fastest way to map a large number of longs - java

I'm writing a java application that transforms numbers (long) into a small set of result objects. This mapping process is very critical to the app's performance as it is needed very often.
public static Object computeResult(long input) {
Object result;
// ... calculate
return result;
}
There are about 150,000,000 different key objects, and about 3,000 distinct values.
The transformation from the input number (long) to the output (immutable object) can be computed by my algorithm with a speed of 4,000,000 transformations per second. (using 4 threads)
I would like to cache the mapping of the 150M different possible inputs to make the translation even faster but i found some difficulties creating such a cache:
public class Cache {
private static long[] sortedInputs; // 150M length
private static Object[] results; // 150M length
public static Object lookupCachedResult(long input) {
int index = Arrays.binarySearch(sortedInputs, input);
return results[index];
}
}
i tried to create two arrays with a length of 150M. the first array holds all possible input longs, and it is sorted numerically. the second array holds a reference to one of the 3000 distinct, precalculated result objects at the index corresponding to the first array's input.
to get to the cached result, i do a binary search for the input number on the first array. the cached result is then looked up in the second array at the same index.
sadly, this cache method is not faster than computing the results. not even half, only about 1.5M lookups per second. (also using 4 threads)
Can anyone think of a faster way to cache results in such a scenario?
I doubt there is a database engine that is able to answer more than 4,000,000 queries per second on, let's say an average workstation.

Hashing is the way to go here, but I would avoid using HashMap, as it only works with objects, i.e. must build a Long each time you insert a long, which can slow it down. Maybe this performance issue is not significant due to JIT, but I would recommend at least to try the following and measure performance against the HashMap-variant:
Save your longs in a long-array of some length n > 3000 and do the hashing by hand via a very simple hash-function (and thus efficient) like
index = key % n. Since you know your 3000 possible values before hand you can empirically find an array-length n such that this trivial hash-function won't cause collisions. So you circumvent rehashing etc. and have true O(1)-performance.
Secondly I would recommend you to look at Java-numerical libraries like
https://github.com/mikiobraun/jblas
https://github.com/fommil/matrix-toolkits-java
Both are backed by native Lapack and BLAS implementations that are usually highly optimized by very smart people. Maybe you can formulate your algorithm in terms of matrix/vector-algebra such that it computes the whole long-array at one time (or chunk-wise).

There are about 150,000,000 different key objects, and about 3,000 distinct values.
With the few values, you should ensure that they get re-used (unless they're pretty small objects). For this an Interner is perfect (though you can run your own).
i tried hashmap and treemap, both attempts ended in an outOfMemoryError.
There's a huge memory overhead for both of them. And there isn't much point is using a TreeMap as it uses a sort of binary search which you've already tried.
There are at least three implementations of a long-to-object-map available, google for "primitive collections". This should use slightly more memory than your two arrays. With hashing being usually O(1) (let's ignore the worst case as there's no reason for it to happen, is it?) and much better memory locality, it'll beat(*) your binary search by a factor of 20. You binary search needs log2(150e6), i.e., about 27 steps and hashing may need on the average maybe two. This depends on how tightly you pack the hash table; this is usually a parameter given when it gets created.
In case you run your own (which you most probably shouldn't), I'd suggest to use an array of size 1 << 28, i.e., 268435456 entries, so that you can use bitwise operations for indexing.
(*) Such predictions are hard, but I'm sure it's worth trying.

Related

How to reduce memory usage for a HashMap<String, Integer> like data structure

Before starting to explain my problem, I should mention that I am not looking for a way to increase Java heap memory. I should strictly store these objects.
I am working on storing huge number (5-10 GB) of DNA sequences and their counts (Integer) in a hash table. The DNA sequences (with length 32 or less) consists of 'A', 'C', 'G', 'T', and 'N' (undefined) chars. As we know, when storing a large number of objects in memory, Java has poor space efficiency compared to lower level languages like C and C++. Thus, if I store this sequence as string (it holds about 100 MB memory for a sequence with length ~30), I see the error.
I tried to represent nucleic acids as 'A'=00, 'C'=01, 'G'=10, 'T'=11 and neglect 'N' (because it ruins the char to 2-bit transform as the 5-th acid). Then, concatenate these 2-bit acids into byte array. It brought some improvement but unfortunately I see the error after a couple of hours again. I need a convenient solution or at least a workaround to handle this error. Thank you in advance.
Being fairly complex maybe this here is a weird idea, and would require quite a lot of work, but this is what I would try:
You already pointed out two individual subproblems of your overall task:
the default HashMap implementation may be suboptimal for such large collection sizes
you need to store something else than strings
The map implementation
I would recommend to write a highly tailored hash map implementation for the Map<String, Long> interface. Internally you do not have to store strings. Unfortunately 5^32 > 2^64, so there is no way to pack your whole string into a single long, well, let's stick to two longs for a key. You can make string to/back long[2] conversion fairly efficiently on the fly when providing a string key to your map implementation (use bit shifts etc).
As for packing the values, here are some considerations:
for a key-value pair a standard hashmap will need to have an array of N longs for buckets, where N is the current capacity, when the bucket is found from the hash key it will need to have a linked list of key-value pairs to resolve keys that produce identical hash codes. For your specific case you could try to optimize it in the following way:
use a long[] of size 3N where N is the capacity to store both keys and values in a continuous array
in this array, at locations 3 * (hashcode % N) and 3 * (hashcode % N) + 1 you store the long[2] representation of the key, of the first key that matches this bucket or of the only one (on insertion, zero otherwise), at location 3 * (hashcode % N) + 2 you store the corresponding count
for all those cases where a different key results in the same hash code and thus the same bucket, your store the data in a standard HashMap<Long2KeyWrapper, Long>. The idea is to keep the capacity of the array mentioned above (and resize correspondingly) large enough to have by far the largest part of the data in that contiguous array and not in the fallback hash map. This will dramatically reduce the storage overhead of the hashmap
do not expand the capacity in N=2N iterations, make smaller growth steps, e.g. 10-20%. this will cost performance on populating the map, but will keep your memory footprint under control
The keys
Given the inequality 5^32 > 2^64 your idea to use bits to encode 5 letters seems to be the best I can think of right now. Use 3 bits and correspondingly long[2].
I recommend you look into the Trove4j Collections API; it offers Collections that hold primitives which will use less memory than their boxed, wrapper classes.
Specifically, you should check out their TObjectIntHashMap.
Also, I wouldn't recommended storing anything as a String or char until JDK 9 is released, as the backing char array of a String is UTF-16 encoded, using two bytes per char. JDK 9 defaults to UTF-8 where only one byte is used.
If you're using on the order of ~10gb of data, or at least data with an in memory representation size of ~10gb, then you might need to think of ways to write the data you don't need at the moment to disk and load individual portions of your dataset into memory to work on them.
I had this exact problem a few years ago when I was conducting research with monte carlo simulations so I wrote a Java data structure to solve it. You can clone/fork the source here: github.com/tylerparsons/surfdep
The library supports both MySQL and SQLite as the underlying database. If you don't have either, I'd recommend SQLite as it's much quicker to set up.
Full disclaimer: this is not the most efficient implementation, but it will handle very large datasets if you let it run for a few hours. I tested it successfully with matrices of up to 1 billion elements on my Windows laptop.

Growable multidimensional data structure supporting range queries

Let me put the question first: considering the situation and requirements I'll describe further down, what data structures would make sense/help achieving the non-functional requirements?
I tried to look up several structures but wasn't very successful so far, which might be due to me missing some terminology.
Since we'll implement that in Java any answers should take that into account (e.g. no pointer-magic, assume 8-byte references etc.).
The situation
We have somewhat large set of values that are mapped via a 4-dimensional key (let's call those dimensions A, B, C and D). Each dimension can have a different size, so we'll assume the following:
A: 100
B: 5
C: 10000
D: 2
This means a completely filled structure would contain 10 million elements. Not considering their size the space needed to hold the references alone would be like 80 megabytes, so that would be considered a lower bound for memory consumption.
We further can assume that the structure won't be completely filled but quite densely.
The requirements
Since we build and query that structure quite often we have the following requirements:
constructing the structure should be fast
queries on single elements and ranges (e.g. [A1-A5, B3, any C, D0]) should be efficient
fast deletion of elements isn't required (won't happen too often)
the memory footprint should be low
What we already considered
kd-trees
Building such a tree takes some time since it can get quite deep and we'd either have to accept slower queries or take rebalancing measures. Additonally the memory footprint is quite high since we need to hold the complete key in each node (there might be ways to reduce that though).
Nested maps/map tree
Using nested maps we could store only the key for each dimension as well as a reference to the next dimension map or the values - effectively building a tree out of those maps. To support range queries we'd keep sorted sets of the possible keys and access those while traversing the tree.
Construction and queries were way faster than with kd-trees but the memory footprint was much higher (as expected).
A single large map
An alternative would be to keep the sets for individual available keys and use a single large map instead.
Construction and queries were fast as well but memory consumption was even higher due to each map node being larger (they need to hold all dimensions of a key now).
What we're thinking of at the moment
Building insertion-order index-maps for the dimension keys, i.e. we map each incoming key to a new integer index as it comes in. Thus we can make sure that those indices grow one step a time without any gaps (not considering deletions).
With those indices we'd then access a tree of n-dimensional arrays (flattened to a 1-d array of course) - aka n-ary tree. That tree would grow on demand, i.e. if we need a new array then instead of creating a larger one and copying all the data we'd just create the new block. Any needed non-leaf nodes would be created on demand, replacing the root if needed.
Let me illustrate that with an example of 2 dimensions A and B. We'll allocate 2 elements for each dimension resulting in a 2x2 matrix (array of length 4).
Adding the first element A1/B1 we'd get something like this:
[A1/B1,null,null,null]
Now we add element A2/B2:
[A1/B1,null,A2/B2,null]
Now we add element A3/B3. Since we can't map the new element to the existing array we'll create a new one as well as a common root:
[x,null,x,null]
/ \
[A1/B1,null,A2/B2,null] [A3/B3,null,null,null]
Memory consumption for densely filled matrices should be rather low depending on the size of each array (having 4 dimensions and 4 values per dimension in an array we'd have arrays of length 256 and thus get a maximum tree depth of 2-4 in most cases).
Does this make sense?
If the structure will be "quite densely" filled, then I think it makes sense to assume that it will be full. That simplifies things quite a bit. And it's not like you're going to save a lot (or anything) using a sparse matrix representation of a densely filled matrix.
I'd try the simplest possible structure first. It might not be the most memory efficient, but it should be reasonable and quite easy to work with.
First, a simple array of 10,000,000 references. That is (and please pardon the C#, as I'm not really a Java programmer):
MyStructure[] theArray = new MyStructure[](10000000);
As you say, that's going to consume 80 megabytes.
Next is four different dictionaries (maps, I think, in Java), one for each key type:
Dictionary<KeyAType, int> ADict;
Dictionary<KeyBType, int> BDict;
Dictionary<KeyCType, int> CDict;
Dictionary<KeyDType, int> DDict;
When you add an element at {A,B,C,D}, you look up the respective keys in the dictionary to get their indexes (or add a new index if that key doesn't exist), and do the math to compute an index into the array. The math is, I think:
DIndex + 2*(CIndex + 10000*(BIndex + 5*AIndex));
In .NET, dictionary overhead is something like 24 bytes per key. But you only have 11,007 total keys, so the dictionaries are going to consume something like 250 kilobytes.
This should be very quick to query directly, and range queries should be as fast as a single lookup and then some array manipulation.
One thing I'm not clear on is if you want a key, to resolve to the same index with every build. That is, if "foo" maps to index 1 in one build, will it always map to index 1?
If so, you probably should statically construct the dictionaries. I guess it depends on if your range queries always expect things in the same key order.
Anyway, this is a very simple and very effective data structure. If you can afford 81 megabytes as the maximum size of the structure (minus the actual data), it seems like a good place to start. You could probably have it working in a couple of hours.
At best it's all you'll have to do. And if you end up having to replace it, at least you have a working implementation that you can use to verify the correctness of whatever new structure you come up with.
There are other multidimensional trees that are usually better than kd-trees:quadtrees, R*Trees (like R-Tree, but much faster for updates) or PH-Tree.
The PH-Tree is like a quadtree, but much more space efficient, scales better with dimensions and depth is limited by maximum bitwidth of values, i.e. maximum '10000' requires 14 bit, so the depth will not be more than 14.
Java implementations of all trees can be found on my repo, either here (quadtree may be a bit buggy) or here.
EDIT
The following optimization can probably be ignored. Of course the described query will result in a full scan, but that may not be as bad as it sounds, because it will on average anyway return 33%-50% of the whole tree.
Possible optimisation (not tested, but might work for the PH-Tree):
One problem with range queries is the different selectivity of your dimensions, which may result in something to a full scan of the tree. For example when querying for [0..100][0..5][0..10000][1..1], i.e. constraining only the last dimension (with least selectivity).
To avoid this, especially for the PH-Tree, I would try to multiply your values by a fixed constant. For example multiply A by 100, B by 2000, C by 1 and D by 5000. This allows all values to range from 0 to 10000, which may improve query performance when constraining only dimensions with low selectivity (the 2nd or 4th).

Java - Large array advice on how to break it down [duplicate]

I'm trying to find a counterexample to the Pólya Conjecture which will be somewhere in the 900 millions. I'm using a very efficient algorithm that doesn't even require any factorization (similar to a Sieve of Eratosthenes, but with even more information. So, a large array of ints is required.
The program is efficient and correct, but requires an array up to the x i want to check for (it checks all numbers from (2, x)). So, if the counterexample is in the 900 millions, I need an array that will be just as large. Java won't allow me anything over about 20 million. Is there anything I can possibly do to get an array that large?
You may want to extend the max size of the JVM Heap. You can do that with a command line option.
I believe it is -Xmx3600m (3600 megabytes)
Java arrays are indexed by int, so an array can't get larger than 2^31 (there are no unsigned ints). So, the maximum size of an array is 2147483648, which consumes (for a plain int[]) 8589934592 bytes (= 8GB).
Thus, the int-index is usually not a limitation, since you would run out of memory anyway.
In your algorithm, you should use a List (or a Map) as your data structure instead, and choose an implementation of List (or Map) that can grow beyond 2^31. This can get tricky, since the "usual" implementation ArrayList (and HashMap) uses arrays internally. You will have to implement a custom data structure; e.g. by using a 2-level array (a list/array). When you are at it, you can also try to pack the bits more tightly.
Java will allow up to 2 billions array entries. It’s your machine (and your limited memory) that can not handle such a large amount.
900 million 32 bit ints with no further overhead - and there will always be more overhead - would require a little over 3.35 GiB. The only way to get that much memory is with a 64 bit JVM (on a machine with at least 8 GB of RAM) or use some disk backed cache.
If you don't need it all loaded in memory at once, you could segment it into files and store on disk.
What do you mean by "won't allow". You probably getting an OutOfMemoryError, so add more memory with the -Xmx command line option.
You could define your own class which stores the data in a 2d array which would be closer to sqrt(n) by sqrt(n). Then use an index function to determine the two indices of the array. This can be extended to more dimensions, as needed.
The main problem you will run into is running out of RAM. If you approach this limit, you'll need to rethink your algorithm or consider external storage (ie a file or database).
If your algorithm allows it:
Compute it in slices which fit into memory.
You will have to redo the computation for each slice, but it will often be fast enough.
Use an array of a smaller numeric type such as byte.
Depending on how you need to access the array, you might find a RandomAccessFile will allow you to use a file which is larger than will fit in memory. However, the performance you get is very dependant on your access behaviour.
I wrote a version of the Sieve of Eratosthenes for Project Euler which worked on chunks of the search space at a time. It processes the first 1M integers (for example), but keeps each prime number it finds in a table. After you've iterated over all the primes found so far, the array is re-initialised and the primes found already are used to mark the array before looking for the next one.
The table maps a prime to its 'offset' from the start of the array for the next processing iteration.
This is similar in concept (if not in implementation) to the way functional programming languages perform lazy evaluation of lists (although in larger steps). Allocating all the memory up-front isn't necessary, since you're only interested in the parts of the array that pass your test for primeness. Keeping the non-primes hanging around isn't useful to you.
This method also provides memoisation for later iterations over prime numbers. It's faster than scanning your sparse sieve data structure looking for the ones every time.
I second #sfossen's idea and #Aaron Digulla. I'd go for disk access. If your algorithm can take in a List interface rather than a plain array, you could write an adapter from the List to the memory mapped file.
Use Tokyo Cabinet, Berkeley DB, or any other disk-based key-value store. They're faster than any conventional database but allow you to use the disk instead of memory.
could you get by with 900 million bits? (maybe stored as a byte array).
You can try splitting it up into multiple arrays.
for(int x = 0; x <= 1000000; x++){
myFirstList.add(x);
}
for(int x = 1000001; x <= 2000000; x++){
mySecondList.add(x);
}
then iterate over them.
for(int x: myFirstList){
for(int y: myFirstList){
//Remove multiples
}
}
//repeat for second list
Use a memory mapped file (Java 5 NIO package) instead. Or move the sieve into a small C library and use Java JNI.

Java Set.contains(o) vs. List.get(index) Time Complexity

I'm creating a stock application where I save the history of indices when a certain stock was bought. Currently I'm using a HashSet<Integer> to save these values (range 0-270).
In the program, there are a lot of lookups to this history that use Set.contains(o), which is O(1).
I'm considering changing this history to an ArrayList<Boolean>, where a true at index 0 means there was a buy at index 0, false at index 1 means there was no buy at index 1, etc...
This way, I can do a List.get(index), which is also O(1), but I'm guessing will be slightly faster becuase of the fundamental nature of a HashSet lookup.
But because of the small range of the indices, I'm not sure if my assumptions hold true.
So if I am not concerned about space complexity, which method would be faster?
Since your range is small, the fastest is to use an array directly:
boolean[] values = new boolean[271];
// get the value (equivalent to your hashset.contains(index)):
boolean contained = values[index];
It does not involve any hashCode / equals operations that a HashSet requires. This is roughly equivalent to using an ArrayList<Boolean>, minus the (very small) call stack.
Array lookup is definitely O(1) and a very fast operation.
You can also consider using a BitSet as suggested by yshavit.
As well as the boolean[] mentioned above, you might also consider a BitSet. It's designed pretty much exactly for these purposes.
BitSet bs = new BitSet(271);
bs.set(someIndex);
boolean isSet = bs.get(anotherIndex);
This is more compact than a boolean[], taking 34 bytes instead of 270 (not counting headers, which are roughly comparable). It also handles bounds more flexibly -- if you try to set a bit at an index above 270, it'll work instead of throwing an exception. Whether that's a good or bad thing is up to you.
It is obvious that array[index] is faster than [set/list].get(index), otherwise modern JITs will optimize this in a way, that you won't be able to see the difference, unless your app has a very high critical performance requirements.

HashMap speed greater for smaller maps

This may be a strange question, but it is based on some results I get, using Java Map - is element retrieval speed greater in case of a HashMap, when the map is smaller?
I have some part of code that uses containsKey and get(key) methods of a HashMap, and it seems that runs faster if number of elements in the Map is smaller? Is that so?
My knowledge is that HashMap uses some hash function to access to certain field of a map, and there are versions in which that field is a reference to a linked list (because some keys can map to same value), or to other fields in the map, when implemented fully statically.
Is this correct - speed can be greater if Map has less elements?
I need to extend my question, with a concrete example.
I have 2 cases, in both the total number of elements is same.
In first case, I have 10 HashMaps, I'm not aware how elements are distributed. Time of execution of that part of algorithm is 141ms.
In second case, I have 25 HashMaps, same total number of elements. Time of execution of same algorithm is 69ms.
In both cases, I have a for loop that goes through each of the HashMaps, tries to find same elements, and to get elements if present.
Can it be that the execution time is smaller, because individual search inside HashMap is smaller, so is there sum?
I know that this is very strange, but is something like this somehow possible, or am I doing something wrong?
Map(Integer,Double) is considered. It is hard to tell what is the distribution of elements, since it is actually an implementation of KMeans clustering algorithm, and the elements are representations of cluster centroids. That means that they will mostly depend on the initialization of the algorithm. And the total number of elements will not mostly be the same, but I have tried to simplify the problem, sorry if that was misleading.
The number of collisions is decisive for a slow down.
Assume an array of some size, the hash code modulo the size then points to an index where the object is put. Two objects with the same index collide.
Having a large capacity (array size) with respect to number of elements helps.
With HashMap there are overloaded constructors with extra settings.
public HashMap(int initialCapacity,
float loadFactor)
Constructs an empty HashMap with the specified initial capacity and load factor.
You might experiment with that.
For a specific key class used with a HashMap, having a good hashCode can help too. Hash codes are a separate mathematical field.
Of course using less memory helps on the processor / physical memory level, but I doubt an influence in this case.
Does your timing take into account only the cost of get / containsKey, or are you also performing puts in the timed code section? If so, and if you're using the default constructor (initial capacity 16, load factor 0.75) then the larger hash tables are going to need to resize themselves more often than will the smaller hash tables. Like Joop Eggen says in his answer, try playing around with the initial capacity in the constructor, e.g. if you know that you have N elements then set the initial capacity to N / number_of_hash_tables or something along those lines - this ought to result in the smaller and larger hash tables having sufficient capacity that they won't need to be resized

Categories