Change the alpha value of a BufferedImage? - java

How do I change the global alpha value of a BufferedImage in Java? (I.E. make every pixel in the image that has a alpha value of 100 have a alpha value of 80)

#Neil Coffey:
Thanks, I've been looking for this too; however, Your code didn't work very well for me (white background became black).
I coded something like this and it works perfectly:
public void setAlpha(byte alpha) {
alpha %= 0xff;
for (int cx=0;cx<obj_img.getWidth();cx++) {
for (int cy=0;cy<obj_img.getHeight();cy++) {
int color = obj_img.getRGB(cx, cy);
int mc = (alpha << 24) | 0x00ffffff;
int newcolor = color & mc;
obj_img.setRGB(cx, cy, newcolor);
}
}
}
Where obj_img is BufferedImage.TYPE_INT_ARGB.
I change alpha with setAlpha((byte)125); alpha range is now 0-255.
Hope someone finds this useful.

I don't believe there's a single simple command to do this. A few options:
copy into another image with an AlphaComposite specified (downside: not converted in place)
directly manipulate the raster (downside: can lead to unmanaged images)
use a filter or BufferedImageOp
The first is the simplest to implement, IMO.

This is an old question, so I'm not answering for the sake of the OP, but for those like me who find this question later.
AlphaComposite
As #Michael's excellent outline mentioned, an AlphaComposite operation can modify the alpha channel. But only in certain ways, which to me are somewhat difficult to understand:
is the formula for how the "over" operation affects the alpha channel. Moreover, this affects the RGB channels too, so if you have color data that needs to be unchanged, AlphaComposite is not the answer.
BufferedImageOps
LookupOp
There are several varieties of BufferedImageOp (see 4.10.6 here). In the more general case, the OP's task could be met by a LookupOp, which requires building lookup arrays. To modify only the alpha channel, supply an identity array (an array where table[i] = i) for the RGB channels, and a separate array for the alpha channel. Populate the latter array with table[i] = f(i), where f() is the function by which you want to map from old alpha value to new. E.g. if you want to "make every pixel in the image that has a alpha value of 100 have a alpha value of 80", set table[100] = 80. (The full range is 0 to 255.) See how to increase opacity in gaussian blur for a code sample.
RescaleOp
But for a subset of these cases, there is a simpler way to do it, that doesn't require setting up a lookup table. If f() is a simple, linear function, use a RescaleOp. For example, if you want to set newAlpha = oldAlpha - 20, use a RescaleOp with a scaleFactor of 1 and an offset of -20. If you want to set newAlpha = oldAlpha * 0.8, use a scaleFactor of 0.8 and an offset of 0. In either case, you again have to provide dummy scaleFactors and offsets for the RGB channels:
new RescaleOp({1.0f, 1.0f, 1.0f, /* alpha scaleFactor */ 0.8f},
{0f, 0f, 0f, /* alpha offset */ -20f}, null)
Again see 4.10.6 here for some examples that illustrate the principles well, but are not specific to the alpha channel.
Both RescaleOp and LookupOp allow modifying a BufferedImage in-place.

for a nicer looking alpha change effect, you can use relative alpha change per pixel (rather than static set, or clipping linear)
public static void modAlpha(BufferedImage modMe, double modAmount) {
//
for (int x = 0; x < modMe.getWidth(); x++) {
for (int y = 0; y < modMe.getHeight(); y++) {
//
int argb = modMe.getRGB(x, y); //always returns TYPE_INT_ARGB
int alpha = (argb >> 24) & 0xff; //isolate alpha
alpha *= modAmount; //similar distortion to tape saturation (has scrunching effect, eliminates clipping)
alpha &= 0xff; //keeps alpha in 0-255 range
argb &= 0x00ffffff; //remove old alpha info
argb |= (alpha << 24); //add new alpha info
modMe.setRGB(x, y, argb);
}
}
}

I'm 99% sure the methods that claim to deal with an "RGB" value packed into an int actually deal with ARGB. So you ought to be able to do something like:
for (all x,y values of image) {
int argb = img.getRGB(x, y);
int oldAlpha = (argb >>> 24);
if (oldAlpha == 100) {
argb = (80 << 24) | (argb & 0xffffff);
img.setRGB(x, y, argb);
}
}
For speed, you could maybe use the methods to retrieve blocks of pixel values.

You may need to first copy your BufferedImage to an image of type BufferedImage.TYPE_INT_ARGB. If your image is of type, say, BufferedImage.TYPE_INT_RGB, then the alpha component won't be set correctly. If your BufferedImage is of type BufferedImage.TYPE_INT_ARGB, then the code below works.
/**
* Modifies each pixel of the BufferedImage so that the selected component (R, G, B, or A)
* is adjusted by delta. Note: the BufferedImage must be of type BufferedImage.TYPE_INT_ARGB.
* #param src BufferedImage of type BufferedImage.TYPE_INT_ARGB.
* #param colorIndex 0=red, 1=green, 2=blue, 3= alpha
* #param delta amount to change component
* #return
*/
public static BufferedImage adjustAColor(BufferedImage src,int colorIndex, int delta) {
int w = src.getWidth();
int h = src.getHeight();
assert(src.getType()==BufferedImage.TYPE_INT_ARGB);
for (int y = 0; y < h; y++)
for (int x = 0; x < w; x++) {
int rgb = src.getRGB(x,y);
java.awt.Color color= new java.awt.Color(rgb,true);
int red=color.getRed();
int green=color.getGreen();
int blue=color.getBlue();
int alpha=color.getAlpha();
switch (colorIndex) {
case 0: red=adjustColor(red,delta); break;
case 1: green=adjustColor(green,delta); break;
case 2: blue=adjustColor(blue,delta); break;
case 3: alpha=adjustColor(alpha,delta); break;
default: throw new IllegalStateException();
}
java.awt.Color adjustedColor=new java.awt.Color(red,green,blue,alpha);
src.setRGB(x,y,adjustedColor.getRGB());
int gottenColorInt=src.getRGB(x,y);
java.awt.Color gottenColor=new java.awt.Color(gottenColorInt,true);
assert(gottenColor.getRed()== red);
assert(gottenColor.getGreen()== green);
assert(gottenColor.getBlue()== blue);
assert(gottenColor.getAlpha()== alpha);
}
return src;
}
private static int adjustColor(int value255, int delta) {
value255+= delta;
if (value255<0) {
value255=0;
} else if (value255>255) {
value255=255;
}
return value255;
}

Related

color rescaling in java of buffered image

First of all, thanks for reading.
I am writing a class which returns an image from 2D double array(kDEvalue from the code).
However, since so many values(256*256) vary in a very small range(-1 to 1), i cannot use the default color scaling(it is all black if i use the value from the array).
BufferedImage image = new BufferedImage(kDEvalues.length, kDEvalues[0].length, BufferedImage.TYPE_INT_RGB);
for (int x = 0; x < 256; x++) {
for (int y = 0; y < 256; y++) {
image.setRGB(x, y, (255*(int)Math.round(kDEvalues[x][y]))/100);
}
}
try {
ImageIO.write(image, "jpg", new File("CustomImage.jpg"));
} catch (IOException e) {
e.printStackTrace();
}
In this case, how I rescale the color in grey scale so that I can see the varience of the value? Thanks in advance
You almost got it right here:
image.setRGB(x, y, (255*(int)Math.round(kDEvalues[x][y]))/100);
There are three things wrong with your expression for the RGB value. First, you round and then multiply. This drops any fractions of your small values, it should be the other way around. Second you only create a value for one color channel (the blue one) and thrid, you do not check for overflow.
Try something like this:
int gray = (int) Math.round((kDEvalues[x][y] - (-1)) * 127.5);
// limit range to 0-255
gray = Math.min(gray, 255);
gray = Math.max(gray, 0);
// copy gray value to r, g and b channel
int rgb = (gray << 16) | (gray << 8) | gray;
image.setRGB(x, y, rgb);
First operation is to scale the value to 0-255. Since you say your values are in range -1 to 1, adjust the values so the lower bound falls on zero (by subtracting the lower bound). Then multiply by a factor that the highes value becomes 255 (thats (1 - (-1)) * 127.5 = 255).
Just to be safe, clip the resulting value to 0-255 (Math.min/max expressions).
Then replicate the gray value in RGB by setting the gray value to all 3 color channels. The format is documented in the javadoc and the bit shifts just place the gray value at the correct position within the int.

Converting grayscale image pixels to defined scale

I'm looking to use a very crude heightmap I've created in Photoshop to define a tiled isometric grid for me:
Map:
http://i.imgur.com/jKM7AgI.png
I'm aiming to loop through every pixel in the image and convert the colour of that pixel to a scale of my choosing, for example 0-100.
At the moment I'm using the following code:
try
{
final File file = new File("D:\\clouds.png");
final BufferedImage image = ImageIO.read(file);
for (int x = 0; x < image.getWidth(); x++)
{
for (int y = 0; y < image.getHeight(); y++)
{
int clr = image.getRGB(x, y) / 99999;
if (clr <= 0)
clr = -clr;
System.out.println(clr);
}
}
}
catch (IOException ex)
{
// Deal with exception
}
This works to an extent; the black pixel at position 0 is 167 and the white pixel at position 999 is 0. However when I insert certain pixels into the image I get slightly odd results, for example a gray pixel that's very close to white returns over 100 when I would expect it to be in single digits.
Is there an alternate solution I could use that would yield more reliable results?
Many thanks.
Since it's a grayscale map, the RGB parts will all be the same value (with range 0 - 255), so just take one out of the packed integer and find out what percent of 255 it is:
int clr = (int) ((image.getRGB(x, y) & 0xFF) / 255.0 * 100);
System.out.println(clr);
getRGB returns all channels packed into one int so you shouldn't do arithmetic with it. Maybe use the norm of the RGB-vector instead?
for (int x = 0; x < image.getWidth(); ++x) {
for (int y = 0; y < image.getHeight(); ++y) {
final int rgb = image.getRGB(x, y);
final int red = ((rgb & 0xFF0000) >> 16);
final int green = ((rgb & 0x00FF00) >> 8);
final int blue = ((rgb & 0x0000FF) >> 0);
// Norm of RGB vector mapped to the unit interval.
final double intensity =
Math.sqrt(red * red + green * green + blue * blue)
/ Math.sqrt(3 * 255 * 255);
}
}
Note that there is also the java.awt.Color class that can be instantiated with the int returned by getRGB and provides getRed, getGreen and getBlue methods if you don't want to do the bit manipulations yourself.

Java BufferedImage get single pixel brightness

I want to convert coloured image to a monochrome, i thought to loop all pixel, but I don't know how to test if they are bright or dark.
for(int y=0;y<image.getHeight();y++){
for(int x=0;x<image.getWidth();x++){
int color=image.getRGB(x, y);
// ???how to test if its is bright or dark?
}
}
int color = image.getRGB(x, y);
// extract each color component
int red = (color >>> 16) & 0xFF;
int green = (color >>> 8) & 0xFF;
int blue = (color >>> 0) & 0xFF;
// calc luminance in range 0.0 to 1.0; using SRGB luminance constants
float luminance = (red * 0.2126f + green * 0.7152f + blue * 0.0722f) / 255;
// choose brightness threshold as appropriate:
if (luminance >= 0.5f) {
// bright color
} else {
// dark color
}
I suggest first converting the pixel to grayscale, then applying a threshold for converting it pure black&white.
There are libraries that will do this for you, but if you want to learn how images are processed, here you are:
Colour to grayscale
There are various formulas for converting (see a nice article here), I prefer the "luminosity" one. So:
int grayscalePixel = (0.21 * pRed) + (0.71 * pGreen) + (0.07 * pBlue)
I cannot tell what API you are using to manipulate the image, so I left the formula above in general terms. pRed, pGreen and pBlue are the red, green and blue levels (values) for the pixel.
Grayscale to b/w
Now, you can apply a threshold with:
int bw = grayscalePixel > THRESHOLD? 1: 0;
or even:
boolean bw = grayscalePixel > THRESHOLD;
Pixel will be white if above threshold, black if below. Find the right THRESHOLD by experimenting a bit.

Java BufferedImage how to know if a pixel is transparent

I'm going to use the getRGB method of BufferedImage. I want to check the pixels of an image and see which of them have transparency (in general the pixels I will have that are transparent will be totaly transparent). How can I get it from the int that getRGB returns?
BufferedImage img = ....
public boolean isTransparent( int x, int y ) {
int pixel = img.getRGB(x,y);
if( (pixel>>24) == 0x00 ) {
return true;
}
return false;
}
Of course img has to be in the correct format TYPE_4BYTE_ABGR or some format that supports alpha channels else if will always be opaque (ie 0xff).
the correct shift to get alpha value in an int is with >>> due to sign bit.
example:
int alpha1 = (pixel1 & 0xff000000) >>> 24;

Affine transform with interpolation

I would like to do an affine transformation on a very low resolution bitmap and I would like to do it while preserving the maximum amount of information.
My input data is a 1 bit 64-by-64 pixel image of hand written character and my output would be greyscale and higher resolution. Upon analysing the image I construct a series of affine transformations (rotation, scaling, shear, translation) what I could multiply into a single affine transformation matrix.
My problem is that given the input image and my computed affine transformation matrix, how can I calculate my output image in the highest possible quality? I have read articles about different interpolation techniques, but all of them are about how to do interpolation for scaling, and not for general affine transforms.
Here is a demo what is doing exactly what I am looking for. Given an affine transformation matrix and an interpolation technique it calculates an image.
http://bigwww.epfl.ch/demo/jaffine/index.html
Can you explain me what are the steps required for calculating a higher resolution (for example 4x) greyscale image, if I have a lower resolution 1-bit input and a given T affine transformation matrix?
Can you link me to some source code or tutorials or articles or possibly even books about how to implement a linear, cubic or better interpolation with affine transform?
I need to implement this problem in Java, and I know Java has an Affine class, but I don't know if it implements interpolation. Do you know any C++ or Java library what has nice to read code for figuring out how to write an algorithm for doing affine transform using interpolation?
Are there any freely available libraries for Java or C++ which have built-in functions for calculating affine transform using interpolation?
The same people you linked to have a C implementation with several interpolation options here. You could probably use JNI to wrap it. There is also JavaCV, which wraps OpenCV. OpenCV contains the warpAffine, which has interpolation. Also, check out the Java Advanced Imaging API here.
OK, here is the solution I ended up with.
I transformed all my array[][] into a BufferedImage object
static BufferedImage BImageFrom2DArray(float data[][]) {
int width = data.length;
int height = data[0].length;
BufferedImage myimage = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB);
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
int value = (int) ((1f - data[x][y]) * 255f);
myimage.setRGB(y, x, (value << 16) | (value << 8) | value);
}
}
return myimage;
}
Applied the affine transformation using AffineTransformOp with interpolation bicubic
AffineTransformOp op = new AffineTransformOp(tx, AffineTransformOp.TYPE_BICUBIC);
BufferedImage im_transformed = op.filter(im_src, null);
Transformed back the BufferedImage object into array[][]:
static float[][] ArrayFromBImage(BufferedImage bimage, int width, int height) {
int max_x = bimage.getWidth();
int max_y = bimage.getHeight();
float[][] array = new float[width][height];
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
float red, alpha, value;
int color;
if (x >= max_x || y >= max_y) {
array[y][x] = 0;
} else {
color = bimage.getRGB(x, y);
alpha = (color >> 24) & 0xFF;
red = (color >> 16) & 0xFF;
value = 1f - red / 255;
if (alpha == 0) {
array[y][x] = 0;
} else {
array[y][x] = value;
}
}
}
}
return array;
}

Categories