android java memory management - java

how are static method calls handled by the JVM? does it still allocate memory when a call is made? if yes, how does garbage collection treat this allocation after the method call?

What do you mean by allocate memory? Does it add a stack frame? yes of course, to run the method and allocate local variable storage. Static methods are no different. In fact they're identical except instance methods are invisibly passed this in the method call, behind the scenes.
Any objects that were allocated in the method, and are no longer reachable after the method terminates (perhaps because they were only referred to by a local reference, local to the method) become eligible for GC immediately. There are no guarantees as to when the GC will run though.
But again that's no different for static methods than for any other.

Related

How does Java GC call finalize() method?

As far as I understand, GC starts with some set of initial objects (stack, static objects) and recursively traverses it building a graph of reachable objects. Then it marks the memory taken by these objects as occupied and assumes all the rest of the memory free.
But what if this 'free' memory contains an object with finalize method? GC has to call it, but I don't see how it can even know about objects that aren't reachable anymore.
I suppose GC can keep track of all 'finalizable' objects while they are alive. If so, does having finalizable objects make garbage collecting more expensive even when they are still alive?
Consider the Reference API.
It offers some references with special semantics to the GC, i.e Weak, Soft, and Phantom references. There’s simply another non-public type of special reference, for objects needing finalization.
Now, when the garbage collector traverses the object graph and encounters such a special reference object, it will not mark objects reachable through this reference as strongly reachable, but reachable with the special semantics. So if an object is only finalizer-reachable, the reference will be enqueued, so that one (or one of the) finalizer thread(s) can poll the queue and execute the finalize() method (it’s not the garbage collector itself calling this method).
In other words, the garbage collector never processes entirely unreachable objects here. To apply a special semantic to the reachability, the reference object must be reachable, so the referent can be reached through that reference. In case of finalizer-reachability, Finalizer.register is called when an object is created and it creates an instance of Finalizer in turn, a subclass of FinalReference, and right in its constructor, it calls an add() method which will insert the reference into a global linked list. So all these FinalReference instances are reachable through that list until an actual finalization happens.
Since this FinalReference will be created right on the instantiation of the object, if its class declares a non-trivial finalize() method, there is already some overhead due to having a finalization requirement, even if the object has not collected yet.
The other issue is that an object processed by a finalizer thread is reachable by that thread and might even escape, depending on what the finalize() method does. But the next time, this object becomes unreachable, the special reference object does not exist anymore, so it can be treated like any other unreachable object.
This would only be a performance issue, if memory is very low and the next garbage collection had to be performed earlier to eventually reclaim that object. But this doesn’t happen in the reference implementation (aka “HotSpot” or “OpenJDK”). In fact, there could be an OutOfMemoryError while objects are pending in the finalizer queue, whose processing could make more memory reclaimable. There is no guaranty that finalization runs fast enough for you’re purposes. That’s why you should not rely on it.
But what if this 'free' memory contains an object with finalize
method? GC has to call it, but I don't see how it can even know about
objects that aren't reachable anymore.
Let's say we use CMS garbage collector. After it successfully marked all live objects in a first phase, it will then scan memory again and remove all dead objects. GC thread does not call finalize method directly for these objects.
During creation, they are wrapped and added to finalizer queue by JVM (see java.lang.ref.Finalizer.register(Object)). This queue is processed in another thread (java.lang.ref.Finalizer.FinalizerThread), finalize method will be called when there are no references to the object. More details are covered in this blog post.
If so, does having finalizable objects make garbage collecting more
expensive even when they are still alive?
As you can now see, most of the time it does not.
The finalise method is called when an object is about to get garbage collected. That means, when GC determines that the object is no longer being referenced, it can call the finalise method on it. It doesn't have to keep track of objects to be finalised.
According to javadoc, finalize
Called by the garbage collector on an object when garbage collection determines that there are no more references to the object.
So the decision is based on reference counter or something like that.
Actually it is possible not to have this method called at all. So it may be not a good idea to use it as destructor.

Garbage Created By Object that is Never Referenced

Is any garbage created by an object that is never referenced?
The example I am thinking of is using a static factory method to create an object then having that object perform a function but never creating a reference to it.
For Example:
LoggerFactory.getLogger(Foo.class).info("logging some stuff");
Does this just create an unreferenced object in eden space that will be garbage collected as soon as the next collection happens?
getLogger returns an instance - whether it creates a new one or returns a previously cached one is up to the LoggerFactory's implementation. If this object is no longer referenced from inside the factory in some way, it would be eligible for garbage collection.
Provided that getLogger() doesn't store the created Logger somewhere (which is quite possible), then yes. The garbage collector is very good at disposing short lived objects, so it should get GCd quite quickly.
Of course nobody would write that specific logging line, since it makes no sense.
Java GC works by periodically analyzing which objects are reachable via a chain of references. That does not depend on whether those objects ever were reachable in the first place.
Your question suggests that you think GC may watch for references to be reclaimed to determine which objects to collect. Although GC is not forbidden from doing so, it cannot rely exclusively on such a strategy, and I am unaware of any existing Java GC implementation employing it.
Does this just create an unreferenced object in eden space that will be garbage collected as soon as the next collection happens?
Maybe, maybe not. The Logger instance is referenced as this inside info()
E.g. if info() then creates an anonymous inner class or a this-capturing lambda and puts it on a task queue then the Logger instance may live longer than the line of code in your question.
In most scenarios it is likely still be very short-lived. But you cannot know that for certain from the single line of code.
On the other end of the spectrum the object may never be allocated on the heap in the first place, i.e. not even in eden space, due to Escape Analysis

How Java manages variables in memory

Let's say I have this code:
{
int var = 2;
// more code
}
What happens with 'var' after the code is executed and it is not used anymore? Is it deleted from memory or it stays there occupying memory, or something else?
Related to this, is it better to work with variables that way^, or to make some global variable and just change it's value?
Local variables live on the stack. If it's a reference to an object then only variable is on the stack.
Instance variables live on the heap because they belong to an object.
Also this post (Stack and heap memory in java) might be helpful.
To make a long story short, in java (and other JVM languages), you don't have to care about memory allocation and dealocation at all. You really shouldn't be worrying about it. Once you lose the reference to that variable (in this case, when the method call ends), the variable is effectively gone. Some indefinite amount of time after that, the Garbage collecting thread will notice that you can't possibly access that variable anymore, and free up the memory it was using.
See: Garbage Collection in Java.
if you are defining any variable as instance variable then that variable will be used by instance. and instance will be saved in Heap memory area.
Garbage collector will run periodically to clean non referenced object from memory.
but if that variable is defined inside any block or method then that will be stored Stack memory.
Java Stack memory is used for execution of a thread. They contain method specific values that are short-lived and references to other objects in the heap that are getting referred from the method. Stack memory is always referenced in LIFO (Last-In-First-Out) order. Whenever a method is invoked, a new block is created in the stack memory for the method to hold local primitive values and reference to other objects in the method. As soon as method ends, the block becomes unused and become available for next method.
Everything in Java is removed from memory when it is no longer referenced. It takes a lot of effort to cause true memory leaks in Java.
Java primitives like int, boolean, and char are put on the stack and removed from memory as soon as they leave scope. Java objects like String, arrays, or ArrayList are allocated on the heap (and referenced by the local variable on the stack). Objects are garbage collected (removed from memory) when there is no longer a reference to them.Static variables belong to a class and will be a reference an object as long as the class is loaded, which is usually the entire run time of the Java program. Statics are the closest thing Java has to global variables, but overuse or misuse of statics is actually a way to cause memory issues rather than solve them.

Does the object which is the entry point of a Java program get garbage collected?

If I have a class Sample and I have an instance method, instanceMethod in it.
The class has a main method where I create an object of Sample itself and call it's instanceMethod without using a reference variable.
like this:
new Sample().instanceMethod();
inside the main.
Since this object has NO reference, will the garbage collector collect it ?
In Java1, I don't believe the object can be collected while instanceMethod() is being executed. In the main method's stack frame there is a reference to the object, at least logically (the JIT compiler may elide it). The fact that you're not assigning it to a variable doesn't affect the bytecode very much.
Of course when instanceMethod() completes, the object may be eligible for garbage collection - but it may not. For example, instanceMethod() may store a reference to this in a static variable.
Basically it's not worth getting hung up over intricate corner cases - just rely on the GC collecting objects which can't be reached any more in any way, but not collecting objects which may still be in use.
1 In .NET an object can still be garbage collected while an instance method is executing "in" the object, if the JIT compiler can prove that none of its variables will be read again. It's very confusing, and can cause very subtle bugs.

Can using too many static variables cause a memory leak in Java?

If my application has too many static variables or methods, then as per definition they will be stored in heap. Please correct me if I am wrong
1) Will these variables be on heap until application is closed?
2) Will they be available for GC at any time? If not can I say it is a memory leak?
Static methods are just methods, they are not stored on the heap, they just don't get to use a "this" parameter.
Static variables serve as "roots" to the GC. As a result, unless you explicitly set them to null, they will live as long as the program lives, and so is everything reachable from them.
A situation is only considered a memory leak if you intend for the memory to become free and it doesn't become free. If you intend for your static variable to contain a reference to an object for part of the time, and you forget to set it to null when you're done with that object, you would likely end up with a leak. However, if you put it in the static variable and intend for it to be there for as long as the program is running, then it is most definitely not a leak, it is more likely a "permanent singleton". If the object got reclaimed while you wanted it to still exist, that would have been very bad.
As for your question about the heap: All objects in Java exist either on the heap or on the stack. Objects are created on the heap with the new operator. A reference is then attached to them. If the reference becomes null or falls out of scope (e.g., end of block), the GC realizes that there is no way to reach that object ever again and reclaims it. If your reference is in a static variable, it never falls out of scope but you can still set it to null or to another object.
If you have a static hashmap and you add data to it... the data will never disappear and you have a leak - in case you do not need the data anymore. If you need the data, it is not a leak, but a huge pile of memory hanging around.
Objects directly or indirectly referenced by statics will remain on the heap until the appropriate class loader can be collected. There are cases (ThreadLocal, for instance) where other objects indirectly reference the class loader causing it to remain uncollected.
If you have a static List, say, and add references to it dynamically, then you can very easily end up with "object lifetime contention issues". Avoid mutable statics for many reasons.
As long as you can reference these variables from somewhere in the code it can't by GCed which means that they will be there until the end of the application.
Can you call it a memory leak, I wouldn't call it a memory leak, usually a memory leak is memory that you normally expect to recover but you never do, or you only recover part of it. Also memory leaks usually get worse in time (eg: every time you call a method more memory is "leaked") however in this case the memory usage for those variables is (kind of) static.
It won't cause a memory leak in the classic C sense... For example
Class A{
static B foo;
...
static void makeFoo(){
foo = new B();
foo = new B();
}
In this case, a call to makeFoo() won't result in a memory leak, as the first instance can be garbage collected.

Categories