Specific element permutation within an array of characters in JAVA? - java

How can I list all uppercase/lowercase permutations for any letter specified in a character array?
So, say I have an array of characters like so: ['h','e','l','l','o']
and I wanted print out possible combinations for say the letter 'l' so it would print out [hello,heLlo,heLLo,helLo].
This is what I have so far(the only problem is that I can print the permutations however I'm not able to print them inside the actual word. so my code prints [ll,lL,Ll,LL] instead of the example above.
my code:
import java.util.ArrayList;
import java.util.HashSet;
public class Main {
public static void main(String[] args) {
//Sample Word
String word = "Tomorrow-Today";
//Sample Letters for permutation
String rule_char_set = "tw";
ArrayList<Character> test1 = lettersFound(word, rule_char_set);
printPermutations(test1);
}
public static void printPermutations(ArrayList<Character> arrayList) {
char[] chars = new char[arrayList.size()];
int charIterator = 0;
for(int i=0; i<arrayList.size(); i++){
chars[i] = arrayList.get(i);
}
for (int i = 0, n = (int) Math.pow(2, chars.length); i < n; i++) {
char[] permutation = new char[chars.length];
for (int j =0; j < chars.length; j++) {
permutation[j] = (isBitSet(i, j)) ? Character.toUpperCase(chars[j]) : chars[j];
}
System.out.println(permutation);
}
}
public static boolean isBitSet(int n, int offset) {
return (n >> offset & 1) != 0;
}
public static ArrayList<Character> lettersFound(String word, String rule_char_set) {
//Convert the two parameter strings to two character arrays
char[] wordArray = word.toLowerCase().toCharArray();
char[] rule_char_setArray = rule_char_set.toLowerCase().toCharArray();
//ArrayList to hold found characters;
ArrayList<Character> found = new ArrayList<Character>();
//Increments the found ArrayList that stores the existent values.
int foundCounter = 0;
for (int i = 0; i < rule_char_setArray.length; i++) {
for (int k = 0; k < wordArray.length; k++) {
if (rule_char_setArray[i] == wordArray[k]) {
found.add(foundCounter, rule_char_setArray[i]);
foundCounter++;
}
}
}
//Convert to a HashSet to get rid of duplicates
HashSet<Character> uniqueSet = new HashSet<>(found);
//Convert back to an ArrayList(to be returned) after filtration of duplicates.
ArrayList<Character> filtered = new ArrayList<>(uniqueSet);
return filtered;
}
}

You need to make few changes in your program. Your logic is perfect that you need to find first the characters to be changed in the given word. After finding them, find powerset of characters to print all the permutation but this will only print permuatation of the characters of rule-char-set which are present in the given word.
Few changes you need to make is that first find all the indexes of word which contains characters of rule-char-set. Then find all subsets of indexes stored in an ArrayList and then for each element of each of the subsets, make the character present on that index to uppercase letter which will give you all permutation you require.
Consider an example that word = "Hello" and rule-char-set="hl" Then here first you need to find all indexes of h and l in the String word.
So here indexes are 0,2,3. Store it in ArrayList and then find its powerset.Then for each subset ,make the character present on that index to the uppercase letter.
Word[] = {'h','e','l','l','o'}
indexes = 0 , 1 , 2 , 3 , 4
index[]= { 0 , 2 ,3} //Store the indexes of characters which are to be changed
BITSET | SUBSET | word
000 | - | hello
001 | {3} | helLo
010 | {2} | heLlo
011 | {2,3} | heLLo
100 | {0} | Hello
101 | {0,3} | HelLo
110 | {0,2} | HeLlo
111 | {0,2,3} | HeLLo
Code :
import java.util.ArrayList;
import java.util.HashSet;
public class Main {
public static void main(String[] args) {
//Sample Word
String word = "Tomorrow-Today";
//Sample Letters for permutation
String rule_char_set = "tw";
ArrayList<Integer> test1 = lettersFound(word, rule_char_set); //To store the indexes of the characters
printPermutations(word,test1);
}
public static void printPermutations(String word,ArrayList<Integer> arrayList) {
char word_array[]=word.toLowerCase().toCharArray();
int length=word_array.length;
int index[]=new int[arrayList.size()];
for(int i=0; i<arrayList.size(); i++){
index[i] = arrayList.get(i);
}
for (int i = 0, n = (int) Math.pow(2, index.length); i < n; i++) {
char[] permutation = new char[length];
System.arraycopy(word_array,0,permutation,0,length);
//First copy the original array and change
//only those character whose indexes are present in subset
for (int j =0; j < index.length; j++) {
permutation[index[j]] = (isBitSet(i, j)) ? Character.toUpperCase(permutation[index[j]]) : permutation[index[j]];
}
System.out.println(permutation);
}
}
public static boolean isBitSet(int n, int offset) {
return (n >> offset & 1) != 0;
}
public static ArrayList<Integer> lettersFound(String word, String rule_char_set) {
//Convert the two parameter strings to two character arrays
char[] wordArray = word.toLowerCase().toCharArray();
char[] rule_char_setArray = rule_char_set.toLowerCase().toCharArray();
//ArrayList to hold found characters;
ArrayList<Integer> found = new ArrayList<Integer>();
//Increments the found ArrayList that stores the existent values.
int foundCounter = 0;
for (int i = 0; i < rule_char_setArray.length; i++) {
for (int k = 0; k < wordArray.length; k++) {
if (rule_char_setArray[i] == wordArray[k]) {
found.add(foundCounter, k); //Store the index of the character that matches
foundCounter++;
}
}
}
return found;
}
}
Output :
tomorrow-today
Tomorrow-today
tomorrow-Today
Tomorrow-Today
tomorroW-today
TomorroW-today
tomorroW-Today
TomorroW-Today

Sanket Makani answer is perfect.
I may offer a more objective approach of this problem.
As an input you have a string to modify, and characters, which should be replaced with the modified case ( upper or lower ).
As an output you will have all permutated strings.
I would create a structure which contains index, and possible values to change with:
class Change {
int index;
char values[];
}
We will need to make all possible combinations, so lets include field which will tell which character is currently used in to our structure, and add some methods:
class Change {
int index;
char values[];
int cur;
void reset() {cur=0;}
boolen isMax(){return cur==values.length-1;}
void next(){cur++;}
char getValue(){ return values[cur]; }
}
We will have a list or array of these classes then, which we will put in to a separate class
class Combination {
Change changes[];
void reset() { for (Change c: changes) c.reset();}
boolean next() {
for ( int i=0; i<changes.length; i++)
if ( changes[i].isMax())
changes[i].reset(); // next change will be taken in cycle, with "next()"
else {changes[i].next(); return true;}
return false; // all changes are max
}
}
So when you initialize your "Combination" class by your input data, you may use it in cycle then.
Combination c = new Combination();
.... // initialization here
c.reset();
do {
... // update and print your string
} while ( c.next() );
The initialization of "Combination" and using of values for updating the input string I leave after you :)

For the permutation case, I think recursion is the best fit in terms of readability, taking into account that maybe is not best in terms of performance.
My approach would be this:
public static void main(String[] args) {
generateCombinations("hello", "l", "");
}
public static void generateCombinations(String text, String changingLetters, String current) {
if (0 == text.length()) {
System.out.println(current);
return;
}
String currentLetter = text.substring(0, 1);
if (changingLetters.contains(currentLetter)) {
generateCombinations(text.substring(1), changingLetters, current + currentLetter.toUpperCase());
}
generateCombinations(text.substring(1), changingLetters, current + currentLetter);
}
The output for the main execution will be:
heLLo
heLlo
helLo
hello

Related

Algorithm to create all permutations and lengths

I am looking to create an algorithm preferably in Java. I would like to go through following char array and create every possible permutations and lengths out of it.
For example, loop and print the following:
a
aa
aaaa
aaaaa
.... keep going ....
aaaaaaaaaaaaaaaaa ....
ab
aba
abaa .............
Till I hit all possible lengths and permutations from my array.
private void method(){
char[] data = "abcdefghiABCDEFGHI0123456789".toCharArray();
// loop and print each time
}
I think it would be silly to come up with 10s of for loops for this. I am guessing some form of recursion would help here but can't get my head around to even start with. Could I get some help with this please? Even if pointing me to a start or a blog or something. Been Googling and looking around and many permutations examples exists but keeps to fixed max length. None seems to have examples on multiple length + permutations. Please advice. Thanks.
Another way to do it is this:
public class HelloWorld{
public static String[] method(char[] arr, int length) {
if(length == arr.length - 1) {
String[] strArr = new String[arr.length];
for(int i = 0; i < arr.length; i ++) {
strArr[i] = String.valueOf(arr[i]);
}
return strArr;
}
String[] before = method(arr, length + 1);
String[] newArr = new String[arr.length * before.length];
for(int i = 0; i < arr.length; i ++) {
for(int j = 0; j < before.length; j ++) {
if(i == 0)
System.out.println(before[j]);
newArr[i * before.length + j] = (arr[i] + before[j]);
}
}
return newArr;
}
public static void main(String []args){
String[] all = method("abcde".toCharArray(), 0);
for(int i = 0; i < all.length; i ++) {
System.out.println(all[i]);
}
}
}
However be careful you'll probably run out of memory or the program will take a looooong time to compile/run if it does at all. You are trying to print 3.437313508041091e+40 strings, that's 3 followed by 40 zeroes.
Here's the solution also in javascript because it starts running but it needs 4 seconds to get to 4 character permutations, for it to reach 5 character permutations it will need about 28 times that time, for 6 characters it's 4 * 28 * 28 and so on.
const method = (arr, length) => {
if(length === arr.length - 1)
return arr;
const hm = [];
const before = method(arr, length + 1);
for(let i = 0; i < arr.length; i ++) {
for(let j = 0; j < before.length; j ++) {
if(i === 0)
console.log(before[j]);
hm.push(arr[i] + before[j]);
}
}
return hm;
};
method('abcdefghiABCDEFGHI0123456789'.split(''), 0).forEach(a => console.log(a));
private void method(){
char[] data = "abcdefghiABCDEFGHI0123456789".toCharArray();
// loop and print each time
}
With your given input there are 3.43731350804×10E40 combinations. (Spelled result in words is eighteen quadrillion fourteen trillion three hundred ninety-eight billion five hundred nine million four hundred eighty-one thousand nine hundred eighty-four. ) If I remember it correctly the maths is some how
1 + x + x^2 + x^3 + x^4 + ... + x^n = (1 - x^n+1) / (1 - x)
in your case
28 + 28^2 + 28^3 + .... 28^28
cause you will have
28 combinations for strings with length one
28*28 combinations for strings with length two
28*28*28 combinations for strings with length three
...
28^28 combinations for strings with length 28
It will take a while to print them all.
One way I can think of is to use the Generex library, a Java library for generating String that match a given regular expression.
Generex github. Look at their page for more info.
Generex maven repo. Download the jar or add dependency.
Using generex is straight forward if you are somehow familiar with regex.
Example using only the first 5 chars which will have 3905 possible combinations
public static void main(String[] args) {
Generex generex = new Generex("[a-e]{1,5}");
System.out.println(generex.getAllMatchedStrings().size());
Iterator iterator = generex.iterator();
while (iterator.hasNext()) {
System.out.println(iterator.next());
}
}
Meaning of [a-e]{1,5} any combination of the chars a,b,c,d,e wit a min length of 1 and max length of 5
output
a
aa
aaa
aaaa
aaaaa
aaaab
aaaac
aaaad
aaaae
aaab
aaaba
aaabb
aaabc
aaabd
aaabe
aaac
....
eeee
eeeea
eeeeb
eeeec
eeeed
eeeee
You can have a for loop that starts from 1 and ends at array.length and in each iteration call a function that prints all the permutations for that length.
public void printPermutations(char[] array, int length) {
/*
* Create all permutations with length = length and print them
*/
}
public void method() {
char data = "abcdefghiABCDEFGHI0123456789".toCharArray();
for(int i = 1; i <= data.length; i ++) {
printPermutations(data, i);
}
}
I think the following recursion could solve your problem:
public static void main(String[] args) {
final String[] data = {"a", "b", "c"};
sampleWithReplacement(data, "", 1, 5);
}
private static void sampleWithReplacement(
final String[] letters,
final String prefix,
final int currentLength,
final int maxLength
) {
if (currentLength <= maxLength) {
for (String letter : letters) {
final String newPrefix = prefix + letter;
System.out.println(newPrefix);
sampleWithReplacement(letters, newPrefix, currentLength + 1, maxLength);
}
}
}
where data specifies your possible characters to sample from.
Is this what you're talking about?
public class PrintPermutations
{
public static String stream = "";
public static void printPermutations (char[] set, int count, int length)
{
if (count < length)
for (int i = 0; i < set.length; ++i)
{
stream += set[i];
System.out.println (stream);
printPermutations (set, count + 1, length);
stream = stream.substring (0, stream.length() - 1);
}
}
public static void main (String[] args)
{
char[] set = "abcdefghiABCDEFGHI0123456789".toCharArray();
printPermutations (set, 0, set.length);
}
}
Test it using a smaller string first.
On an input string 28 characters long this method is never going to end, but for smaller inputs it will generate all permutations up to length n, where n is the number of characters. It first prints all permutations of length 1, then all of length 2 etc, which is different from your example, but hopefully order doesn't matter.
static void permutations(char[] arr)
{
int[] idx = new int[arr.length];
char[] perm = new char[arr.length];
Arrays.fill(perm, arr[0]);
for (int i = 1; i < arr.length; i++)
{
while (true)
{
System.out.println(new String(perm, 0, i));
int k = i - 1;
for (; k >= 0; k--)
{
idx[k] += 1;
if (idx[k] < arr.length)
{
perm[k] = arr[idx[k]];
break;
}
idx[k] = 0;
perm[k] = arr[idx[k]];
}
if (k < 0)
break;
}
}
}
Test:
permutations("abc".toCharArray());
Output:
a
b
c
aa
ab
ac
ba
bb
bc
ca
cb
cc

How to find character frequency in a 2D character array?

I am trying to create a program that searches through an array of characters. If there is a character that repeats itself, it should be shown.
I've tried creating a triple loop
1 to go through the the character array, and then 2 remaining ones to compare each letter with each other
public static void main(String[] args) {
char [][] tab = new char[][]{
{'S','a','m','s','u','n','g'},
{'N','o','k','i','a'},
{'A','p','p','l','e'},
{'B','l','a','c','k','B','e','r','r','y'},
{'A','l','c','a','t','e','l'},
{'S','o','n','y'},
{'J','o','l','l','a'}};
Litery(tab);
}
public static void Litery(char tab[][])
{
int[] freq = new int[tab.length];
int counter=0;
for(int i=0;i<7;i++)
{
int size = tab[i].length;
for(int j=0;i<tab.length;i++)
{
counter=0;
freq[i] = 1;
for(int z = j+1;z<tab[j].length;z++)
{
if(tab[j] == tab[z])
{
freq[i]++;
}
}
}
}
for(int i=0;i<tab.length;i++)
{
if(freq[i] > 1)
{
System.out.println(tab[i]);
}
}
}
I want the ouputs to be
SAMSUNG
APPLE
BLACBERRY
ALCATEL
JOLLA
Capitalisation doesn't matter
Thank you in advance!
Use a hash map whose keys are values in your array and values are num times that value has appeared.
Start with an empty map
Iterate through your array and for each char
get a lowercase version of the char since you're case-insensitive
if the map does not have a key with that char, add an entry (char, 1) to your map
otherwise, increment the number associated with char in your map
If you need the list of characters that appear more than once, you can iterate through your map and filter out the characters whose values are 1.
If you want to print "rows" (aka words) that has at least one duplicate character (case-insensitive), then you can do it easily with some stream logic in Java 8+:
public static void Litery(char tab[][]) {
Stream.of(tab)
.filter(w -> w.length != new String(w).toUpperCase().chars().distinct().count())
.forEach(System.out::println);
}
Output
Samsung
Apple
BlackBerry
Alcatel
Jolla
Of course, it might make more sense if the input was an actual String[], so it can support characters from the supplementary planes, e.g. emoticons:
public static void main(String[] args) {
Litery("Samsung", "Nokia", "Apple", "BlackBerry", "Alcatel", "Sony", "Jolla",
"😀😁😂😃😄😅😆😇", "😀😁😂😃😄😅😆😇😀");
}
public static void Litery(String... tab) {
Stream.of(tab)
.filter(w -> w.codePointCount(0, w.length()) != w.toUpperCase().codePoints().distinct().count())
.forEach(System.out::println);
}
Output
Samsung
Apple
BlackBerry
Alcatel
Jolla
😀😁😂😃😄😅😆😇😀
You don't need to create a int array for checking the frequency, just initialize a boolean array of size of tab which is by initialized to an array of false values.
Now in the inner loop compare the char by lower-casing both character as you want to check irrespective of the case:
public static void Litery(char tab[][]) {
boolean[] freq = new boolean[tab.length];
int counter = 0;
for (int i = 0; i < tab.length; i++) {
for(int j = 0; j < tab[i].length; j++){
for (int z = 0; z < tab[i].length; z++) {
if (j != z && Character.toLowerCase(tab[i][j]) == Character.toLowerCase(tab[i][z])) {
freq[i] = true;
break;
}
}
}
}
for (int i = 0; i < tab.length; i++) {
if (freq[i]) {
System.out.println(tab[i]);
}
}
}
You can also avoid using three loops by using a Set, simply convert the array of char for each row in a Set<Character> of lowercase, if the value is repeated the resulting Set<Character> will be of size less than the array as Set does not contain duplicates:
public static void Litery(char tab[][]) {
for(int i = 0; i < tab.length; i++){
final int idx = i;
if(IntStream.range(0, tab[idx].length)
.mapToObj(j -> tab[idx][j])
.map(Character::toLowerCase)
.collect(Collectors.toSet()).size() != tab[i].length){
System.out.println(String.valueOf(tab[i]));
}
}
Output:
Samsung
Apple
BlackBerry
Alcatel
Jolla

How to swap digits in number?

I need to write function that gets 3 params(int num, int k, int nDigit).
The function get number and replace the digit inside the number in k index by nDigit.
for example:
int num = 5498
int k = 2
int nDigit= 3
the result is num = 5398
My question is how can I implement it?I undastand that the best way to convert the num to string and then just replace char on specific index by nDigit char.
But is there any way to implement it?Without
public int changeDigit(int num, int k, int nDigit){
k = pow(10,k);
double saved = num%k; // Save digits after
num = num - (num%(k*10)); //Get what's before k
return ((int) (num + (nDigit*k) + saved));
}
I won't do your homework for you, but here's some hints:
Convert integer to string:
String s = Integer.toString(1234);
Enumerating a string:
for (i = 0; i < s.length; i++)
{
char c = s.charAt(i);
}
String building (a little less efficient without the StringBuilder class)
char c = '1';
String s = "3";
String j = "";
j = j + c;
j = j + s; // j is now equal to "13"
String back to integer:
int val = Integer.parseInt("42");
You can use a StringBuilder. It's easier to see what you're doing and you don't need to perform mathematics, only adjust the characters in their positions. Then convert it back to int.
public class Main {
static int swapParams(int num, int k, int nDigit) {
StringBuilder myName = new StringBuilder(Integer.toString(num));
myName.setCharAt(k-1, Integer.toString(nDigit).charAt(0));
return Integer.parseInt(myName.toString());
}
public static void main(String[] args) {
System.out.println(swapParams(5498, 2, 3));
}
}
http://ideone.com/e4MF6m
You can do it like this:
public int func(int num, int k, int nDigit) {
String number = String.valueOf(num);
return Integer.parseInt(number.substring(0, k - 1) + nDigit + number.substring(k, number.length()));
}
This function takes the first characters of the number without the k'th number and adds the nDigit to it. Then it adds the last part of the number and returns it as an integer number.
This is my javascript solution.
const solution = numbers => { //declare a variable that will hold
the array el that is not strictly ascending let flawedIndex;
//declare a boolean variable to actually check if there is a flawed array el in the given array let flawed = false;
//iterate through the given array for(let i=0; i<numbers.length; i++) {
//check if current array el is greater than the next
if(numbers[i] > numbers[i+1])
{
//check if we already set flawed to true once.
//if flawed==true, then return that this array cannot be sorted
//strictly ascending even if we swap one elements digits
if(flawed) {
return false;
}
//if flawed is false, then set it to true and store the index of the flawed array el
else {
flawed = true;
flawedIndex = i;
}
}
}
//if flawed is still false after the end of the for loop, return true //where true = the array is sctrictly ascending if(flawed ==
false) return true;
//if flawed==true, that is there is an array el that is flawed if(flawed){
//store the result of calling the swap function on the digits of the flawed array el
let swapResult = swap(flawedIndex,numbers);
//if the swapresult is true, then return that it is ascending
if (swapResult == true) return true; }
//else return that its false return false; }
const swap = (flawIndex, numbers) => {
let num = numbers[flawIndex];
//convert the given array el to a string, and split the string based on '' let numToString = num.toString().split('');
//iterate through every digit from index 0 for(let i=0;
i<numToString.length; i++) {
//iterate from every digit from index 1
for(let j=i+1; j<numToString.length; j++) {
//swap the first index digit with every other index digit
let temp = numToString[i];
numToString[i] = numToString[j]
numToString[j] = temp;
console.log(numToString)
//check if the swapped number is lesser than the next number in the main array
//AND if it is greater than the previous el in the array. if yes, return true
let swappedNum = Number(numToString.join(''));
if(swappedNum < numbers[flawIndex + 1] && swappedNum > numbers[flawIndex-])
{
return true;
}
} } //else return false return false; }
console.log("the solution is ",solution([1, 3, 900, 10]))

Finding the Number of Times an Expression Occurs in a String Continuously and Non Continuously

I had a coding interview over the phone and was asked this question:
Given a String (for example):
"aksdbaalaskdhfbblajdfhacccc aoudgalsaa bblisdfhcccc"
and an expression (for example):
"a+b+c-"
where:
+: means the char before it is repeated 2 times
-: means the char before it is repeated 4 times
Find the number of times the given expression appears in the string with the operands occurring non continuously and continuously.
The above expression occurs 4 times:
1) aksdbaalaskdhfbblajdfhacccc aoudgalsaa bblisdfhcccc
^^ ^^ ^^^^
aa bb cccc
2) aksdbaalaskdhfbblajdfhacccc aoudgalsaa bblisdfhcccc
^^ ^^ ^^^^
aa bb cccc
3) aksdbaalaskdhfbblajdfhacccc aoudgalsaa bblisdfhcccc
^^ ^^ ^^^^
aa bb cccc
4) aksdbaalaskdhfbblajdfhacccc aoudgalsaa bblisdfhcccc
^^ ^^ ^^^^
aa bb cccc
I had no idea how to do it. I started doing an iterative brute force method with lots of marking of indices but realized how messy and hard that would to code half way through:
import java.util.*;
public class Main {
public static int count(String expression, String input) {
int count = 0;
ArrayList<char[]> list = new ArrayList<char[]>();
// Create an ArrayList of chars to iterate through the expression and match to string
for(int i = 1; i<expression.length(); i=i+2) {
StringBuilder exp = new StringBuilder();
char curr = expression.charAt(i-1);
if(expression.charAt(i) == '+') {
exp.append(curr).append(curr);
list.add(exp.toString().toCharArray());
}
else { // character is '-'
exp.append(curr).append(curr).append(curr).append(curr);
list.add(exp.toString().toCharArray());
}
}
char[] inputArray = input.toCharArray();
int i = 0; // outside pointer
int j = 0; // inside pointer
while(i <= inputArray.length) {
while(j <= inputArray.length) {
for(int k = 0; k< list.size(); k++) {
/* loop through
* all possible combinations in array list
* with multiple loops
*/
}
j++;
}
i++;
j=i;
}
return count;
}
public static void main(String[] args) {
String expression = "a+b+c-";
String input = "aaksdbaalaskdhfbblajdfhacccc aoudgalsaa bblisdfhcccc";
System.out.println("The expression occurs: "+count(expression, input)+" times");
}
}
After spending a lot of time doing it iteratively he mentioned recursion and I still couldn't see a clear way doing it recursively and I wasn't able to solve the question. I am trying to solve it now post-interview and am still not sure how to go about this question. How should I go about solving this problem? Is the solution obvious? I thought this was a really hard question for a coding phone interview.
Non-recursion algorithm that requires O(m) space and operates in O(n*m), where m is number of tokens in query:
#Test
public void subequences() {
String input = "aabbccaacccccbbd";
String query = "a+b+";
// here to store tokens of a query: e.g. {a, +}, {b, +}
char[][] q = new char[query.length() / 2][];
// here to store counts of subsequences ending by j-th token found so far
int[] c = new int[query.length() / 2]; // main
int[] cc = new int[query.length() / 2]; // aux
// tokenize
for (int i = 0; i < query.length(); i += 2)
q[i / 2] = new char[] {query.charAt(i), query.charAt(i + 1)};
// init
char[] sub2 = {0, 0}; // accumulator capturing last 2 chars
char[] sub4 = {0, 0, 0, 0}; // accumulator capturing last 4 chars
// main loop
for (int i = 0; i < input.length(); i++) {
shift(sub2, input.charAt(i));
shift(sub4, input.charAt(i));
boolean all2 = sub2[1] != 0 && sub2[0] == sub2[1]; // true if all sub2 chars are same
boolean all4 = sub4[3] != 0 && sub4[0] == sub4[1] // true if all sub4 chars are same
&& sub4[0] == sub4[2] && sub4[0] == sub4[3];
// iterate tokens
for (int j = 0; j < c.length; j++) {
if (all2 && q[j][1] == '+' && q[j][0] == sub2[0]) // found match for "+" token
cc[j] = j == 0 // filling up aux array
? c[j] + 1 // first token, increment counter by 1
: c[j] + c[j - 1]; // add value of preceding token counter
if (all4 && q[j][1] == '-' && q[j][0] == sub4[0]) // found match for "-" token
cc[j] = j == 0
? c[j] + 1
: c[j] + c[j - 1];
}
if (all2) sub2[1] = 0; // clear, to make "aa" occur in "aaaa" 2, not 3 times
if (all4) sub4[3] = 0;
copy(cc, c); // copy aux array to main
}
}
System.out.println(c[c.length - 1]);
}
// shifts array 1 char left and puts c at the end
void shift(char[] cc, char c) {
for (int i = 1; i < cc.length; i++)
cc[i - 1] = cc[i];
cc[cc.length - 1] = c;
}
// copies array contents
void copy(int[] from, int[] to) {
for (int i = 0; i < from.length; i++)
to[i] = from[i];
}
The main idea is to catch chars from the input one by one, holding them in 2- and 4-char accumulators and check if any of them match some tokens of the query, remembering how many matches have we got for sub-queries ending by these tokens so far.
Query (a+b+c-) is splitted into tokens (a+, b+, c-). Then we collect chars in accumulators and check if they match some tokens. If we find match for first token, we increment its counter by 1. If we find match for another j-th token, we can create as many additional subsequences matching subquery composed of tokens [0...j], as many of them now exist for subquery composed of tokens [0... j-1], because this match can be appended to every of them.
For example, we have:
a+ : 3 (3 matches for a+)
b+ : 2 (2 matches for a+b+)
c- : 1 (1 match for a+b+c-)
when cccc arrives. Then c- counter should be increased by b+ counter value, because so far we have 2 a+b+ subsequences and cccc can be appended to both of them.
Let's call the length of the string n, and the length of the query expression (in terms of the number of "units", like a+ or b-) m.
It's not clear exactly what you mean by "continuously" and "non-continuously", but if "continuously" means that there can't be any gaps between query string units, then you can just use the KMP algorithm to find all instances in O(m+n) time.
We can solve the "non-continuous" version in O(nm) time and space with dynamic programming. Basically, what we want to compute is a function:
f(i, j) = the number of occurrences of the subquery consisting of the first i units
of the query expression, in the first j characters of the string.
So with your example, f(2, 41) = 2, since there are 2 separate occurrences of the subpattern a+b+ in the first 41 characters of your example string.
The final answer will then be f(n, m).
We can compute this recursively as follows:
f(0, j) = 0
f(i, 0) = 0
f(i > 0, j > 0) = f(i, j-1) + isMatch(i, j) * f(i-1, j-len(i))
where len(i) is the length of the ith unit in the expression (always 2 or 4) and isMatch(i, j) is a function that returns 1 if the ith unit in the expression matches the text ending at position j, and 0 otherwise. For example, isMatch(15, 2) = 1 in your example, because s[14..15] = bb. This function takes just constant time to run, because it never needs to check more than 4 characters.
The above recursion will already work as-is, but we can save time by making sure that we only solve each subproblem once. Because the function f() depends only on its 2 parameters i and j, which range between 0 and m, and between 0 and n, respectively, we can just compute all n*m possible answers and store them in a table.
[EDIT: As Sasha Salauyou points out, the space requirement can in fact be reduced to O(m). We never need to access values of f(i, k) with k < j-1, so instead of storing m columns in the table we can just store 2, and alternate between them by always accessing column m % 2.]
Wanted to try it for myself and figured I could then share my solution as well. The parse method obviously has issues when there is indeed a char 0 in the expression (although that would probably be the bigger issue itself), the find method will fail for an empty needles array and I wasn't sure if ab+c- should be considered a valid pattern (I treat it as such). Note that this covers only the non-continous part so far.
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class Matcher {
public static void main(String[] args) {
String haystack = "aksdbaalaskdhfbblajdfhacccc aoudgalsaa bblisdfhcccc";
String[] needles = parse("a+b+c-");
System.out.println("Needles: " + Arrays.toString(needles));
System.out.println("Found: " + find(haystack, needles, 0));
needles = parse("ab+c-");
System.out.println("Needles: " + Arrays.toString(needles));
System.out.println("Found: " + find(haystack, needles, 0));
}
private static int find(String haystack, String[] needles, int i) {
String currentNeedle = needles[i];
int pos = haystack.indexOf(currentNeedle);
if (pos < 0) {
// Abort: Current needle not found
return 0;
}
// Current needle found (also means that pos + currentNeedle.length() will always
// be <= haystack.length()
String remainingHaystack = haystack.substring(pos + currentNeedle.length());
// Last needle?
if (i == needles.length - 1) {
// +1: We found one match for all needles
// Try to find more matches of current needle in remaining haystack
return 1 + find(remainingHaystack, needles, i);
}
// Try to find more matches of current needle in remaining haystack
// Try to find next needle in remaining haystack
return find(remainingHaystack, needles, i) + find(remainingHaystack, needles, i + 1);
}
private static String[] parse(String expression) {
List<String> searchTokens = new ArrayList<String>();
char lastChar = 0;
for (int i = 0; i < expression.length(); i++) {
char c = expression.charAt(i);
char[] chars;
switch (c) {
case '+':
// last char is repeated 2 times
chars = new char[2];
Arrays.fill(chars, lastChar);
searchTokens.add(String.valueOf(chars));
lastChar = 0;
break;
case '-':
// last char is repeated 4 times
chars = new char[4];
Arrays.fill(chars, lastChar);
searchTokens.add(String.valueOf(chars));
lastChar = 0;
break;
default:
if (lastChar != 0) {
searchTokens.add(String.valueOf(lastChar));
}
lastChar = c;
}
}
return searchTokens.toArray(new String[searchTokens.size()]);
}
}
Output:
Needles: [aa, bb, cccc]
Found: 4
Needles: [a, bb, cccc]
Found: 18
How about preprocessing aksdbaalaskdhfbblajdfhacccc aoudgalsaa bblisdfhcccc?
This become a1k1s1d1b1a2l1a1s1k1d1h1f1b2l1a1j1d1f1h1a1c4a1o1u1d1g1a1l1s1a2b2l1i1s1d1f1h1c4
Now find occurrences of a2, b2, c4.
Tried it code below but right now it gives only first possible match based of depth first.
Need to be changed to do all possible combination instead of just first
import java.util.ArrayList;
import java.util.List;
public class Parsing {
public static void main(String[] args) {
String input = "aksdbaalaskdhfbblajdfhacccc aoudgalsaa bblisdfhcccc";
System.out.println(input);
for (int i = 0; i < input.length(); i++) {
System.out.print(i/10);
}
System.out.println();
for (int i = 0; i < input.length(); i++) {
System.out.print(i%10);
}
System.out.println();
List<String> tokenisedSearch = parseExp("a+b+c-");
System.out.println(tokenisedSearch);
parse(input, 0, tokenisedSearch, 0);
}
public static boolean parse(String input, int searchFromIndex, List<String> tokensToSeach, int currentTokenIndex) {
if(currentTokenIndex >= tokensToSeach.size())
return true;
String token = tokensToSeach.get(currentTokenIndex);
int found = input.indexOf(token, searchFromIndex);
if(found >= 0) {
System.out.println("Found at Index "+found+ " Token " +token);
return parse(input, searchFromIndex+1, tokensToSeach, currentTokenIndex+1);
}
return false;
}
public static List<String> parseExp(String exp) {
List<String> list = new ArrayList<String>();
String runningToken = "";
for (int i = 0; i < exp.length(); i++) {
char at = exp.charAt(i);
switch (at) {
case '+' :
runningToken += runningToken;
list.add(runningToken);
runningToken = "";
break;
case '-' :
runningToken += runningToken;
runningToken += runningToken;
list.add(runningToken);
runningToken = "";
break;
default :
runningToken += at;
}
}
return list;
}
}
Recursion may be the following (pseudocode):
int search(String s, String expression) {
if expression consists of only one token t /* e. g. "a+" */ {
search for t in s
return number of occurrences
} else {
int result = 0
divide expression into first token t and rest expression
// e. g. "a+a+b-" -> t = "a+", rest = "a+b-"
search for t in s
for each occurrence {
s1 = substring of s from the position of occurrence to the end
result += search(s1, rest) // search for rest of expression in rest of string
}
return result
}
}
Applying this to entire string, you'll get number of non-continuous occurrences. To get continuous occurrences, you don't need recursion at all--just transform expression into string and search by iteration.
If you convert the search string first with a simple parser/compiler so a+ becomes aa etc. then you can simply take this string and run a regular expression match against your hay stack. (Sorry, I'm no Java coder so can't deliver any real code but it is not really difficult)

Find all substrings that are palindromes

If the input is 'abba' then the possible palindromes are a, b, b, a, bb, abba.
I understand that determining if string is palindrome is easy. It would be like:
public static boolean isPalindrome(String str) {
int len = str.length();
for(int i=0; i<len/2; i++) {
if(str.charAt(i)!=str.charAt(len-i-1) {
return false;
}
return true;
}
But what is the efficient way of finding palindrome substrings?
This can be done in O(n), using Manacher's algorithm.
The main idea is a combination of dynamic programming and (as others have said already) computing maximum length of palindrome with center in a given letter.
What we really want to calculate is radius of the longest palindrome, not the length.
The radius is simply length/2 or (length - 1)/2 (for odd-length palindromes).
After computing palindrome radius pr at given position i we use already computed radiuses to find palindromes in range [i - pr ; i]. This lets us (because palindromes are, well, palindromes) skip further computation of radiuses for range [i ; i + pr].
While we search in range [i - pr ; i], there are four basic cases for each position i - k (where k is in 1,2,... pr):
no palindrome (radius = 0) at i - k
(this means radius = 0 at i + k, too)
inner palindrome, which means it fits in range
(this means radius at i + k is the same as at i - k)
outer palindrome, which means it doesn't fit in range
(this means radius at i + k is cut down to fit in range, i.e because i + k + radius > i + pr we reduce radius to pr - k)
sticky palindrome, which means i + k + radius = i + pr
(in that case we need to search for potentially bigger radius at i + k)
Full, detailed explanation would be rather long. What about some code samples? :)
I've found C++ implementation of this algorithm by Polish teacher, mgr Jerzy Wałaszek.
I've translated comments to english, added some other comments and simplified it a bit to be easier to catch the main part.
Take a look here.
Note: in case of problems understanding why this is O(n), try to look this way:
after finding radius (let's call it r) at some position, we need to iterate over r elements back, but as a result we can skip computation for r elements forward. Therefore, total number of iterated elements stays the same.
Perhaps you could iterate across potential middle character (odd length palindromes) and middle points between characters (even length palindromes) and extend each until you cannot get any further (next left and right characters don't match).
That would save a lot of computation when there are no many palidromes in the string. In such case the cost would be O(n) for sparse palidrome strings.
For palindrome dense inputs it would be O(n^2) as each position cannot be extended more than the length of the array / 2. Obviously this is even less towards the ends of the array.
public Set<String> palindromes(final String input) {
final Set<String> result = new HashSet<>();
for (int i = 0; i < input.length(); i++) {
// expanding even length palindromes:
expandPalindromes(result,input,i,i+1);
// expanding odd length palindromes:
expandPalindromes(result,input,i,i);
}
return result;
}
public void expandPalindromes(final Set<String> result, final String s, int i, int j) {
while (i >= 0 && j < s.length() && s.charAt(i) == s.charAt(j)) {
result.add(s.substring(i,j+1));
i--; j++;
}
}
So, each distinct letter is already a palindrome - so you already have N + 1 palindromes, where N is the number of distinct letters (plus empty string). You can do that in single run - O(N).
Now, for non-trivial palindromes, you can test each point of your string to be a center of potential palindrome - grow in both directions - something that Valentin Ruano suggested.
This solution will take O(N^2) since each test is O(N) and number of possible "centers" is also O(N) - the center is either a letter or space between two letters, again as in Valentin's solution.
Note, there is also O(N) solution to your problem, based on Manacher's algoritm (article describes "longest palindrome", but algorithm could be used to count all of them)
I just came up with my own logic which helps to solve this problem.
Happy coding.. :-)
System.out.println("Finding all palindromes in a given string : ");
subPal("abcacbbbca");
private static void subPal(String str) {
String s1 = "";
int N = str.length(), count = 0;
Set<String> palindromeArray = new HashSet<String>();
System.out.println("Given string : " + str);
System.out.println("******** Ignoring single character as substring palindrome");
for (int i = 2; i <= N; i++) {
for (int j = 0; j <= N; j++) {
int k = i + j - 1;
if (k >= N)
continue;
s1 = str.substring(j, i + j);
if (s1.equals(new StringBuilder(s1).reverse().toString())) {
palindromeArray.add(s1);
}
}
}
System.out.println(palindromeArray);
for (String s : palindromeArray)
System.out.println(s + " - is a palindrome string.");
System.out.println("The no.of substring that are palindrome : "
+ palindromeArray.size());
}
Output:-
Finding all palindromes in a given string :
Given string : abcacbbbca
******** Ignoring single character as substring palindrome ********
[cac, acbbbca, cbbbc, bb, bcacb, bbb]
cac - is a palindrome string.
acbbbca - is a palindrome string.
cbbbc - is a palindrome string.
bb - is a palindrome string.
bcacb - is a palindrome string.
bbb - is a palindrome string.
The no.of substring that are palindrome : 6
I suggest building up from a base case and expanding until you have all of the palindomes.
There are two types of palindromes: even numbered and odd-numbered. I haven't figured out how to handle both in the same way so I'll break it up.
1) Add all single letters
2) With this list you have all of the starting points for your palindromes. Run each both of these for each index in the string (or 1 -> length-1 because you need at least 2 length):
findAllEvenFrom(int index){
int i=0;
while(true) {
//check if index-i and index+i+1 is within string bounds
if(str.charAt(index-i) != str.charAt(index+i+1))
return; // Here we found out that this index isn't a center for palindromes of >=i size, so we can give up
outputList.add(str.substring(index-i, index+i+1));
i++;
}
}
//Odd looks about the same, but with a change in the bounds.
findAllOddFrom(int index){
int i=0;
while(true) {
//check if index-i and index+i+1 is within string bounds
if(str.charAt(index-i-1) != str.charAt(index+i+1))
return;
outputList.add(str.substring(index-i-1, index+i+1));
i++;
}
}
I'm not sure if this helps the Big-O for your runtime, but it should be much more efficient than trying each substring. Worst case would be a string of all the same letter which may be worse than the "find every substring" plan, but with most inputs it will cut out most substrings because you can stop looking at one once you realize it's not the center of a palindrome.
I tried the following code and its working well for the cases
Also it handles individual characters too
Few of the cases which passed:
abaaa --> [aba, aaa, b, a, aa]
geek --> [g, e, ee, k]
abbaca --> [b, c, a, abba, bb, aca]
abaaba -->[aba, b, abaaba, a, baab, aa]
abababa -->[aba, babab, b, a, ababa, abababa, bab]
forgeeksskeegfor --> [f, g, e, ee, s, r, eksske, geeksskeeg,
o, eeksskee, ss, k, kssk]
Code
static Set<String> set = new HashSet<String>();
static String DIV = "|";
public static void main(String[] args) {
String str = "abababa";
String ext = getExtendedString(str);
// will check for even length palindromes
for(int i=2; i<ext.length()-1; i+=2) {
addPalindromes(i, 1, ext);
}
// will check for odd length palindromes including individual characters
for(int i=1; i<=ext.length()-2; i+=2) {
addPalindromes(i, 0, ext);
}
System.out.println(set);
}
/*
* Generates extended string, with dividors applied
* eg: input = abca
* output = |a|b|c|a|
*/
static String getExtendedString(String str) {
StringBuilder builder = new StringBuilder();
builder.append(DIV);
for(int i=0; i< str.length(); i++) {
builder.append(str.charAt(i));
builder.append(DIV);
}
String ext = builder.toString();
return ext;
}
/*
* Recursive matcher
* If match is found for palindrome ie char[mid-offset] = char[mid+ offset]
* Calculate further with offset+=2
*
*
*/
static void addPalindromes(int mid, int offset, String ext) {
// boundary checks
if(mid - offset <0 || mid + offset > ext.length()-1) {
return;
}
if (ext.charAt(mid-offset) == ext.charAt(mid+offset)) {
set.add(ext.substring(mid-offset, mid+offset+1).replace(DIV, ""));
addPalindromes(mid, offset+2, ext);
}
}
Hope its fine
public class PolindromeMyLogic {
static int polindromeCount = 0;
private static HashMap<Character, List<Integer>> findCharAndOccurance(
char[] charArray) {
HashMap<Character, List<Integer>> map = new HashMap<Character, List<Integer>>();
for (int i = 0; i < charArray.length; i++) {
char c = charArray[i];
if (map.containsKey(c)) {
List list = map.get(c);
list.add(i);
} else {
List list = new ArrayList<Integer>();
list.add(i);
map.put(c, list);
}
}
return map;
}
private static void countPolindromeByPositions(char[] charArray,
HashMap<Character, List<Integer>> map) {
map.forEach((character, list) -> {
int n = list.size();
if (n > 1) {
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
if (list.get(i) + 1 == list.get(j)
|| list.get(i) + 2 == list.get(j)) {
polindromeCount++;
} else {
char[] temp = new char[(list.get(j) - list.get(i))
+ 1];
int jj = 0;
for (int ii = list.get(i); ii <= list
.get(j); ii++) {
temp[jj] = charArray[ii];
jj++;
}
if (isPolindrome(temp))
polindromeCount++;
}
}
}
}
});
}
private static boolean isPolindrome(char[] charArray) {
int n = charArray.length;
char[] temp = new char[n];
int j = 0;
for (int i = (n - 1); i >= 0; i--) {
temp[j] = charArray[i];
j++;
}
if (Arrays.equals(charArray, temp))
return true;
else
return false;
}
public static void main(String[] args) {
String str = "MADAM";
char[] charArray = str.toCharArray();
countPolindromeByPositions(charArray, findCharAndOccurance(charArray));
System.out.println(polindromeCount);
}
}
Try out this. Its my own solution.
// Maintain an Set of palindromes so that we get distinct elements at the end
// Add each char to set. Also treat that char as middle point and traverse through string to check equality of left and right char
static int palindrome(String str) {
Set<String> distinctPln = new HashSet<String>();
for (int i=0; i<str.length();i++) {
distinctPln.add(String.valueOf(str.charAt(i)));
for (int j=i-1, k=i+1; j>=0 && k<str.length(); j--, k++) {
// String of lenght 2 as palindrome
if ( (new Character(str.charAt(i))).equals(new Character(str.charAt(j)))) {
distinctPln.add(str.substring(j,i+1));
}
// String of lenght 2 as palindrome
if ( (new Character(str.charAt(i))).equals(new Character(str.charAt(k)))) {
distinctPln.add(str.substring(i,k+1));
}
if ( (new Character(str.charAt(j))).equals(new Character(str.charAt(k)))) {
distinctPln.add(str.substring(j,k+1));
} else {
continue;
}
}
}
Iterator<String> distinctPlnItr = distinctPln.iterator();
while ( distinctPlnItr.hasNext()) {
System.out.print(distinctPlnItr.next()+ ",");
}
return distinctPln.size();
}
Code is to find all distinct substrings which are palindrome.
Here is the code I tried. It is working fine.
import java.util.HashSet;
import java.util.Set;
public class SubstringPalindrome {
public static void main(String[] args) {
String s = "abba";
checkPalindrome(s);
}
public static int checkPalindrome(String s) {
int L = s.length();
int counter =0;
long startTime = System.currentTimeMillis();
Set<String> hs = new HashSet<String>();
// add elements to the hash set
System.out.println("Possible substrings: ");
for (int i = 0; i < L; ++i) {
for (int j = 0; j < (L - i); ++j) {
String subs = s.substring(j, i + j + 1);
counter++;
System.out.println(subs);
if(isPalindrome(subs))
hs.add(subs);
}
}
System.out.println("Total possible substrings are "+counter);
System.out.println("Total palindromic substrings are "+hs.size());
System.out.println("Possible palindromic substrings: "+hs.toString());
long endTime = System.currentTimeMillis();
System.out.println("It took " + (endTime - startTime) + " milliseconds");
return hs.size();
}
public static boolean isPalindrome(String s) {
if(s.length() == 0 || s.length() ==1)
return true;
if(s.charAt(0) == s.charAt(s.length()-1))
return isPalindrome(s.substring(1, s.length()-1));
return false;
}
}
OUTPUT:
Possible substrings:
a
b
b
a
ab
bb
ba
abb
bba
abba
Total possible substrings are 10
Total palindromic substrings are 4
Possible palindromic substrings: [bb, a, b, abba]
It took 1 milliseconds

Categories