I wrote a wrapper application in c# NET that runs when the .jar file is running, closes when the .jar file closes, etc. This was basically to allow for our web panel to be able to query the executable to find out if it was actually running or not.
I have seen some other panels specifically intended for this software that have an option to reduce the memory usage of it when no one is connected. The java application (Minecraft) basically scales the RAM usage based on the size of the player world rather than how many players are connected. When no one is connected, it should be perfectly fine to reduce the usage.
So is there any way to reduce the RAM usage programatically from C# NET for a Java application?
AFAIK, there is no way to tell a JVM to give regular heap memory back to the operating system ... apart from telling it exit completely.
No.
Why not? Because you can't control the Java-Program in that way for two reasons:
You can't control what the JRE does with it's memory and how the GC is working.
If minecraft.jar requests 512MiB of RAM, he gets 512MiB of RAM. You can't just go all Hey, there's no one connected so I disallow you to allocate memory on an application. I mean, you could...but I don't think you want that (that would trigger exceptions and odd side-effects).
Edit: The only rather easy way to achieve this behavior would be to change the program. Since Minecraft is not free/open-source software, the only thing you could do is file a bug/feature request. Maybe even with extended information and a layout concept on how to achieve better memory usage.
I mean, I'm pretty sure that this could also be achieved with heavy usage of reflection via a Java program...but things go pretty fast downhill from there.
Related
I am building a very complex software that will be used for production and will run on a server as a service.
I need to make this jar have set max RAM usage when running with some calculations made by my program, i have seen that there are ways for setting the memory before running the built program, but i would like to set how much memory the jar is going to use when i am running it, is this possible?
There are two issues here. As mentioned above, you can only request up to a specific amount of memory. Efficient garbage collection can help you reclaim memory that is no longer needed.
The second, and probably real, issue here is metering how much memory is actually used by the application. There are many frameworks (e.g., JMeter) for measuring how much memory is used - and this can be done with respect to the amount of data used. When doing NP-complete (or even just more than O(n) problems) this can be very useful from the users perspective ("This works well with up to 2 ||| objects")
I'm trying to find memory leaks and performance issues with my java application. Is there a program out there that can help me debug my application and display performance results?
Thanks.
Have a look at jvisualvm in the JDK - a subset of the Netbeans profiler - which can attach to a running Java 6 process and allow you to profile it and do memory analysis.
https://visualvm.dev.java.net/gettingstarted.html
I used a lot of tools to find why my program eats 100+ Mb of ram, polished the code to remove any possible memory leaks. Later I found that once jvm took some memory from the OS, I doesn't always return it, even if that memory is not used, which often looks like a memory leak. This depends on -Xmx and -XX:MaxHeapFreeRatio. I set Xmx to 40 which is roughly how much memory my app should use, and memory usage stays within 10-15 Mb of this range instead of increasing uncontrollably.
Also, jconsole is a great tool. It comes with jdk.
Eclipse has a good memory dump analyzer; but finding a memory leak can be very challenging and requires you to dive deeply into the way the objects are allocated by your application.
It took me 2 full days to figure out that one of my custom JTable cell editor classes was allocating a JDialog upon instantiation, without actually opening it, and the native part of the dialog kept the cell editor instance locked, thus the table, thus the screen and thus all entity objects that were associated with it.
You can try performance inspector tool.Following is the URL.
http://perfinsp.sourceforge.net/
Java Application performance is directly proportional to how JVM is running your application. This tool gives very good profiling information about JVM.But its not a graphical tool,you need to go through the text file generated. But its one time effort and you can get handy with this tool.I used it many time for performance related issues and it helped me lot.
We have an Java ERP type of application. Communication between server an client is via RMI. In peak hours there can be up to 250 users logged in and about 20 of them are working at the same time. This means that about 20 threads are live at any given time in peak hours.
The server can run for hours without any problems, but all of a sudden response times get higher and higher. Response times can be in minutes.
We are running on Windows 2008 R2 with Sun's JDK 1.6.0_16. We have been using perfmon and Process Explorer to see what is going on. The only thing that we find odd is that when server starts to work slow, the number of handles java.exe process has opened is around 3500. I'm not saying that this is the acual problem.
I'm just curious if there are some guidelines I should follow to be able to pinpoint the problem. What tools should I use? ....
Can you access to the log configuration of this application.
If you can, you should change the log level to "DEBUG". Tracing the DEBUG logs of a request could give you a usefull information about the contention point.
If you can't, profiler tools are can help you :
VisualVM (Free, and good product)
Eclipse TPTP (Free, but more complicated than VisualVM)
JProbe (not Free but very powerful. It is my favorite Java profiler, but it is expensive)
If the application has been developped with JMX control points, you can plug a JMX viewer to get informations...
If you want to stress the application to trigger the problem (if you want to verify whether it is a charge problem), you can use stress tools like JMeter
Sounds like the garbage collection cannot keep up and starts "halt-the-world" collecting for some reason.
Attach with jvisualvm in the JDK when starting and have a look at the collected data when the performance drops.
The problem you'r describing is quite typical but general as well. Causes can range from memory leaks, resource contention etcetera to bad GC policies and heap/PermGen-space allocation. To point out exact problems with your application, you need to profile it (I am aware of tools like Yourkit and JProfiler). If you profile your application wisely, only some application cycles would reveal the problems otherwise profiling isn't very easy itself.
In a similar situation, I have coded a simple profiling code myself. Basically I used a ThreadLocal that has a "StopWatch" (based on a LinkedHashMap) in it, and I then insert code like this into various points of the application: watch.time("OperationX");
then after the thread finishes a task, I'd call watch.logTime(); and the class would write a log that looks like this: [DEBUG] StopWatch time:Stuff=0, AnotherEvent=102, OperationX=150
After this I wrote a simple parser that generates CSV out from this log (per code path). The best thing you can do is to create a histogram (can be easily done using excel). Averages, medium and even mode can fool you.. I highly recommend to create a histogram.
Together with this histogram, you can create line graphs using average/medium/mode (which ever represents data best, you can determine this from the histogram).
This way, you can be 100% sure exactly what operation is taking time. If you can't determine the culprit, binary search is your friend (fine grain the events).
Might sound really primitive, but works. Also, if you make a library out of it, you can use it in any project. It's also cool because you can easily turn it on in production as well..
Aside from the GC that others have mentioned, Try taking thread dumps every 5-10 seconds for about 30 seconds during your slow down. There could be a case where DB calls, Web Service, or some other dependency becomes slow. If you take a look at the tread dumps you will be able to see threads which don't appear to move, and you could narrow your culprit that way.
From the GC stand point, do you monitor your CPU usage during these times? If the GC is running frequently you will see a jump in your overall CPU usage.
If only this was a Solaris box, prstat would be your friend.
For acute issues like this a quick jstack <pid> should quickly point out the problem area. Probably no need to get all fancy on it.
If I had to guess, I'd say Hotspot jumped in and tightly optimised some badly written code. Netbeans grinds to a halt where it uses a WeakHashMap with newly created objects to cache file data. When optimised, the entries can be removed from the map straight after being added. Obviously, if the cache is being relied upon, much file activity follows. You probably wont see the drive light up, because it'll all be cached by the OS.
I assume the latest update version of java would provide better performance.
I am looking for a way to implement isolation of software components from endless loops or memory leaks. Android isolates each app in it's own process, Google Chrome isolates each tab in it's own process.
My primary drawback is that java takes so long to start and also I would like to reduce memory consumption.
Is there any alternate build or more controlled startup that will accomplish this?
If quick startup is your goal, Java on a PC may not be your best bet. It's going to take a few seconds because that's how long it takes to load the VM from disk.
If you want your app to start more quickly it's easy to get a splash screen up, just create a module that only loads your splash screen, waits for it to fully display then uses reflection to link to your "Real" main module.
(Use reflection because otherwise it will pull in your entire program through references before it starts the main one--at least that's how it used to work).
If you're talking about run-time performance, you won't get quicker by changing languages, Java's about as fast as you can get. You MIGHT be able to get a boost by converting to C/C++ and rewriting it to suit those platforms (Less OO, stack allocations instead of heap, etc), but otherwise none of the other languages in general usage are close to Java in speed.
If you really need the quick startup, depending on what you are doing there may be some tricks. I've seen projects that try to keep a Java VM running in your toolbar and allow you to make requests (tell it to start an app). This was faster but made additional requirements of the user (Loading this additional tool)
Another possibility--if you are constantly starting up/shutting down small tasks and that's the reason the startup bothers you then you can definitely speed it up by keeping it running invisibly. Just have your Java app open a socket and listen for commands then create a little .EXE or shell script that can start your program if it's not running or send commands to that socket if it is. This would completely eliminate startups after the first run.
In general, Java has a much longer startup time than other languages. If you are sticking with Java on a desktop app, a lot of stuff like startup time is determined by the JRE installed on the client's computer, which you can't control.
As to "endless memory leaks"... Java doesn't leak memory. If your program does, fix it.
This is a second answer because it's completely different and my other got too long :)
Try compiling it--I think GCC can compile it. This could almost completely eliminate your startup. I believe Jikes used to be a windows java compiler by IBM, but I don't know if it's still maintained.
Note that compiled code will probably run slower than JVM code for long-running apps.
I'm not experienced with java applications but I found out that finding static pointers etc. to these applications' memory addresses is often (nearly) impossible, apparently because of the java engine that handles the code (correct me if this way of naming it is wrong please).
Now, I've used VisualVM (https://visualvm.dev.java.net/) and it's great. I can select my java process and create a heap dump. It then shows me all classes and their values.
Can I use this method to continousely poll the heap dump and receive object values, for example the X Y and Z of a game? How would I programmatically interact with such application, and if this should not be done with VisualVM, what would be an alternative?
Edit: this is what I need to do:
I need to be able to find all classes with properties that have a certain value. For example: I'd search for the X coordinate (a float) and it should return the class "PlayerCoordsHandler" (just an example) and the corresponding float with it's value... or alternatively just a way to find this same float again (after restarting for example). This process does not have to be programmatic, aslong as requesting the value of the now known property (x float) can be retrieved programmatically (for example with a command line utility or reading from a file).
Edit2:
The target application is a windows executable (but made with java) and launches it's own java VM. It's not possible to add java parameters for debugging. This does not seem to be required though, as VirtualVM is able to debug the process just fine. Anyone knows how?
Thanks in advance.
It looks like you want to debug running Java applications.
The "official" Java debugger is JDB. I believe it's part of the JDK. It has the ability to set breakpoints, examine heaps, list and display and even change variables, show running threads and so on. The usual debugger stuff. But it's command line, which makes it a pain in the neck to work with.
Instead, it makes a lot of sense to use an IDE with integrated debugger. I use Eclipse. You can do all the usual debuggery things, including displaying windows with variables. You can set conditional breakpoints and there's much more. Specifically in answer to your question, you can set up watch expressions, which will be evaluated during the program's execution and their displays refreshed with new values when they change.
You may not want to run your Java app inside the IDE; or it may be running in a Web application server. That's no problem for JDB or Eclipse (or other IDEs, like NetBeans or IntelliJ Idea): They can connect to a running JVM and debug remotely with the same level of convenience.
A program being debugged like this, remotely or otherwise, run somewhat more slowly than if it were not. Your game, while being debugged, will run at rather bad-looking FPS; but it should still respond more or less normally to gameplay interaction.
Remote debugging:
To be able to attach your EclipseNetBeans debugger to a running Java process you need to start that process with the following Java options…
-Xdebug -Xrunjdwp:transport=dt_socket,address=3704,server=y,suspend=n
Have a look at YourKit. You can monitor CPU, memory and threads live, and generate dumps whenever you want. It can even compare different memory dumps to show you which objects were added/removed.
It's not free though, it has a 15 day (or 30 day?) fully functional eval period. If free is not a real concern it's definitely a great tool.
I good starting point is the jps and jstat tools added in Java 6 (i think). jps gives you the pid and main class for each application. jstat give you more details about process
Triggering a heapdump is usefull for post-mortem analysis of say memory leaks, but as the Java garbage collector moves objects around, you cannot use the memory values of a heapdump to reliably access those objects.
If you need a way to query internal values from outside of the application you could look into setting up an RMI service API via which you can retrieve the values you need.
Another method (if you just need to test something) could be to connect to the process via de Java debugging API.
If you know the JRE location that is used, you could rename java.exe and write a (C/C++) wrapper that adds the debug options listed by Carl and calls the renamed_java.exe in turn.
Another posibility might be to add or update classes in the .jar file of the application. You do not need the source to do this.
Tom, are you trying to reverse engineer an application that specifically tries to obfuscate its working? If so you might get further if you contact the manufacturer and ask them what possibilities they see for what you try to achieve?
You can easily generate a heap dump by creating your own JMX connection to the JVM, just like VisualVM does it. Analyzing the heapdump is very possible (the data is there and totally disconnected from the JVM so there is no interference from the gc).
However, unless it is a very specific scenario you are looking for you are probably much better off giving the heapdump to MAT and find a good workflow in there to use.
Edit: In this particular case it is probably better to create some kind of specific API to access the values from the outside (and maybe publish the values as MBeans using JMX). Taking a heap dump is way to much work if all you want to do is monitoring a few values.
Edit2: Based on your edits, it seems to me like you could really benefit from publishing your own MBean over JMX. I have to run for a meeting but, unless someone else does it while I am away, I will try to remember to give you some pointers later. Either in an edit of this one or in a new post.
If you want to poll the values of specific objects while your Java application is running you would probably find that using JMX is a better and more efficient approach rather than using a heap dump. With JMX you can define what values should be exposed and use tools such as VisualVM or JConsole to view them at runtime.
With VisualVM and heapdump you can find all classes with certain property by OQL:
var out = "";
var cls = filter(heap.classes(), "/java./(it.name)")
while (cls.hasNext()) {
var cl = cls.next();
var fls = cl.fields;
while (fls.hasMoreElements()) {
var fl = fls.nextElement();
if (/size/(fl.name)) {
out = toHtml(cl) + "." + fl.name + "()\n";
}
}
}
out.toString()
and write custom logging for BTrace
It is alternative for debugging.
FusionReactor could be a good alternative. For example;
VisualVM doesn’t give you a lot of insides on application memory
except for the total Heap allocation. Heap is a good metric to start
with, but I feel this is not enough to troubleshoot the actual cause
of a memory-related issue.
FusionReactor will display all of the memory spaces it detects, which
depends on the version of Java you’re running:
Heap allocation Non-Heap allocation CodeHeap (profiled and
non-profiled methods) Compressed Class Space FusionReactor also shows
the amount of memory that each generation takes Eden Space Old Space
Survivor Space
https://www.fusion-reactor.com/blog/java-visualvm-alternatives/