In regards to for(), why use i++ rather than ++i? - java

Perhaps it doesn't matter to the compiler once it optimizes, but in C/C++, I see most people make a for loop in the form of:
for (i = 0; i < arr.length; i++)
where the incrementing is done with the post fix ++. I get the difference between the two forms. i++ returns the current value of i, but then adds 1 to i on the quiet. ++i first adds 1 to i, and returns the new value (being 1 more than i was).
I would think that i++ takes a little more work, since a previous value needs to be stored in addition to a next value: Push *(&i) to stack (or load to register); increment *(&i). Versus ++i: Increment *(&i); then use *(&i) as needed.
(I get that the "Increment *(&i)" operation may involve a register load, depending on CPU design. In which case, i++ would need either another register or a stack push.)
Anyway, at what point, and why, did i++ become more fashionable?
I'm inclined to believe azheglov: It's a pedagogic thing, and since most of us do C/C++ on a Window or *nix system where the compilers are of high quality, nobody gets hurt.
If you're using a low quality compiler or an interpreted environment, you may need to be sensitive to this. Certainly, if you're doing advanced C++ or device driver or embedded work, hopefully you're well seasoned enough for this to be not a big deal at all. (Do dogs have Buddah-nature? Who really needs to know?)

It doesn't matter which you use. On some extremely obsolete machines, and in certain instances with C++, ++i is more efficient, but modern compilers don't store the result if it's not stored. As to when it became popular to postincriment in for loops, my copy of K&R 2nd edition uses i++ on page 65 (the first for loop I found while flipping through.)

For some reason, i++ became more idiomatic in C, even though it creates a needless copy. (I thought that was through K&R, but I see this debated in other answers.) But I don't think there's a performance difference in C, where it's only used on built-ins, for which the compiler can optimize away the copy operation.
It does make a difference in C++, however, where i might be a user-defined type for which operator++() is overloaded. The compiler might not be able to assert that the copy operation has no visible side-effects and might thus not be able to eliminate it.

As for the reason why, here is what K&R had to say on the subject:
Brian Kernighan
you'll have to ask dennis (and it might be in the HOPL paper). i have a
dim memory that it was related to the post-increment operation in the
pdp-11, though beyond that i don't know, so don't quote me.
in c++ the preferred style for iterators is actually ++i for some subtle
implementation reason.
Dennis Ritchie
No particular reason, it just became fashionable. The code produced
is identical on the PDP-11, just an inc instruction, no autoincrement.
HOPL Paper
Thompson went a step further by inventing the ++ and -- operators, which increment or decrement; their prefix or postfix position determines whether the alteration occurs before or after noting the value of the operand. They were not in the earliest versions of B, but appeared along the way. People often guess that they were created to use the auto-increment and auto-decrement address modes provided by the DEC PDP-11 on which C and Unix first became popular. This is historically impossible, since there was no PDP-11 when B was developed. The PDP-7, however, did have a few ‘auto-increment’ memory cells, with the property that an indirect memory reference through them incremented the cell. This feature probably suggested such operators to Thompson; the generalization to make them both prefix and postfix was his own. Indeed, the auto-increment cells were not used directly in implementation of the operators, and a stronger
motivation for the innovation was probably his observation that the translation of ++x was smaller than that of x=x+1.

For integer types the two forms should be equivalent when you don't use the value of the expression. This is no longer true in the C++ world with more complicated types, but is preserved in the language name.
I suspect that "i++" became more popular in the early days because that's the style used in the original K&R "The C Programming Language" book. You'd have to ask them why they chose that variant.

Because as soon as you start using "++i" people will be confused and curios. They will halt there everyday work and start googling for explanations. 12 minutes later they will enter stack overflow and create a question like this. And voila, your employer just spent yet another $10

Going a little further back than K&R, I looked at its predecessor: Kernighan's C tutorial (~1975). Here the first few while examples use ++n. But each and every for loop uses i++. So to answer your question: Almost right from the beginning i++ became more fashionable.

My theory (why i++ is more fashionable) is that when people learn C (or C++) they eventually learn to code iterations like this:
while( *p++ ) {
...
}
Note that the post-fix form is important here (using the infix form would create a one-off type of bug).
When the time comes to write a for loop where ++i or i++ doesn't really matter, it may feel more natural to use the postfix form.
ADDED: What I wrote above applies to primitive types, really. When coding something with primitive types, you tend to do things quickly and do what comes naturally. That's the important caveat that I need to attach to my theory.
If ++ is an overloaded operator on a C++ class (the possibility Rich K. suggested in the comments) then of course you need to code loops involving such classes with extreme care as opposed to doing simple things that come naturally.

At some level it's idiomatic C code. It's just the way things are usually done. If that's your big performance bottleneck you're likely working on a unique problem.
However, looking at my K&R The C Programming Language, 1st edition, the first instance I find of i in a loop (pp 38) does use ++i rather than i++.

Im my opinion it became more fashionable with the creation of C++ as C++ enables you to call ++ on non-trivial objects.
Ok, I elaborate: If you call i++ and i is a non-trivial object, then storing a copy containing the value of i before the increment will be more expensive than for say a pointer or an integer.

I think my predecessors are right regarding the side effects of choosing postincrement over preincrement.
For it's fashonability, it may be as simple as that you start all three expressions within the for statement the same repetitive way, something the human brain seems to lean towards to.

I would add up to what other people told you that the main rule is: be consistent. Pick one, and do not use the other one unless it is a specific case.

If the loop is too long, you need to reload the value in the cache to increment it before the jump to the begining.
What you don't need with ++i, no cache move.

In C, all operators that result in a variable having a new value besides prefix inc/dec modify the left hand variable (i=2, i+=5, etc). So in situations where ++i and i++ can be interchanged, many people are more comfortable with i++ because the operator is on the right hand side, modifying the left hand variable
Please tell me if that first sentence is incorrect, I'm not an expert with C.

Related

Java string concatenation optimisation is applied in this case?

Let's imagine I have a lib which contains the following simple method:
private static final String CONSTANT = "Constant";
public static String concatStringWithCondition(String condition) {
return "Some phrase" + condition + CONSTANT;
}
What if someone wants to use my method in a loop? As I understand, that string optimisation (where + gets replaced with StringBuilder or whatever is more optimal) is not working for that case? Or this is valid for strings initialised outside of the loop?
I'm using java 11 (Dropwizard).
Thanks.
No, this is fine.
The only case that string concatenation can be problematic is when you're using a loop to build one single string. Your method by itself is fine. Callers of your method can, of course, mess things up, but not in a way that's related to your method.
The code as written should be as efficient as making a StringBuilder and appending these 3 constants to it. There certainly is absolutely no difference at all between a literal ("Some phrase"), and an expression that the compiler can treat as a Compile Time Constant (which CONSTANT, here, clearly is - given that CONSTANT is static, final, not null, and of a CTCable type (All primitives and strings)).
However, is that 'efficient'? I doubt it - making a stringbuilder is not particularly cheap either. It's orders of magnitude cheaper than continually making new strings, sure, but there's always a bigger fish:
It doesn't matter
Computers are fast. Really, really fast. It is highly likely that you can write this incredibly badly (performance wise) and it still won't be measurable. You won't even notice. Less than a millisecond slower.
In general, anybody that worries about performance at this level simply lacks perspective and knowledge: If you apply that level of fretting to your java code and you have the knowledge to know what could in theory be non-perfectly-performant, you'll be sweating every 3rd character you ever type. That's no way to program. So, gain that perspective (or take it from me, "just git gud" is not exactly something you can do in a week - take it on faith for now, as you learn you can start verifying) - and don't worry about it. Unless you actually run into an actual situation where the code is slower than it feels like it could be, or slower than it needs to be, and then toss profilers and microbenchmark testing frameworks at it, and THEN, armed with all that information (and not before!), consider optimizing. The reports tell you what to optimize, because literally less than 1% of the code is responsible for 99% of the performance loss, so spending any time on code that isn't in that 1% is an utter waste of time, hence why you must get those reports first, or not start at all.
... or perhaps it does
But if it does matter, and it's really that 1% of the code that is responsible for 99% of the loss, then usually you need to go a little further than just 'optimize the method'. Optimize the entire pipeline.
What is happening with this string? Take that into consideration.
For example, let's say that it, itself, is being appended to a much bigger stringbuilder. In which case, making a tiny stringbuilder here is incredibly inefficient compared to rewriting the method to:
public static void concatStringWithCondition(StringBuilder sb, String condition) {
sb.append("Some phrase").append(condition).append(CONSTANT);
}
Or, perhaps this data is being turned into bytes using UTF_8 and then tossed onto a web socket. In that case:
private static final byte[] PREFIX = "Some phrase".getBytes(StandardCharsets.UTF_8);
private static final byte[] SUFFIX = "Some Constant".getBytes(StandardCharsets.UTF_8);
public void concatStringWithCondition(OutputStream out, String condition) {
out.write(PREFIX);
out.write(condition.getBytes(StandardCharsets.UTF_8));
out.write(SUFFIX);
}
and check if that outputstream is buffered. If not, make it buffered, that'll help a ton and would completely dwarf the cost of not using string concatenation. If the 'condition' string can get quite large, the above is no good either, you want a CharsetEncoder that encodes straight to the OutputStream, and may even want to replace all that with some ByteBuffer based approach.
Conclusion
Assume performance is never relevant until it is.
IF performance truly must be tackled, strap in, it'll take ages to do it right. Doing it 'wrong' (applying dumb rules of thumb that do not work) isn't useful. Either do it right, or don't do it.
IF you're still on bard, always start with profiler reports and use JMH to gather information.
Be prepared to rewrite the pipeline - change the method signatures, in order to optimize.
That means that micro-optimizing, which usually sacrifices nice abstracted APIs, is actively bad for performance - because changing pipelines is considerably more difficult if all code is micro-optimized, given that this usually comes at the cost of abstraction.
And now the circle is complete: Point 5 shows why the worrying about performance as you are doing in this question is in fact detrimental: It is far too likely that this worry results in you 'optimizing' some code in a way that doesn't actually run faster (because the JVM is a complex beast), and even if it did, it is irrelevant because the code path this code is on is literally only 0.01% or less of the total runtime expenditure, and in the mean time you've made your APIs worse and lack abstraction which would make any actually useful optimization much harder than it needs to be.
But I really want rules of thumb!
Allright, fine. Here are 2 easy rules of thumb to follow that will lead to better performance:
When in rome...
The JVM is an optimising marvel and will run the craziest code quite quickly anyway. However, it does this primarily by being a giant pattern matching machine: It finds recognizable code snippets and rewrites these to the fastest, most carefully tuned to juuust your combination of hardware machine code it can. However, this pattern machine isn't voodoo magic: It's got limited patterns. Which patterns do JVM makers 'ship' with their JVMs? Why, the common patterns, of course. Why include a pattern for exotic code virtually nobody ever writes? Waste of space.
So, write code the way java programmers tend to write it. Which very much means: Do not write crazy code just because you think it might be faster. It'll likely be slower. Just follow the crowd.
Trivial example:
Which one is faster:
List<String> list = new ArrayList<String>();
for (int i = 0; i < 10000; i++) list.add(someRandomName());
// option 1:
String[] arr = list.toArray(new String[list.size()]);
// option 2:
String[] arr = list.toArray(new String[0]);
You might think, obviously, option 1, right? Option 2 'wastes' a string array, making a 0-length array just to toss it in the garbage right after. But you'd be wrong: Option 2 is in fact faster (if you want an explanation: The JVM recognizes it, and does a hacky move: It makes an new string array that does not need to be initialized with all zeroes first. Normal java code cannot do this (arrays are neccessarily initialized blank, to prevent memory corruption issues), but specifically .toArray(new X[0])? Those pattern matching machines I told you about detect this and replace it with code that just blits the refs straight into a patch of memory without wasting time writing zeroes to it first.
It's a subtle difference that is highly unlikely to matter - it just highlights: Your instincts? They will mislead you every time.
Fortunately, .toArray(new X[0]) is common java code. And easier and shorter. So just write nice, convenient code that looks like how other folks write and you'd have gotten the right answer here. Without having to know such crazy esoterics as having to reason out how the JVM needs to waste time zeroing out that array and how hotspot / pattern matching might possibly eliminate this, thus making it faster. That's just one of 5 million things you'd have to know - and nobody can do that. Thus: Just write java code in simple, common styles.
Algorithmic complexity is a thing hotspot can't fix for you
Given an O(n^3) algorithm fighting an O(log(n) * n^2) algorithm, make n large enough and the second algorithm has to win, that's what big O notation means. The JVM can do a lot of magic but it can pretty much never optimize an algorithm into a faster 'class' of algorithmic complexity. You might be surprised at the size n has to be before algorithmic complexity dominates, but it is acceptable to realize that your algorithm can be fundamentally faster and do the work on rewriting it to this more efficient algorithm even without profiler reports and benchmark harnesses and the like.

Why does Java use -> instead of => for lambda functions?

I am a .NET and JavaScript developer. Now I am working in Java, too.
In .NET LINQ and JavaScript arrow functions we have =>.
I know Java lambdas are not the same, but they are very similar. Are there any reasons (technical or non technical) that made java choose -> instead of =>?
On September 8, 2011, Brian Goetz of Oracle announced to the OpenJDK mailing list that the syntax for lambdas in Java had been mostly decided, but some of the "fine points" like which type of arrow to use were still up in the air:
This just in: the EG has (mostly) made a decision on syntax.
After considering a number of alternatives, we decided to essentially
adopt the C# syntax. We may still deliberate further on the fine points
(e.g., thin arrow vs fat arrow, special nilary form, etc), and have not
yet come to a decision on method reference syntax.
On September 27, 2011, Brian posted another update, announcing that the -> arrow would be used, in preference to C#'s (and the Java prototype's) usage of =>:
Update on syntax: the EG has chosen to stick with the -> form of the
arrow that the prototype currently uses, rather than adopt the =>.
He goes on to provide some description of the rationale considered by the committee:
You could think of this in two ways (I'm sure I'll hear both):
This is much better, as it avoids some really bad interactions with existing operators, such as:
x => x.age <= 0; // duelling arrows
or
Predicate p = x => x.size == 0; // duelling equals
What a bunch of idiots we are, in that we claimed the goal of doing what other languages did, and then made gratuitous changes "just for the sake of doing something different".
Obviously we don't think we're idiots, but everyone can have an opinion :)
In the end, this was viewed as a small tweak to avoid some undesirable
interactions, while preserving the overall goal of "mostly looks like
what lambdas look like in other similar languages."
Howard Lovatt replied in approval of the decision to prefer ->, writing that he "ha[s] had trouble reading Scala code". Paul Benedict of Apache concurred:
I am glad too. Being consistent with other languages is a laudable goal, but
since programming languages aren't identical, the needs for Java can lead to
a different conclusion. The fat arrow syntax does look odd; I admit it. So
in terms of vanity, I am glad to see that punted. The equals character is
just too strongly associated with assignment and equality.
Paigan Jadoth chimed in, too:
I find the "->" much better than "=>". If arrowlings at all instead of the
more regular "#(){...}" pattern, then something definitely distinct from the
gte/lte tokens is clearly better. And "because the others do that" has never
been a good argument, anyway :D.
In summary, then, after considering arguments on both sides, the committee felt that consistency with other languages (=> is used in Scala and C#) was less compelling than clear differentiation from the equality operators, which made -> win out.
But Lieven Lemiengre was skeptical:
Other languages (such as Scala or Groovy) don't have this problem because
they support some placeholder syntax.
In reality you don't write "x => x.age <= 0;"
But this is very common "someList.partition(x => x.age <= 18)" and I agree
this looks bad. Other languages make this clearer using placeholder syntax
"someList.partition(_.age <= 18)" or "someList.partition(it.age <= 18)"
I hope you are considering something like this, these little closures will
be used a lot!
(And I don't think replacing '=>' with '->' will help a lot)
Other than Lieven, I didn't see anyone who criticized the choice of -> and defended => replying on that mailing list. Of course, as Brian predicted, there were almost certainly opinions on both sides, but ultimately, a choice just has to be made in these types of matters, and the committee made the one they did for the stated reasons.

What would be the best way to build a Big-O runtime complexity analyzer for pseudocode in a text file?

I am trying to create a class that takes in a string input containing pseudocode and computes its' worst case runtime complexity. I will be using regex to split each line and analyze the worst-case and add up the complexities (based on the big-O rules) for each line to give a final worst-case runtime. The pseudocode written will follow a few rules for declaration, initilization, operations on data structures. This is something I can control. How should I go about designing a class considering the rules of iterative and recursive analysis?
Any help in C++ or Java is appreciated. Thanks in advance.
class PseudocodeAnalyzer
{
public:
string inputCode;
string performIterativeAnalysis(string line);
string performRecursiveAnalysis(string line);
string analyzeTotalComplexity(string inputCode);
}
An example for iterative algorithm: Check if number in a grid is Odd:
1. Array A = Array[N][N]
2. for i in 1 to N
3. for j in 1 to N
4. if A[i][j] % 2 == 0
5. return false
6. endif
7. endloop
8. endloop
Worst-case Time-Complexity: O(n*n)
The concept: "I wish to write a program that analyses pseudocode in order to print out the algorithmic complexity of the algorithm it describes" is mathematically impossible!
Let me try to explain why that is, or how you get around the inevitability that you cannot write this.
Your pseudocode has certain capabilities. You call it pseudocode, but given that you are now trying to parse it, it's still a 'real' language where terms have real meaning. This language is capable of expressing algorithms.
So, which algorithms can it express? Presumably, 'all of them'. There is this concept called a 'turing machine': You can prove that anything a computer can do, a turing machine can also do. And turing machines are very simple things. Therefore, if you have some simplistic computer and you can use that computer to emulate a turing machine, you can therefore use it to emulate a complete computer. This is how, in fundamental informatics, you can prove that a certain CPU or system is capable of computing all the stuff some other CPU or system is capable of computing: Use it to compute a turing machine, thus proving you can run it all. Any system that can be used to emulate a turing machine is called 'turing complete'.
Then we get to something very interesting: If your pseudocode can be used to express anything a real computer can do, then your pseudocode can be used to 'write'... your very pseudocode checker!
So let's say we do just that and stick the pseudocode that describes your pseudocode checker in a function we shall call pseudocodechecker. It takes as argument a string containing some pseudocode, and returns a string such as O(n^2).
You can then write this program in pseudocode:
1. if pseudocodechecker(this-very-program) == O(n^2)
2. If True runSomeAlgorithmThatIsO(1)
3. If False runSomeAlgorithmTahtIsO(n^2)
And this is self-defeating: We have 'programmed' a paradox. It's like "This statement is a lie", or "the set of all sets that do not contain themselves". If it's false it is true and if it is true it false. [Insert GIF of exploding computer here].
Thus, we have mathematically proved that what you want is impossible, unless one of the following is true:
A. Your pseudocode-based checker is incorrect. As in, it will flat out give a wrong answer sometimes, thus solving the paradox: If you feed your program a paradox, it gives a wrong answer. But how useful is such an app? An app where you know the answer it gives may be incorrect?
B. Your pseudocode-based checker is incomplete: The official definition of your pseudocode language is so incapable, you cannot even write a turing machine in it.
That last one seems like a nice solution; but it is quite drastic. It pretty much means that your algorithm can only loop over constant ranges. It cannot loop until a condition is true, for example. Another nice solution appears to be: The program is capable of realizing that an answer cannot be given, and will then report 'no answer available', but unfortunately, with some more work, you can show that you can still use such a system to develop a paradox.
The answer by #rzwitserloot and the ones given in the link are correct. Let me just add that it is possible to compute an approximation both to the halting problem as well as to finding the time complexity of a piece of code (written in a Turing-complete language!). (Compare that to the existence of automated theorem provers for arithmetic and other second order logics, which are undecidable!) A tool that under-approximated the complexity problem would output the correct time complexity for some inputs, and "don't know" for other inputs.
Indeed, the whole wide field of code analyzers, often built into the IDEs that we use every day, more often than not under-approximate decision problems that are uncomputable, e.g. reachability, nullability or value analyses.
If you really want to write such a tool: the basic idea is to identify heuristics, i.e., common patterns for which a solution is known, such as various patterns of nested for-loops with only very basic arithmetic operations manipulating the indices, or simple recursive functions where the recurrence relation can be spotted straight-away. It would actually be not too hard (though definitely not easy!) to write a tool that could solve most of the toy problems (such as the one you posted) that are given as homework to students, and that are often posted as questions here on SO, since they follow a rather small number of patterns.
If you wish to go beyond simple heuristics, the main theoretical concept underlying more powerful code analyzers is abstract interpretation. Applied to your use case, this would mean developing a mapping between code constructs in your language to code constructs in a different language (or simpler code constructs in the same language) for which it is easier to compute the time complexity. This mapping would have to conform to some constraints, in particular, the mapped constructs have have the same or worse time complexity as the original code. Actually, mapping a piece of code to a recurrence relation would be an example of abstract interpretation. So is replacing a line of code with something like "O(1)". So, the task is just to formalize some of the things that we do in our heads anyway when we are analyzing the time complexity of code.

Error that is neither syntactic nor semantic?

I had this question on a homework assignment (don't worry, already done):
[Using your favorite imperative language, give an example of
each of ...] An error that the compiler can neither catch nor easily generate code to
catch (this should be a violation of the language definition, not just a
program bug)
From "Programming Language Pragmatics" (3rd ed) Michael L. Scott
My answer, call main from main by passing in the same arguments (in C and Java), inspired by this. But I personally felt like that would just be a semantic error.
To me this question's asking how to producing an error that is neither syntactic nor semantic, and frankly, I can't really think of situation where it wouldn't fall in either.
Would it be code that is susceptible to exploitation, like buffer overflows (and maybe other exploitation I've never heard about)? Some sort of pit fall from the structure of the language (IDK, but lazy evaluation/weak type checking)? I'd like a simple example in Java/C++/C, but other examples are welcome.
Undefined behaviour springs to mind. A statement invoking UB is neither syntactically nor semantically incorrect, but rather the result of the code cannot be predicted and is considered erroneous.
An example of this would be (from the Wikipedia page) an attempt to modify a string-constant:
char * str = "Hello world!";
str[0] = 'h'; // undefined-behaviour here
Not all UB-statements are so easily identified though. Consider for example the possibility of signed-integer overflow in this case, if the user enters a number that is too big:
// get number from user
char input[100];
fgets(input, sizeof input, stdin);
int number = strtol(input, NULL, 10);
// print its square: possible integer-overflow if number * number > INT_MAX
printf("%i^2 = %i\n", number, number * number);
Here there may not necessarily be signed-integer overflow. And it is impossible to detect it at compile- or link-time since it involves user-input.
Statements invoking undefined behavior1 are semantically as well as syntactically correct but make programs behave erratically.
a[i++] = i; // Syntax (symbolic representation) and semantic (meaning) both are correct. But invokes UB.
Another example is using a pointer without initializing it.
Logical errors are also neither semantic nor syntactic.
1. Undefined behavior: Anything at all can happen; the Standard imposes no requirements. The program may fail to compile, or it may execute incorrectly (either crashing or silently generating incorrect results), or it may fortuitously do exactly what the programmer intended.
Here's an example for C++. Suppose we have a function:
int incsum(int &a, int &b) {
return ++a + ++b;
}
Then the following code has undefined behavior because it modifies an object twice with no intervening sequence point:
int i = 0;
incsum(i, i);
If the call to incsum is in a different TU from the definition of the function, then it's impossible to catch the error at compile time, because neither bit of code is inherently wrong on its own. It could be detected at link time by a sufficiently intelligent linker.
You can generate as many examples as you like of this kind, where code in one TU has behavior that's conditionally undefined for certain input values passed by another TU. I went for one that's slightly obscure, you could just as easily use an invalid pointer dereference or a signed integer arithmetic overflow.
You can argue how easy it is to generate code to catch this -- I wouldn't say it's very easy, but a compiler could notice that ++a + ++b is invalid if a and b alias the same object, and add the equivalent of assert (&a != &b); at that line. So detection code can be generated by local analysis.

Using a "pseudo operator" to distinguish simple repetition from general for loops

I would like to know other people's opinion on the following style of writing a for loop:
for (int rep = numberOfReps; rep --> 0 ;) {
// do something that you simply want to repeat numberOfReps times
}
The reason why I invented this style is to distinguish it from the more general case of for loops. I only use this when I need to simply repeat something numberOfReps times and the body of the loop does not use the values of rep and numberofReps in any way.
As far as I know, standard Java for example doesn't have a simple way of saying "just repeat this N times", and that's why I came up with this. I'd even go as far as saying that the body of the loop must not continue or break, unless explicitly documented at the top of the for loop, because as I said the whole purpose is to make the code easier to understand by coming up with a distinct style to express simple repetitions.
The idea is that if what you're doing is not simple (dependency on value of an inreasing/decreasing index, breaks, continues, etc), then use the standard for loop. If what you are doing is simple repetition, on the other hand, then this distinct style communicates that "fact" (once you know the purpose of the style, of course).
I said "fact" because the style can be abused, of course. I'm operating under the assumption that you have competent programmers whose objective is to make their code easier to understand, not harder.
A comment was made that allude to the principle that for should only be used for simple iteration, and while should be used otherwise (e.g. if the loop variables are modified in the body).
If that's the case, then I'm merely extending that principle to say that if it's even simpler than your simple for loops (i.e. you don't even care about the iteration index, or whether it's increasing or decreasing, etc, you just want to repeat doing something N times), then use the winking arrow for loop construct instead.
What a coincidence, Josh Bloch just tweeted the following:
Goes-to Considered Harmful:
public static void main(String[] a) {
int i = 10;
while (i --> 0) /* i goes-to 0 */ {
System.out.println(i);
}
}
Unfortunately no explanation was given, but it seems that at least this pseudo operator has a name. It has also been discussed before on SO: What is the name of this operator: “-->”?
You have the language-agnostic tag, but this question isn't really language agnostic. That pattern would be fine if there wasn't already a well established idiom for doing something n times in your language.
You go on to mention Java, whicha already has a well-established idiom for doing something n times:
for (int i = 0; i < numberOfReps; i++) {
// do something that you simply want to repeat numberOfReps times
}
While your pattern works just as well, it's confusing to others. When I first saw it my thoughts were:
What's that weird arrow?
Why is that line winking at me?
Unless you develop a pattern that has a significant advantage over the standard idiom, it's best to stick with the standard so your fellow coders don't end up scratching their heads.
Nearly every language these days has lambda, so you can write a function like
nTimes(n, body)
that takes an int and a lambda, and more directly communicate intent. In F#, for example
let nTimes(n,f) =
for i in 1..n do f()
nTimes(3, fun() -> printfn "Hello")
or if you prefer extension methods
type System.Int32 with
member this.Times(f) =
for i in 1..this do f()
(3).Times(fun() -> printfn "Hello")

Categories