(), count = 0;
Set<String> palindromeArray = new HashSet<String>();
System.out.println("Given string : " + str);
System.out.println("******** Ignoring single character as substring palindrome");
for (int i = 2; i <= N; i++) {
for (int j = 0; j <= N; j++) {
int k = i + j - 1;
if (k >= N)
continue;
s1 = str.substring(j, i + j);
if (s1.equals(new StringBuilder(s1).reverse().toString())) {
palindromeArray.add(s1);
}
}
}
System.out.println(palindromeArray);
for (String s : palindromeArray)
System.out.println(s + " - is a palindrome string.");
System.out.println("The no.of substring that are palindrome : "
+ palindromeArray.size());
}
Output:-
Finding all palindromes in a given string :
Given string : abcacbbbca
******** Ignoring single character as substring palindrome ********
[cac, acbbbca, cbbbc, bb, bcacb, bbb]
cac - is a palindrome string.
acbbbca - is a palindrome string.
cbbbc - is a palindrome string.
bb - is a palindrome string.
bcacb - is a palindrome string.
bbb - is a palindrome string.
The no.of substring that are palindrome : 6
I suggest building up from a base case and expanding until you have all of the palindomes.
There are two types of palindromes: even numbered and odd-numbered. I haven't figured out how to handle both in the same way so I'll break it up.
1) Add all single letters
2) With this list you have all of the starting points for your palindromes. Run each both of these for each index in the string (or 1 -> length-1 because you need at least 2 length):
findAllEvenFrom(int index){
int i=0;
while(true) {
//check if index-i and index+i+1 is within string bounds
if(str.charAt(index-i) != str.charAt(index+i+1))
return; // Here we found out that this index isn't a center for palindromes of >=i size, so we can give up
outputList.add(str.substring(index-i, index+i+1));
i++;
}
}
//Odd looks about the same, but with a change in the bounds.
findAllOddFrom(int index){
int i=0;
while(true) {
//check if index-i and index+i+1 is within string bounds
if(str.charAt(index-i-1) != str.charAt(index+i+1))
return;
outputList.add(str.substring(index-i-1, index+i+1));
i++;
}
}
I'm not sure if this helps the Big-O for your runtime, but it should be much more efficient than trying each substring. Worst case would be a string of all the same letter which may be worse than the "find every substring" plan, but with most inputs it will cut out most substrings because you can stop looking at one once you realize it's not the center of a palindrome.
I tried the following code and its working well for the cases
Also it handles individual characters too
Few of the cases which passed:
abaaa --> [aba, aaa, b, a, aa]
geek --> [g, e, ee, k]
abbaca --> [b, c, a, abba, bb, aca]
abaaba -->[aba, b, abaaba, a, baab, aa]
abababa -->[aba, babab, b, a, ababa, abababa, bab]
forgeeksskeegfor --> [f, g, e, ee, s, r, eksske, geeksskeeg,
o, eeksskee, ss, k, kssk]
Code
static Set<String> set = new HashSet<String>();
static String DIV = "|";
public static void main(String[] args) {
String str = "abababa";
String ext = getExtendedString(str);
// will check for even length palindromes
for(int i=2; i<ext.length()-1; i+=2) {
addPalindromes(i, 1, ext);
}
// will check for odd length palindromes including individual characters
for(int i=1; i<=ext.length()-2; i+=2) {
addPalindromes(i, 0, ext);
}
System.out.println(set);
}
/*
* Generates extended string, with dividors applied
* eg: input = abca
* output = |a|b|c|a|
*/
static String getExtendedString(String str) {
StringBuilder builder = new StringBuilder();
builder.append(DIV);
for(int i=0; i< str.length(); i++) {
builder.append(str.charAt(i));
builder.append(DIV);
}
String ext = builder.toString();
return ext;
}
/*
* Recursive matcher
* If match is found for palindrome ie char[mid-offset] = char[mid+ offset]
* Calculate further with offset+=2
*
*
*/
static void addPalindromes(int mid, int offset, String ext) {
// boundary checks
if(mid - offset <0 || mid + offset > ext.length()-1) {
return;
}
if (ext.charAt(mid-offset) == ext.charAt(mid+offset)) {
set.add(ext.substring(mid-offset, mid+offset+1).replace(DIV, ""));
addPalindromes(mid, offset+2, ext);
}
}
Hope its fine
public class PolindromeMyLogic {
static int polindromeCount = 0;
private static HashMap<Character, List<Integer>> findCharAndOccurance(
char[] charArray) {
HashMap<Character, List<Integer>> map = new HashMap<Character, List<Integer>>();
for (int i = 0; i < charArray.length; i++) {
char c = charArray[i];
if (map.containsKey(c)) {
List list = map.get(c);
list.add(i);
} else {
List list = new ArrayList<Integer>();
list.add(i);
map.put(c, list);
}
}
return map;
}
private static void countPolindromeByPositions(char[] charArray,
HashMap<Character, List<Integer>> map) {
map.forEach((character, list) -> {
int n = list.size();
if (n > 1) {
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
if (list.get(i) + 1 == list.get(j)
|| list.get(i) + 2 == list.get(j)) {
polindromeCount++;
} else {
char[] temp = new char[(list.get(j) - list.get(i))
+ 1];
int jj = 0;
for (int ii = list.get(i); ii <= list
.get(j); ii++) {
temp[jj] = charArray[ii];
jj++;
}
if (isPolindrome(temp))
polindromeCount++;
}
}
}
}
});
}
private static boolean isPolindrome(char[] charArray) {
int n = charArray.length;
char[] temp = new char[n];
int j = 0;
for (int i = (n - 1); i >= 0; i--) {
temp[j] = charArray[i];
j++;
}
if (Arrays.equals(charArray, temp))
return true;
else
return false;
}
public static void main(String[] args) {
String str = "MADAM";
char[] charArray = str.toCharArray();
countPolindromeByPositions(charArray, findCharAndOccurance(charArray));
System.out.println(polindromeCount);
}
}
Try out this. Its my own solution.
// Maintain an Set of palindromes so that we get distinct elements at the end
// Add each char to set. Also treat that char as middle point and traverse through string to check equality of left and right char
static int palindrome(String str) {
Set<String> distinctPln = new HashSet<String>();
for (int i=0; i<str.length();i++) {
distinctPln.add(String.valueOf(str.charAt(i)));
for (int j=i-1, k=i+1; j>=0 && k<str.length(); j--, k++) {
// String of lenght 2 as palindrome
if ( (new Character(str.charAt(i))).equals(new Character(str.charAt(j)))) {
distinctPln.add(str.substring(j,i+1));
}
// String of lenght 2 as palindrome
if ( (new Character(str.charAt(i))).equals(new Character(str.charAt(k)))) {
distinctPln.add(str.substring(i,k+1));
}
if ( (new Character(str.charAt(j))).equals(new Character(str.charAt(k)))) {
distinctPln.add(str.substring(j,k+1));
} else {
continue;
}
}
}
Iterator<String> distinctPlnItr = distinctPln.iterator();
while ( distinctPlnItr.hasNext()) {
System.out.print(distinctPlnItr.next()+ ",");
}
return distinctPln.size();
}
Code is to find all distinct substrings which are palindrome.
Here is the code I tried. It is working fine.
import java.util.HashSet;
import java.util.Set;
public class SubstringPalindrome {
public static void main(String[] args) {
String s = "abba";
checkPalindrome(s);
}
public static int checkPalindrome(String s) {
int L = s.length();
int counter =0;
long startTime = System.currentTimeMillis();
Set<String> hs = new HashSet<String>();
// add elements to the hash set
System.out.println("Possible substrings: ");
for (int i = 0; i < L; ++i) {
for (int j = 0; j < (L - i); ++j) {
String subs = s.substring(j, i + j + 1);
counter++;
System.out.println(subs);
if(isPalindrome(subs))
hs.add(subs);
}
}
System.out.println("Total possible substrings are "+counter);
System.out.println("Total palindromic substrings are "+hs.size());
System.out.println("Possible palindromic substrings: "+hs.toString());
long endTime = System.currentTimeMillis();
System.out.println("It took " + (endTime - startTime) + " milliseconds");
return hs.size();
}
public static boolean isPalindrome(String s) {
if(s.length() == 0 || s.length() ==1)
return true;
if(s.charAt(0) == s.charAt(s.length()-1))
return isPalindrome(s.substring(1, s.length()-1));
return false;
}
}
OUTPUT:
Possible substrings:
a
b
b
a
ab
bb
ba
abb
bba
abba
Total possible substrings are 10
Total palindromic substrings are 4
Possible palindromic substrings: [bb, a, b, abba]
It took 1 milliseconds
I'm writing a program to list all possible combinations of letters A,B,C, and D. I have successfully written a program to list all possible permutations.
However, how would I rewrite the program to work and produce all combinations (i.e.: ABCD = DCBA and AB = BA, so as long as one is there, the other need not be listed).
So far, the code for my current program is:
import java.util.ArrayList;
public class Perms {
public static void main(String[] args) {
ArrayList<Character> characters = new ArrayList<Character>();
characters.add('A');
characters.add('B');
characters.add('C');
characters.add('D');
int count = 0;
for (int i = 0; i < characters.size(); i++) {
for (int j = 0; j < characters.size(); j++) {
for (int k = 0; k < characters.size(); k++) {
for (int d = 0; d < characters.size(); d++) {
count++;
System.out.println(count + ": " + characters.get(i) + characters.get(j) + characters.get(k) + characters.get(d));
}
}
}
}
}
}
Your second case is equivalent to the list of binary values of 4 digits. Let's assume that A is rightmost digit and D is leftmost. Then there are 16 combinations in total:
DCBA
0000
0001
0010
0011
0100
...
1110
1111
Each combination is decoded like follows:
DCBA
1010 = DB
since there are ones in B and D positions.
You have various of ways to generate and or decode binary numbers in Java.
For example, with bitwise operations:
public static void main(String[] args) {
// starting from 1 since 0000 is not needed
for(int i=1; i<16; ++i) {
// bitwise operation & detects 1 in given position,
// positions are determined by sa called "masks"
// mask has 1 in position you wish to extract
// masks are 0001=1, 0010=2, 0100=4 and 1000=8
if( (i & 1) > 0 ) System.out.print("A");
if( (i & 2) > 0 ) System.out.print("B");
if( (i & 4) > 0 ) System.out.print("C");
if( (i & 8) > 0 ) System.out.print("D");
System.out.println("");
}
}
Here is my code for your problem :)
I'm so sorry that my answer looks ugly because I just a new comer at Java.
import java.util.Vector;
public class StackOverFlow {
static int n ;
static Vector<String> set;
static int[] d ;
public static void recursion(int t){
if(t==n){
PRINT();
return;
}
d[t]=1;
recursion(t+1);
d[t]=0;
recursion(t+1);
}
public static void PRINT(){
System.out.println("ANSWER");
for(int i=0;i<n;i++)
if(d[i]==1) System.out.println(set.elementAt(i));
}
public static void main(String[] args) {
n = 4;
set = new Vector<String>(4);
d = new int[6];
set.add("a");
set.add("b");
set.add("c");
set.add("d");
recursion(0);
}
}
// Returns all combinations of a List of Characters (as Strings)
// THIS METHOD MODIFIES ITS ARGUMENT! Make sure to copy defensively if necessary
List<String> charCombinations(List<Character> chars)
{
if(chars.isEmpty())
{
List<String> result = new ArrayList<String>();
result.add("");
return result;
}
else
{
Character c = chars.remove(0);
List<String> result = charCombinations(chars);
int size = result.size();
for(int i = 0; i < size; i++)
result.add(c + result.get(i));
return result;
}
}
I used List for the argument, because Set doesn't have a method to pop a single item out from the set.
Take a look at Peter Lawrey's recursive solution, which handles combinations of a list containing repeated values.