Faster methods for set intersection - java

I am facing a problem where for a number of words, I make a call to a HashMultimap (Guava) to retrieve a set of integers. The resulting sets have, say, 10, 200 and 600 items respectively. I need to compute the intersection of these three (or four, or five...) sets, and I need to repeat this whole process many times (I have many sets of words). However, what I am experiencing is that on average these set intersections take so long to compute (from 0 to 300 ms) that my program takes a very long time to complete if I look at hundreds of thousands of sets of words.
Is there any substantially quicker method to achieve this, especially given I'm dealing with (sortable) integers?
Thanks a lot!

If you are able to represent your sets as arrays of bits (bitmaps), you can intersect them with AND operations. You could even implement this to run in parallel.
As an example (using jlordo's question): if set1 is {1,2,4} and set2 is {1,2,5}
Then your first set would be represented as: 00010110 (bits set for 1, 2, and 4).
Your second set would be represented as: 00100110 (bits set for 1, 2, and 5).
If you AND them together, you get: 00000110 (bits set for 1 and 2)
Of course, if you had a larger range of integers, then you will need more bytes. The beauty of bitmap indexes is that they take just one bit per possible element, thus occupying a relatively small space.
In Java, for example, you could use the BitSet data structure (not sure if it can do operations in parallel, though).

One problem with a bitmap based solution is that even if the sets themselves are very small, but contain very large numbers (or even unbounded) checking bitmaps would be very wasteful.
A different approach would be, for example, sorting the two sets, merging them and checking for duplicates. This can be done in O(nlogn) time complexity and extra O(n) space complexity, given set sizes are O(n).
You should choose the solution that matches your problem description (input range, expected set sizes, etc.).

The post http://www.censhare.com/en/aktuelles/censhare-labs/yet-another-compressed-bitset describes an implementation of an ordered primitive long set with set operations (union, minus and intersection). To my experience it's quite efficient for dense or sparse value populations.

Related

A good data structure for storing and searching integers?

Edit: Typos fixed and ambiguity tried to fix.
I have a list of five digit integers in a text file. The expected amount can only be as large as what a 5-digit integer can store. Regardless of how many there are, the FIRST line in this file tells me how many integers are present, so resizing will never be necessary. Example:
3
11111
22222
33333
There are 4 lines. The first says there are three 5-digit integers in the file. The next three lines hold these integers.
I want to read this file and store the integers (not the first line). I then want to be able to search this data structure A LOT, nothing else. All I want to do, is read the data, put it in the structure, and then be able to determine if there is a specific integer in there. Deletions will never occur. The only things done on this structure will be insertions and searching.
What would you suggest as an appropriate data structure? My initial thought was a binary tree of sorts; however, upon thinking, a HashTable may be the best implementation. Thoughts and help please?
It seems like the requirements you have are
store a bunch of integers,
where insertions are fast,
where lookups are fast, and
where absolutely nothing else matters.
If you are dealing with a "sufficiently small" range of integers - say, integers up to around 16,000,000 or so, you could just use a bitvector for this. You'd store one bit per number, all initially zero, and then set the bits to active whenever a number is entered. This has extremely fast lookups and extremely fast setting, but is very memory-intensive and infeasible if the integers can be totally arbitrary. This would probably be modeled with by BitSet.
If you are dealing with arbitrary integers, a hash table is probably the best option here. With a good hash function you'll get a great distribution across the table slots and very, very fast lookups. You'd want a HashSet for this.
If you absolutely must guarantee worst-case performance at all costs and you're dealing with arbitrary integers, use a balanced BST. The indirection costs in BSTs make them a bit slower than other data structures, but balanced BSTs can guarantee worst-case efficiency that hash tables can't. This would be represented by TreeSet.
Given that
All numbers are <= 99,999
You only want to check for existence of a number
You can simply use some form of bitmap.
e.g. create a byte[12500] (it is 100,000 bits which means 100,000 booleans to store existence of 0-99,999 )
"Inserting" a number N means turning the N-th bit on. Searching a number N means checking if N-th bit is on.
Pseduo code of the insertion logic is:
bitmap[number / 8] |= (1>> (number %8) );
searching looks like:
bitmap[number/8] & (1 >> (number %8) );
If you understand the rationale, then a even better news for you: In Java we already have BitSet which is doing what I was describing above.
So code looks like this:
BitSet bitset = new BitSet(12500);
// inserting number
bitset.set(number);
// search if number exists
bitset.get(number); // true if exists
If the number of times each number occurs don't matter (as you said, only inserts and see if the number exists), then you'll only have a maximum of 100,000. Just create an array of booleans:
boolean numbers = new boolean[100000];
This should take only 100 kilobytes of memory.
Then instead of add a number, like 11111, 22222, 33333 do:
numbers[11111]=true;
numbers[22222]=true;
numbers[33333]=true;
To see if a number exists, just do:
int whichNumber = 11111;
numberExists = numbers[whichNumber];
There you are. Easy to read, easier to mantain.
A Set is the go-to data structure to "find", and here's a tiny amount of code you need to make it happen:
Scanner scanner = new Scanner(new FileInputStream("myfile.txt"));
Set<Integer> numbers = Stream.generate(scanner::nextInt)
.limit(scanner.nextInt())
.collect(Collectors.toSet());

Growable multidimensional data structure supporting range queries

Let me put the question first: considering the situation and requirements I'll describe further down, what data structures would make sense/help achieving the non-functional requirements?
I tried to look up several structures but wasn't very successful so far, which might be due to me missing some terminology.
Since we'll implement that in Java any answers should take that into account (e.g. no pointer-magic, assume 8-byte references etc.).
The situation
We have somewhat large set of values that are mapped via a 4-dimensional key (let's call those dimensions A, B, C and D). Each dimension can have a different size, so we'll assume the following:
A: 100
B: 5
C: 10000
D: 2
This means a completely filled structure would contain 10 million elements. Not considering their size the space needed to hold the references alone would be like 80 megabytes, so that would be considered a lower bound for memory consumption.
We further can assume that the structure won't be completely filled but quite densely.
The requirements
Since we build and query that structure quite often we have the following requirements:
constructing the structure should be fast
queries on single elements and ranges (e.g. [A1-A5, B3, any C, D0]) should be efficient
fast deletion of elements isn't required (won't happen too often)
the memory footprint should be low
What we already considered
kd-trees
Building such a tree takes some time since it can get quite deep and we'd either have to accept slower queries or take rebalancing measures. Additonally the memory footprint is quite high since we need to hold the complete key in each node (there might be ways to reduce that though).
Nested maps/map tree
Using nested maps we could store only the key for each dimension as well as a reference to the next dimension map or the values - effectively building a tree out of those maps. To support range queries we'd keep sorted sets of the possible keys and access those while traversing the tree.
Construction and queries were way faster than with kd-trees but the memory footprint was much higher (as expected).
A single large map
An alternative would be to keep the sets for individual available keys and use a single large map instead.
Construction and queries were fast as well but memory consumption was even higher due to each map node being larger (they need to hold all dimensions of a key now).
What we're thinking of at the moment
Building insertion-order index-maps for the dimension keys, i.e. we map each incoming key to a new integer index as it comes in. Thus we can make sure that those indices grow one step a time without any gaps (not considering deletions).
With those indices we'd then access a tree of n-dimensional arrays (flattened to a 1-d array of course) - aka n-ary tree. That tree would grow on demand, i.e. if we need a new array then instead of creating a larger one and copying all the data we'd just create the new block. Any needed non-leaf nodes would be created on demand, replacing the root if needed.
Let me illustrate that with an example of 2 dimensions A and B. We'll allocate 2 elements for each dimension resulting in a 2x2 matrix (array of length 4).
Adding the first element A1/B1 we'd get something like this:
[A1/B1,null,null,null]
Now we add element A2/B2:
[A1/B1,null,A2/B2,null]
Now we add element A3/B3. Since we can't map the new element to the existing array we'll create a new one as well as a common root:
[x,null,x,null]
/ \
[A1/B1,null,A2/B2,null] [A3/B3,null,null,null]
Memory consumption for densely filled matrices should be rather low depending on the size of each array (having 4 dimensions and 4 values per dimension in an array we'd have arrays of length 256 and thus get a maximum tree depth of 2-4 in most cases).
Does this make sense?
If the structure will be "quite densely" filled, then I think it makes sense to assume that it will be full. That simplifies things quite a bit. And it's not like you're going to save a lot (or anything) using a sparse matrix representation of a densely filled matrix.
I'd try the simplest possible structure first. It might not be the most memory efficient, but it should be reasonable and quite easy to work with.
First, a simple array of 10,000,000 references. That is (and please pardon the C#, as I'm not really a Java programmer):
MyStructure[] theArray = new MyStructure[](10000000);
As you say, that's going to consume 80 megabytes.
Next is four different dictionaries (maps, I think, in Java), one for each key type:
Dictionary<KeyAType, int> ADict;
Dictionary<KeyBType, int> BDict;
Dictionary<KeyCType, int> CDict;
Dictionary<KeyDType, int> DDict;
When you add an element at {A,B,C,D}, you look up the respective keys in the dictionary to get their indexes (or add a new index if that key doesn't exist), and do the math to compute an index into the array. The math is, I think:
DIndex + 2*(CIndex + 10000*(BIndex + 5*AIndex));
In .NET, dictionary overhead is something like 24 bytes per key. But you only have 11,007 total keys, so the dictionaries are going to consume something like 250 kilobytes.
This should be very quick to query directly, and range queries should be as fast as a single lookup and then some array manipulation.
One thing I'm not clear on is if you want a key, to resolve to the same index with every build. That is, if "foo" maps to index 1 in one build, will it always map to index 1?
If so, you probably should statically construct the dictionaries. I guess it depends on if your range queries always expect things in the same key order.
Anyway, this is a very simple and very effective data structure. If you can afford 81 megabytes as the maximum size of the structure (minus the actual data), it seems like a good place to start. You could probably have it working in a couple of hours.
At best it's all you'll have to do. And if you end up having to replace it, at least you have a working implementation that you can use to verify the correctness of whatever new structure you come up with.
There are other multidimensional trees that are usually better than kd-trees:quadtrees, R*Trees (like R-Tree, but much faster for updates) or PH-Tree.
The PH-Tree is like a quadtree, but much more space efficient, scales better with dimensions and depth is limited by maximum bitwidth of values, i.e. maximum '10000' requires 14 bit, so the depth will not be more than 14.
Java implementations of all trees can be found on my repo, either here (quadtree may be a bit buggy) or here.
EDIT
The following optimization can probably be ignored. Of course the described query will result in a full scan, but that may not be as bad as it sounds, because it will on average anyway return 33%-50% of the whole tree.
Possible optimisation (not tested, but might work for the PH-Tree):
One problem with range queries is the different selectivity of your dimensions, which may result in something to a full scan of the tree. For example when querying for [0..100][0..5][0..10000][1..1], i.e. constraining only the last dimension (with least selectivity).
To avoid this, especially for the PH-Tree, I would try to multiply your values by a fixed constant. For example multiply A by 100, B by 2000, C by 1 and D by 5000. This allows all values to range from 0 to 10000, which may improve query performance when constraining only dimensions with low selectivity (the 2nd or 4th).

fastest way to map a large number of longs

I'm writing a java application that transforms numbers (long) into a small set of result objects. This mapping process is very critical to the app's performance as it is needed very often.
public static Object computeResult(long input) {
Object result;
// ... calculate
return result;
}
There are about 150,000,000 different key objects, and about 3,000 distinct values.
The transformation from the input number (long) to the output (immutable object) can be computed by my algorithm with a speed of 4,000,000 transformations per second. (using 4 threads)
I would like to cache the mapping of the 150M different possible inputs to make the translation even faster but i found some difficulties creating such a cache:
public class Cache {
private static long[] sortedInputs; // 150M length
private static Object[] results; // 150M length
public static Object lookupCachedResult(long input) {
int index = Arrays.binarySearch(sortedInputs, input);
return results[index];
}
}
i tried to create two arrays with a length of 150M. the first array holds all possible input longs, and it is sorted numerically. the second array holds a reference to one of the 3000 distinct, precalculated result objects at the index corresponding to the first array's input.
to get to the cached result, i do a binary search for the input number on the first array. the cached result is then looked up in the second array at the same index.
sadly, this cache method is not faster than computing the results. not even half, only about 1.5M lookups per second. (also using 4 threads)
Can anyone think of a faster way to cache results in such a scenario?
I doubt there is a database engine that is able to answer more than 4,000,000 queries per second on, let's say an average workstation.
Hashing is the way to go here, but I would avoid using HashMap, as it only works with objects, i.e. must build a Long each time you insert a long, which can slow it down. Maybe this performance issue is not significant due to JIT, but I would recommend at least to try the following and measure performance against the HashMap-variant:
Save your longs in a long-array of some length n > 3000 and do the hashing by hand via a very simple hash-function (and thus efficient) like
index = key % n. Since you know your 3000 possible values before hand you can empirically find an array-length n such that this trivial hash-function won't cause collisions. So you circumvent rehashing etc. and have true O(1)-performance.
Secondly I would recommend you to look at Java-numerical libraries like
https://github.com/mikiobraun/jblas
https://github.com/fommil/matrix-toolkits-java
Both are backed by native Lapack and BLAS implementations that are usually highly optimized by very smart people. Maybe you can formulate your algorithm in terms of matrix/vector-algebra such that it computes the whole long-array at one time (or chunk-wise).
There are about 150,000,000 different key objects, and about 3,000 distinct values.
With the few values, you should ensure that they get re-used (unless they're pretty small objects). For this an Interner is perfect (though you can run your own).
i tried hashmap and treemap, both attempts ended in an outOfMemoryError.
There's a huge memory overhead for both of them. And there isn't much point is using a TreeMap as it uses a sort of binary search which you've already tried.
There are at least three implementations of a long-to-object-map available, google for "primitive collections". This should use slightly more memory than your two arrays. With hashing being usually O(1) (let's ignore the worst case as there's no reason for it to happen, is it?) and much better memory locality, it'll beat(*) your binary search by a factor of 20. You binary search needs log2(150e6), i.e., about 27 steps and hashing may need on the average maybe two. This depends on how tightly you pack the hash table; this is usually a parameter given when it gets created.
In case you run your own (which you most probably shouldn't), I'd suggest to use an array of size 1 << 28, i.e., 268435456 entries, so that you can use bitwise operations for indexing.
(*) Such predictions are hard, but I'm sure it's worth trying.

Java - normalize and denormalize nominal attributes in neural networks

Hi I am building a simple multilayer network which is trained using back propagation. My problem at the moment is that some attributes in my dataset are nominal (non numeric) and I have to normalize them. I wanted to know what the best approach is. I was thinking along the lines of counting up how many distinct values there are for each attribute and assigning each an equal number between 0 and 1. For example suppose one of my attributes had values A to E then would the following be suitable?:
A = 0
B = 0.25
C = 0.5
D = 0.75
E = 1
The second part to my question is denormalizing the output to get it back to a nominal value. Would I first do the same as above to each distinct output attribute value in the dataset in order to get a numerical representation? Also after I get an output from the network, do I just see which number it is closer to? For example if I got 0.435 as an output and my output attribute values were assigned like this:
x = 0
y = 0.5
z = 1
Do I just find the nearest value to the output (0.435) which is y (0.5)?
You can only do what you are proposing if the variables are ordinal and not nominal, and even then it is a somewhat arbitrary decision. Before I suggest a solution, a note on terminology:
Nominal vs ordinal variables
Suppose A, B, etc stand for colours. These are the values of a nominal variable and can not be ordered in a meaningful way. You can't say red is greater than yellow. Therefore, you should not be assigning numbers to nominal variables .
Now suppose A, B, C, etc stand for garment sizes, e.g. small, medium, large, etc. Even though we are not measuring these sizes on an absolute scale (i.e. we don't say that small corresponds to 40 a chest circumference), it is clear that small < medium < large. With that in mind, it is still somewhat arbitrary whether you set small=1, medium=2, large=3, or small=2, medium=4, large=8.
One-of-N encoding
A better way to go about this is to to use the so called one-out-of-N encoding. If you have 5 distinct values, you need five input units, each of which can take the value 1 or 0. Continuing with my garments example, size extra small can be encoded as 10000, small as 01000, medium as 00100, etc.
A similar principle applies to the outputs of the network. If we treat garment size as output instead of input, when the network output the vector [0.01 -0.01 0.5 0.0001 -.0002], you interpret that as size medium.
In reply to your comment on #Daan's post: if you have 5 inputs, one of which takes 20 possible discrete values, you will need 24 input nodes. You might want to normalise the values of your 4 continuous inputs to the range [0, 1], because they may end out dominating your discrete variable.
It really depends on the meaning of the attributes you're trying to normalize, and the functions used inside your NN. For example, if your attributes are non-linear, or if you're using a non-linear activation function, then linear normalization might not end up doing what you want it to do.
If the ranges of attribute values are relatively small, splitting the input and output into sets of binary inputs and outputs will probably be simpler and more accurate.
EDIT:
If the NN was able to accurately perform it's function, one of the outputs will be significantly higher than the others. If not, you might have a problem, depending on when you see inaccurate results.
Inaccurate results during early training are expected. They should become less and less common as you perform more training iterations. If they don't, your NN might not be appropriate for the task you're trying to perform. This could be simply a matter of increasing the size and/or number of hidden layers. Or it could be a more fundamental problem, requiring knowledge of what you're trying to do.
If you've succesfully trained your NN but are seeing inaccuracies when processing real-world data sets, then your training sets were likely not representative enough.
In all of these cases, there's a strong likelihood that your NN did something entirely different than what you wanted it to do. So at this point, simply selecting the highest output is as good a guess as any. But there's absolutely no guarantee that it'll be a better guess.

How can a Hash Set incur collision?

If a hash set contains only one instance of any distinct element(s), how might collision occur at this case?
And how could load factor be an issue since there is only one of any given element?
While this is homework, it is not for me. I am tutoring someone, and I need to know how to explain it to them.
Let's assume you have a HashSet of Integers, and your Hash Function is mod 4. The integers 0, 4, 8, 12, 16, etc. will all colide, if you try to insert them. (mod 4 is a terrible hash function, but it illustrates the concept)
Assuming a proper function, the load factor is correlated to the chance of having a collision; please note that I say correlated and not equal because it depends on the strategy you use to handle collisions. In general, a high load factor increases the possibility of collisions. Assuming that you have 4 slots and you use mod 4 as the hash function, when the load factor is 0 (empty table), you won't have a collision. When you have one element, the probability of a collision is .25, which obviously degrades the performance, since you have to solve the collision.
Now, assuming that you use linear probing (i.e. on collision, use the next entry available), once you reach 3 entries in the table, you have a .75 probability of a collision, and if you have a collision, in the best case you will go to the next entry, but in the worst, you will have to go through the 3 entries, so the collision means that instead of a direct access, you need in average a linear search with an average of 2 items.
Of course, you have better strategies to handle collisions, and generally, in non-pathological cases, a load of .7 is acceptable, but after that collisions shoot up and performance degrades.
The general idea behind a "hash table" (which a "hash set" is a variety of) is that you have a number of objects containing "key" values (eg, character strings) that you want to put into some sort of container and then be able to find individual objects by their "key" values easily, without having to examine every item in the container.
One could, eg, put the values into a sorted array and then do a binary search to find a value, but maintaining a sorted array is expensive if there are lots of updates.
So the key values are "hashed". One might, for instance, add together all of the ASCII values of the characters to create a single number which is the "hash" of the character string. (There are better hash computation algorithms, but the precise algorithm doesn't matter, and this is an easy one to explain.)
When you do this you'll get a number that, for a ten-character string, will be in the range from maybe 600 to 1280. Now, if you divide that by, say, 500 and take the remainder, you'll have a value between 0 and 499. (Note that the string doesn't have to be ten characters -- longer strings will add to larger values, but when you divide and take the remainder you still end up with a number between 0 and 499.)
Now create an array of 500 entries, and each time you get a new object, calculate its hash as described above and use that value to index into the array. Place the new object into the array entry that corresponds to that index.
But (especially with the naive hash algorithm above) you could have two different strings with the same hash. Eg, "ABC" and "CBA" would have the same hash, and would end up going into the same slot in the array.
To handle this "collision" there are several strategies, but the most common is to create a linked list off the array entry and put the various "hash synonyms" into that list.
You'd generally try to have the array large enough (and have a better hash calculation algorithm) to minimize such collisions, but, using the hash scheme, there's no way to absolutely prevent collisions.
Note that the multiple entries in a synonym list are not identical -- they have different key values -- but they have the same hash value.

Categories