I have a hashtable . values() method returns values in some order different from the order in which i am inserted.How can i get the values in the same order as i inserted?Using LinkedHashmap is an alternative but it is not synchronized.
Use a LinkedHashMap.
Hash table and linked list
implementation of the Map interface,
with predictable iteration order. This
implementation differs from HashMap in
that it maintains a doubly-linked list
running through all of its entries.
This linked list defines the iteration
ordering, which is normally the order
in which keys were inserted into the
map (insertion-order). Note that
insertion order is not affected if a
key is re-inserted into the map. (A
key k is reinserted into a map m if
m.put(k, v) is invoked when
m.containsKey(k) would return true
immediately prior to the invocation.)
combined with Collections.synchronizedMap().
So, for example:
Map<String, String> map = Collections.synchronizedMap(
new LinkedHashMap<String, String>());
You could either wrap a LinkedHashMap and synchronize or you could use the Collections.synchronizedMap utility to create a synchronized LinkedHashMap:
Map m = Collections.synchronizedMap(new LinkedHashMap(...));
From the JavaDoc:
If multiple threads access a linked hash map concurrently, and at least one of the threads modifies the map structurally, it must be synchronized externally. This is typically accomplished by synchronizing on some object that naturally encapsulates the map. If no such object exists, the map should be "wrapped" using the Collections.synchronizedMap method. This is best done at creation time, to prevent accidental unsynchronized access to the map
I'm pretty sure that the reason hashtables are unsorted is to aid storage and retrieval speed. Because of this I would suggest using an external structure to maintain ordering and just using the hashtable for storing values (for fast lookup).
A hash table is inherently unordered, so you are using the wrong data structure. Since you don't specify what language you are using I cannot suggest an alternate, but you need some type of ordered key/value set.
If jdk1.6 you have only two type of ordered map EnumMap and LinkedHashMap. Both of them are not synchronized. If you just need to remember the order, use
Map m = Collections.synchronizedMap(new LinkedHashMap(...));
if you want sorted then use ConcurrentSkipListMap
Related
I have a HashMap.
It has 100s of millions of observations.
What's the best way to iterate over the elements of the HashMap, in numerical order of the keys?
I considered changing to TreeMap, but did not do that since it may actually increase the load in creating the Map (as TreeMap is O(n), HashMap is O(1)).
With Java 8 you could use something similar to the following:
import static java.util.Comparator.comparing;
map.entrySet().stream()
.sorted(comparing(Entry::getKey))
.forEach(e -> doSomethingWithTheEntry(e));
That will obviously involve sorting the unsorted keys, which will come at a cost. So you need to decide whether you want to pay the cost upfront with a TreeMap or when required and keep using a HashMap.
You can't iterate over a HashMap in order. You'll have to use TreeMap for that. If you use a LinkedHashMap, you can iterate in the order the keys were inserted to the Map, but it's still not what you want (unless you insert the keys in numerical order).
If your insertion order is the same order as your keys, then you could use a LinkedHashMap.
Hash table and linked list implementation of the Map interface, with predictable iteration order. This implementation differs from HashMap in that it maintains a doubly-linked list running through all of its entries. This linked list defines the iteration ordering, which is normally the order in which keys were inserted into the map (insertion-order). Note that insertion order is not affected if a key is re-inserted into the map. (A key k is reinserted into a map m if m.put(k, v) is invoked when m.containsKey(k) would return true immediately prior to the invocation.)
What are the practical scenario for choosing among the linkedhashmap and hashmap? I have gone through working of each and come to the conclusion that linkedhashmap maintains the order of insertion i.e elements will be retrieved in the same order as that of insertion order while hashmap won't maintain order.
So can someone tell in what practical scenarios selection of one of the collection framework and why?
LinkedHashMap will iterate in the order in which the entries were put into the map.
null Values are allowed in LinkedHashMap.
The implementation is not synchronized and uses double linked buckets.
LinkedHashMap is very similar to HashMap, but it adds awareness to the order at which items are added or accessed, so the iteration order is the same as insertion order depending on construction parameters.
LinkedHashMap also provides a great starting point for creating a Cache object by overriding the removeEldestEntry() method. This lets you create a Cache object that can expire data using some criteria that you define.
Based on linked list and hashing data structures with linked list (think of indexed-SkipList) capability to store data in the way it gets inserted in the tree. Best suited to implement LRU ( least recently used ).
LinkedHashMap extends HashMap.
It maintains a linked list of the entries in the map, in the order in which they were inserted. This allows insertion-order iteration over the map. That is,when iterating through a collection-view of a LinkedHashMap, the elements will be returned in the order in which they were inserted. Also if one inserts the key again into the LinkedHashMap, the original order is retained. This allows insertion-order iteration over the map. That is, when iterating a LinkedHashMap, the elements will be returned in the order in which they were inserted. You can also create a LinkedHashMap that returns its elements in the order in which they were last accessed.
LinkedHashMap constructors
LinkedHashMap( )
This constructor constructs an empty insertion-ordered LinkedHashMap instance with the default initial capacity (16) and load factor (0.75).
LinkedHashMap(int capacity)
This constructor constructs an empty LinkedHashMap with the specified initial capacity.
LinkedHashMap(int capacity, float fillRatio)
This constructor constructs an empty LinkedHashMap with the specified initial capacity and load factor.
LinkedHashMap(Map m)
This constructor constructs a insertion-ordered Linked HashMap with the same mappings as the specified Map.
LinkedHashMap(int capacity, float fillRatio, boolean Order)
This constructor construct an empty LinkedHashMap instance with the specified initial capacity, load factor and ordering mode.
Important methods supported by LinkedHashMap
Class clear( )
Removes all mappings from the map.
containsValue(object value )>
Returns true if this map maps one or more keys to the specified value.
get(Object key)
Returns the value to which the specified key is mapped, or null if this map contains no mapping for the key.
removeEldestEntry(Map.Entry eldest)
Below is an example of how you can use LinkedHashMap:
Map<Integer, String> myLinkedHashMapObject = new LinkedHashMap<Integer, String>();
myLinkedHashMapObject.put(3, "car");
myLinkedHashMapObject.put(5, "bus");
myLinkedHashMapObject.put(7, "nano");
myLinkedHashMapObject.put(9, "innova");
System.out.println("Modification Before" + myLinkedHashMapObject);
System.out.println("Vehicle exists: " +myLinkedHashMapObject.containsKey(3));
System.out.println("vehicle innova Exists: "+myLinkedHashMapObject.containsValue("innova"));
System.out.println("Total number of vehicles: "+ myLinkedHashMapObject.size());
System.out.println("Removing vehicle 9: " + myLinkedHashMapObject.remove(9));
System.out.println("Removing vehicle 25 (does not exist): " + myLinkedHashMapObject.remove(25));
System.out.println("LinkedHashMap After modification" + myLinkedHashMapObject);
Shopping Cart is a real life example, where we see cart number against Item we have chosen in order we selected the item. So map could be LinkedHashMap<Cart Number Vs Item Chosen>
HashMap makes absolutely no guarantees about the iteration order. It can (and will) even change completely when new elements are added.
LinkedHashMap will iterate in the order in which the entries were put into the map
LinkedHashMap also requires more memory than HashMap because of this ordering feature. As I said before LinkedHashMap uses doubly LinkedList to keep order of elements.
In most cases when using a Map you don't care whether the order of insertion is maintained. Use a HashMap if you don't care, and a LinkedHashMap is you care.
However, if you look when and where maps are used, in many cases it contains only a few entries, not enough for the performance difference of the different implementations to make a difference.
LinkedHashMap maintain insertion order of keys, i.e the order in which keys are inserted into LinkedHashMap. On the other hand HashMap doesn't maintain any order or keys or values. In terms of Performance there is not much difference between HashMap and LinkedHashMap but yes LinkedHashMap has more memory foot print than HashMap to maintain doubly linked list which it uses to keep track of insertion order of keys.
A HashMap has a better performance than a LinkedHashMap because a LinkedHashMap needs the expense of maintaining the linked list. The LinkedHashMap implements a normal hashtable, but with the added benefit of the keys of the hashtable being stored as a doubly-linked list.
Both of their methods are not synchronized.
Let's take a look their API documentation:
The HashMap is a hash table with buckets in each hash slot.
API documentation:
This implementation provides constant-time performance for the basic
operations (get and put), assuming the hash function disperses the
elements properly among the buckets. Iteration over collection views
requires time proportional to the "capacity" of the HashMap instance
(the number of buckets) plus its size (the number of key-value
mappings). Thus, it's very important not to set the initial capacity
too high (or the load factor too low) if iteration performance is
important.
LinkedHashMap is a linked list implementing the map interface. As
said in the API documentation:
Hash table and linked list implementation of the Map interface, with
predictable iteration order. This implementation differs from HashMap
in that it maintains a doubly-linked list running through all of its
entries. This linked list defines the iteration ordering, which is
normally the order in which keys were inserted into the map
(insertion-order).
One way that I have used these at work are for cached backend REST queries. These also have the added benefit of returning the data in the some order for the client. You can read more about it in the oracle docs:
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
This technique is particularly useful if a module takes a map on input, copies it, and later returns results whose order is determined by that of the copy. (Clients generally appreciate having things returned in the same order they were presented.)
A special constructor is provided to create a linked hash map whose order of iteration is the order in which its entries were last accessed, from least-recently accessed to most-recently (access-order). This kind of map is well-suited to building LRU caches. Invoking the put, putIfAbsent, get, getOrDefault, compute, computeIfAbsent, computeIfPresent, or merge methods results in an access to the corresponding entry (assuming it exists after the invocation completes). The replace methods only result in an access of the entry if the value is replaced. The putAll method generates one entry access for each mapping in the specified map, in the order that key-value mappings are provided by the specified map's entry set iterator. No other methods generate entry accesses. In particular, operations on collection-views do not affect the order of iteration of the backing map.
I can't confirm this in the documentation but if i have a LinkedHashMap and i call keySet() on it and iterate over this set is it guaranteed to iterate in insertion order?
It's specified in the Map documentation:
The Map interface provides three collection views, which allow a map's contents to be viewed as a set of keys, collection of values, or set of key-value mappings. The order of a map is defined as the order in which the iterators on the map's collection views return their elements. Some map implementations, like the TreeMap class, make specific guarantees as to their order; others, like the HashMap class, do not.
That means for LinkedHashMap, all the 3 methods - values(), keySet() and entrySet(), each of them providing 3 different collection views, are guaranteed to iterate in the insertion order.
Yes.
See the docs(that you can not see) here: http://docs.oracle.com/javase/6/docs/api/java/util/LinkedHashMap.html
Hash table and linked list implementation of the Map interface, with
predictable iteration order. This implementation differs from HashMap
in that it maintains a doubly-linked list running through all of its
entries. This linked list defines the iteration ordering, which is
normally the order in which keys were inserted into the map
(insertion-order). Note that insertion order is not affected if a key
is re-inserted into the map. (A key k is reinserted into a map m if
m.put(k, v) is invoked when m.containsKey(k) would return true
immediately prior to the invocation.)
I was wondering if the Collection view of the values contained in a HashMap is kept ordered when the HashMap changes.
For example if I have a HashMap whose values() method returns L={a, b, c}
What happened to L if I add a new element "d" to the map?
Is it added at the end, i.e. if I iterate through the elements, it's the order kept?
In particular, if the addition of the new element "d" causes a rehash, will the order be kept in L?
Many thanks!
I was wondering if the Collection view of the values contained in a HashMap is kept ordered when the HashMap changes.
No, there is no such guarantee.
If this was the case, then the following program would output and ordered sequence from 1-100
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
for (int i = 0; i < 100; i++)
map.put(i, i);
System.out.println(map.values());
(and it doesn't).
There is a class that does precisely what you're asking for, and that is LinkedHashMap:
Hash table and linked list implementation of the Map interface, with predictable iteration order. This implementation differs from HashMap in that it maintains a doubly-linked list running through all of its entries. This linked list defines the iteration ordering, which is normally the order in which keys were inserted into the map (insertion-order).
If it doesn't say it in the JavaDoc then there are no guarantees about it. Different versions of Java could do different things. Don't depend on undocumented behaviour.
You might want to look at LinkedHashMap.
HashMap in Java aren't ordered, so I think it will be safe to say that values() won't return an ordered Collection.
LinkedHashMap is an ordered version of HashMap (insertion order), but I don't know it values() will return an ordered Collection. I think the best is to try.
Generally they is no guarantee of order when you are using HashMap. It might be in the order in which you add elements for a few elements but it would get reshuffled when there is a possibility of collision and it has to go with a collision resolution strategy.
I am using a linkedHashMap to guarantee order when someone tries to access it. However, when it comes time to iterate over it, does using entrySet() to return key/value pairs guarantee order as well? No changes will be made while iterating.
EDIT: Also, are there any adverse effects from iterating through the map by iterating through its keys and calling get?
According to the Javadocs, yes.
This implementation differs from HashMap in that it maintains a doubly-linked list running through all of its entries. This linked list defines the iteration ordering, which is normally the order in which keys were inserted into the map (insertion-order).
As for the edit, no, it should work just fine. But the entry set is somewhat faster since it avoids the overhead of looking up every key in the map during iteration.
If you're sure no changes will be made during the iteration, then proper ordering with entrySet() is guaranteed, as stated in the API.
This linked list defines the iteration ordering, which is normally the order in which keys were inserted into the map (insertion-order). Note that insertion order is not affected if a key is re-inserted into the map. (A key k is reinserted into a map m if m.put(k, v) is invoked when m.containsKey(k) would return true immediately prior to the invocation.)