We have an Java ERP type of application. Communication between server an client is via RMI. In peak hours there can be up to 250 users logged in and about 20 of them are working at the same time. This means that about 20 threads are live at any given time in peak hours.
The server can run for hours without any problems, but all of a sudden response times get higher and higher. Response times can be in minutes.
We are running on Windows 2008 R2 with Sun's JDK 1.6.0_16. We have been using perfmon and Process Explorer to see what is going on. The only thing that we find odd is that when server starts to work slow, the number of handles java.exe process has opened is around 3500. I'm not saying that this is the acual problem.
I'm just curious if there are some guidelines I should follow to be able to pinpoint the problem. What tools should I use? ....
Can you access to the log configuration of this application.
If you can, you should change the log level to "DEBUG". Tracing the DEBUG logs of a request could give you a usefull information about the contention point.
If you can't, profiler tools are can help you :
VisualVM (Free, and good product)
Eclipse TPTP (Free, but more complicated than VisualVM)
JProbe (not Free but very powerful. It is my favorite Java profiler, but it is expensive)
If the application has been developped with JMX control points, you can plug a JMX viewer to get informations...
If you want to stress the application to trigger the problem (if you want to verify whether it is a charge problem), you can use stress tools like JMeter
Sounds like the garbage collection cannot keep up and starts "halt-the-world" collecting for some reason.
Attach with jvisualvm in the JDK when starting and have a look at the collected data when the performance drops.
The problem you'r describing is quite typical but general as well. Causes can range from memory leaks, resource contention etcetera to bad GC policies and heap/PermGen-space allocation. To point out exact problems with your application, you need to profile it (I am aware of tools like Yourkit and JProfiler). If you profile your application wisely, only some application cycles would reveal the problems otherwise profiling isn't very easy itself.
In a similar situation, I have coded a simple profiling code myself. Basically I used a ThreadLocal that has a "StopWatch" (based on a LinkedHashMap) in it, and I then insert code like this into various points of the application: watch.time("OperationX");
then after the thread finishes a task, I'd call watch.logTime(); and the class would write a log that looks like this: [DEBUG] StopWatch time:Stuff=0, AnotherEvent=102, OperationX=150
After this I wrote a simple parser that generates CSV out from this log (per code path). The best thing you can do is to create a histogram (can be easily done using excel). Averages, medium and even mode can fool you.. I highly recommend to create a histogram.
Together with this histogram, you can create line graphs using average/medium/mode (which ever represents data best, you can determine this from the histogram).
This way, you can be 100% sure exactly what operation is taking time. If you can't determine the culprit, binary search is your friend (fine grain the events).
Might sound really primitive, but works. Also, if you make a library out of it, you can use it in any project. It's also cool because you can easily turn it on in production as well..
Aside from the GC that others have mentioned, Try taking thread dumps every 5-10 seconds for about 30 seconds during your slow down. There could be a case where DB calls, Web Service, or some other dependency becomes slow. If you take a look at the tread dumps you will be able to see threads which don't appear to move, and you could narrow your culprit that way.
From the GC stand point, do you monitor your CPU usage during these times? If the GC is running frequently you will see a jump in your overall CPU usage.
If only this was a Solaris box, prstat would be your friend.
For acute issues like this a quick jstack <pid> should quickly point out the problem area. Probably no need to get all fancy on it.
If I had to guess, I'd say Hotspot jumped in and tightly optimised some badly written code. Netbeans grinds to a halt where it uses a WeakHashMap with newly created objects to cache file data. When optimised, the entries can be removed from the map straight after being added. Obviously, if the cache is being relied upon, much file activity follows. You probably wont see the drive light up, because it'll all be cached by the OS.
Related
I need to monitor the performance of a Java process and take reports automatically. The reports should contain data on memory utilization thread usage, process usage etc. But I'm unsure how to accomplish this. Any suggestions?
I need to monitor the performance of a Java process and take reports automatically.
You need to determine what measures are important to the users of the application like latency and throughput. These are often impacted even if everything looks fine system wise. For example an 8 cpu system which is only 6% busy over 5 minutes might sound fine, except it could be that there is one request every 5 minutes which is taking more than 2 minutes.
The reports should contain data on memory utilization thread usage,
A key feature of threads share objects by default. This means the thread local memory usage is almost always trivial and not worth measuring in general.
process usage etc.
This can be useful for capacity planning of a long period of time, but not useful for find application specific problems (see above).
But I'm unsure how to accomplish this. Any suggestions?
Work out what metrics will help you find problems which impact the users of the application.
You may use JMX API for this purpose if want to get the data via program. Here is oracle tutorial on this topic.
If you just want to monitor the process, there are tools like VisualVM.
VisualVM is a nice tool to monitor memory utilization and other things VisualVM
I have a J2EE java application which processes SOAP requests. In our production environment (HPUX,OC4J,Java 5) we have about 20 threads running for this process, and we sometimes see 1 thread pausing for ~15 seconds. Until now, I haven't succeeded replicating the problem in our preproduction environment, and I'm scared of breaking stuff and violating SLA's if I use jconsole and associated tools on our production server.
Who has any inspiration? I know about http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf but I miss the experience to dare using it straight in production (plus, the HPUX guys threw some of these tools out of the toolbox, replacing them with HPJMeter)
Also, although this suggests a GC problem to me, I don't yet know enough to prove or disprove this theory and I am open to other suggestions.
We connect jconsole (and other tools) straight to production regularly. There is no significant overhead for us, the instrumentation is already going on within the JVM so you'd just be connecting a remote process to read published values. I say go for it!
Either way, you really need to see what's going on on the box. Thread dumps might or do some internal instrumentation. By internal instrumentation, I mean recording key measures within the code and exposing those somehow. It's essentially what the JVM does (exposing them via JMX) but rolling your own gives you more specificity. For example, I'm frequently recording request/response or other critical path performance timings internally.
oh, and one more thing. You can setup your app to using an agent to provide even more information. Typically this would be to plug a profiler in (like jprofiler or yourkit) but this does usually add more overhead and isn't recommended for production.
It's also worth thinking about the cost of not getting the information you need out of the VM. For example, is the cost of not fixing the issue more or less than the cost of a small % drop of performance when monitoring?
More scientifically, this article has some comments. It's suggesting up to 7% overhead (contradicting my previous point), a previous article from 2006 suggests 3-4% but both are highly contextual results. For example, CPU intensive applications may or may not be affected more than IO bound ones.
So a more appropriate answer from me (rather than just "go for it") would be to understand the impact it would have for your application in your environment through measurement. Run representative tests on a similar environment to production with jconsole connected and disconnected and see for your self.
Also see this stackoverflow question.
There are a few things that you can do on HP-UX to get additional information from a running Java process. If you send the PROF signal to the JVM, it will toggle the generation of a GC log (as if you had used the -Xverbosegc command line option). Generating the GC log is very inexpensive, so you should be able to turn this on in production without affecting the performance.
If you send the USR2 signal to the JVM, it starts profiling (same as -Xeprof). If you send the signal a second time, it turns off the profiling. This will have a noticeable performance impact, though it is smaller that what you would see from an external, third party profiler.
You can analyze the resulting data files using HPjmeter. HPjmeter can also connect to a running JVM for real-time monitoring. With Java 5, you need to start the JVM with the -agentlib option. If you were using Java 6, you could attach to the running JVM without needing any extra command line options.
Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 2 years ago.
Improve this question
I have a web server program written in java and my boss wants it to run faster.
Iv always been happy if it ran without error so efficiency is new to me.
I tried a profiler but it crashed my computer and turned out to be a dead opensource project.
I have no idea what I am doing except from reading a few questions on here. I see that re factoring code is the best option but Im not sure how to go about that and that i need a profiler to see what code to re factor.
So does anyone know of a free profiler that I can use ? Im using java and eclipse. if possible some instructions or a like to easy instruction would be great.
But what I really want if anyone can give it is a basic introduction to the subject so I can understand enough to go do in depth research on the subject to get the best results.
I am a complete beginner when it comes to optimising code and the subject seems very complex from what I have seen so far, any help with how to get started would be greatly appreciated.
Im new to java as well so saying things like check garbage collection would mean nothing to me, id need a more detailed explanation.
EDIT: the program uses tomcat for the networking. it connects to an SQL database. the main function is a polling loop which checks all attached devices on the network, reads events from them writes the event to the database and the performs the event functions.
I am trying to improve the polling loop. the program is heavily multithreaded and uses a lot of interfaces and proxies so it is hart to see were code goes the farther you get from the polling loop.
I hope this information helps you offer solutions. also I did not build it, I inherited the code.
First of all detect the bottlenecks. There is no point in optimizing a method from 500ms to 400ms when there is a method running for 5 seconds, when it should run for 100ms.
You can try using the VisualVM as a profiler, which is built-in in the JDK.
If you want a free profiler, use VisualVM when comes with Java. It is likely to be enough.
You should ask your boss exact what he would like to go faster. There is no point optimising random pieces of code he/she might not care about. (Its easily done)
You can also log key points in you task/request to determine what it spends the most time doing.
EDIT: the program uses tomcat for the networking. it connects to an
SQL database. the main function is a polling loop which checks all
attached devices on the network, reads events from them writes the
event to the database and the performs the event functions.
I am trying to improve the polling loop. the program is heavily
multithreaded and uses a lot of interfaces and proxies so it is hart
to see were code goes the farther you get from the polling loop
This sounds like you have a heavily I/O bound application. There really isn't much that you can do about that because I/O bound applications aren't inefficiently using the CPU--they're stuck waiting for I/O operations on other devices to complete.
FWIW, this scenario is actually why a lot of big companies are contemplating moving toward cheap, ARM-based solutions. They're wasting a lot of power and resources on powerful x86 CPUs that get underutilized while their code sits there waiting for a remote MySQL or Oracle server to finish doing its thing. With such an application, why throw more CPU than you need?
If your new to java then Optimization sounds like a bad idea. Its very easy to get wrong. Its not trivial to rewrite code and keep all the outputs the same while changing the inner workings.
Possibly have a look at your stored procedures and replace any IN statments with INNER JOIN. Thats a fairly low risk and high reward way of speeding thing up.
Start by identifying the time taken by various steps in your application (use logging to identify). Notice if there is anything unusual.
Step into each of these steps to see if there are any bottlenecks. Identify if something can be cached to save a db call. Identify if there is scope of parallelism by breaking down your tasks into independent units.
Hope you have some unit/ integration tests to ensure you don't accidentally break anything.
Measure (with a profiler - as others suggested, VisualVM is good) and locate the spots where your program spends most of its time.
Analyze the hot spots and try to improve their performance.
Measure again to verify that your changes had the expected effect.
If needed, repeat from step 1.
Start very simple.
Make a list of whats slow from a user perspective.
Try to do high level profiling yourself. Maybe an interceptor that prints the run time for your actions.
Then profile only those actions with Start time = System.currentTime...
This easy way could be a starting point into more advanced profiling and if your lucky it may fix your problems.
Before you start optimizing, you have to understand your workload, and you have to be able to recreate that workload. One easy way to do that is to log all requests, in production, with enough detail that you can recreate the requests in a development environment.
At the same time that you log your load, you can also log the performance of those requests: the time from the start of the request to the end. One way to do that (and, incidentally, to capture the data needed to log the request) is to add a servlet filter into your stack.
Then you can start to think about optimization.
Establish performance goals. Simply saying "make it faster" is pointless. Instead, you need to establish goals such as "all pages should respond within 1.5 seconds, as long as there are less than 100 concurrent users."
Identify the requests that fail your performance goals. Focus on the biggest failure first.
Identify why the request takes so long.
To do #3, you need to be able to recreate load in a development environment. Then you can either use a profiler, or simply add trace-level logging into your application to find out how long each step of the process takes.
There is also a whole field of holistic optimization, of which garbage collection tuning is probably the most important. But again, you need to establish and replicate your workload, otherwise you'll be flailing.
When starting to optimize an application, the main risk is to try to optimize every step, which does often not improve the program efficiency as expected and results in unmaintainable code.
It is likely that 80% of the execution time of your program is caused by a single step, which is itself only 20% of the code base.
The first thing to do is to identify this bottleneck. For example, you can log timestamps (using System.nanoTime and/or System.currentTimeMillis and you favorite logging framework) to do this.
Once the step has been identified, try to write a test class which runs this step, and run it with a profiler. I have good experience with both HPROF (http://java.sun.com/developer/technicalArticles/Programming/HPROF.html) although it might require some time to get familiar with, and Eclipse Test and Performance Tools Platform (http://www.eclipse.org/tptp/). If you have never used a profiler, I recommend you start with Eclipse TPTP.
The execution profile will help you find out in what methods your program spends time. Once you know them, look at the source code, and try to understand why it is slow. It might be because (this list is not exhaustive) :
unnecessary costly operations are performed,
a sub-optimal algorithm is used,
the algorithm generates lots of objects, thus giving a lot of work to the garbage collector (especially true for objects which have a medium to long life expectancy).
If there is no visible defect in the code, then you might consider :
making the algorithm more parallel in order to leverage all your CPUs
buying faster hardware.
Regarding JVM options, the two most important ones for performance are :
-server, in order to use the server VM (enabled by default depending on the hardware) which provides better performance at the price of a slower startup (http://stackoverflow.com/questions/198577/real-differences-between-java-server-and-java-client),
-Xms and -Xmx which define the heap size available on startup, and the maximum amount of memory that the JVM can use. If the JVM is not given enough memory, garbage collection will use a lot of your CPU resources, slowing down your program, however if the JVM already has enough memory, increasing the heap size will not improve performance, and might even cause longer GC pauses. (http://stackoverflow.com/questions/1043817/speed-tradeoff-of-javas-xms-and-xmx-options)
Other parameters usually have lower impact, you can consult them at http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html.
I've developed a web application using the following tech stack:
Java
Mysql
Scala
Play Framework
DavMail integration (for calender and exchange server)
Javamail
Akka actors
On the first days, the application runs smoothly and without lags. But after 5 days or so, the application gets really slow! And now I have no clue how to profile this, since I have huge dependencies and it's hard to reproduce this kind of thing. I have looked into the memory and it seems that everything its okay.
Any pointers on the matter?
Try using VisualVM - you can monitor gc behaviour, memory usage, heap, threads, cpu usage etc. You can use it to connect to a remote VM.
`visualvm˙ is also a great tool for such purposes, you can connect to a remote JVM as well and see what's inside.
I suggest you doing this:
take a snapshot of the application running since few hours and since 5 days
compare thread counts
compare object counts, search for increasing numbers
see if your program spends more time in particular methods on the 5th day than on the 1str one
check for disk space, maybe you are running out of it
jconsole comes with the JDK and is an easy tool to spot bottlenecks. Connect it to your server, look into memory usage, GC times, take a look at how many threads are alive because it could be that the server creates many threads and they never exit.
I agree with tulskiy. On top of that you could also use JMeter if the investigations you will have made with jconsole are unconclusive.
The probable causes of the performances degradation are threads (that are created but never exit) and also memory leaks: if you allocate more and more memory, before having the OutOfMemoryError, you may encounter some performances degradation (happened to me a few weeks ago).
To eliminate your database you can monitor slow queries (and/or queries that are not using an index) using the slow query log
see: http://dev.mysql.com/doc/refman/5.1/en/slow-query-log.html
I would hazard a guess that you have a missing index, and it has only become apparent as your data volumes have increased.
Yet another profiler is Yourkit.
It is commercial, but with trial period (two weeks).
Actually, I've firstly tried VisualVM as #axel22 suggested, but our remote server was ssh'ed and we had problems with connecting via VisualVM (not saying that it is impossible, I've just surrendered after a few hours).
You might just want to try the 'play status' command, which will list web app state (threads, jobs, etc). This might give you a hint on what's going on.
So guys, in this specific case, I was running play in Developer mode, which makes the compiler works every now and then.
After changing to production mode, everything was lightning fast and no more problems anymore. But thanks for all the help.
I assume the latest update version of java would provide better performance.
I am looking for a way to implement isolation of software components from endless loops or memory leaks. Android isolates each app in it's own process, Google Chrome isolates each tab in it's own process.
My primary drawback is that java takes so long to start and also I would like to reduce memory consumption.
Is there any alternate build or more controlled startup that will accomplish this?
If quick startup is your goal, Java on a PC may not be your best bet. It's going to take a few seconds because that's how long it takes to load the VM from disk.
If you want your app to start more quickly it's easy to get a splash screen up, just create a module that only loads your splash screen, waits for it to fully display then uses reflection to link to your "Real" main module.
(Use reflection because otherwise it will pull in your entire program through references before it starts the main one--at least that's how it used to work).
If you're talking about run-time performance, you won't get quicker by changing languages, Java's about as fast as you can get. You MIGHT be able to get a boost by converting to C/C++ and rewriting it to suit those platforms (Less OO, stack allocations instead of heap, etc), but otherwise none of the other languages in general usage are close to Java in speed.
If you really need the quick startup, depending on what you are doing there may be some tricks. I've seen projects that try to keep a Java VM running in your toolbar and allow you to make requests (tell it to start an app). This was faster but made additional requirements of the user (Loading this additional tool)
Another possibility--if you are constantly starting up/shutting down small tasks and that's the reason the startup bothers you then you can definitely speed it up by keeping it running invisibly. Just have your Java app open a socket and listen for commands then create a little .EXE or shell script that can start your program if it's not running or send commands to that socket if it is. This would completely eliminate startups after the first run.
In general, Java has a much longer startup time than other languages. If you are sticking with Java on a desktop app, a lot of stuff like startup time is determined by the JRE installed on the client's computer, which you can't control.
As to "endless memory leaks"... Java doesn't leak memory. If your program does, fix it.
This is a second answer because it's completely different and my other got too long :)
Try compiling it--I think GCC can compile it. This could almost completely eliminate your startup. I believe Jikes used to be a windows java compiler by IBM, but I don't know if it's still maintained.
Note that compiled code will probably run slower than JVM code for long-running apps.