I'm having a problem where an image rotates based on the difference between the players position and the mouse position which works but the image isn't actually pointing at the mouse. I want the top center of the image to be pointing at the mouse and it just seems that the angle is always off. I'll post the code below.
Input input = gc.getInput();
if (input.isKeyDown(Input.KEY_W))
{
position.y -= 3;
}
if (input.isKeyDown(Input.KEY_A))
{
position.x -= 3;
}
if (input.isKeyDown(Input.KEY_S))
{
position.y += 3;
}
if (input.isKeyDown(Input.KEY_D))
{
position.x += 3;
}
float xDistance = input.getAbsoluteMouseX() - position.x;
float yDistance = input.getAbsoluteMouseY() - position.y;
double angleToTurn = Math.toDegrees(Math.atan2(yDistance, xDistance));
entityImage.setRotation((float) angleToTurn);
The javadoc for Math.atan(double) says that the returning value can range from -pi/2 to pi/2.So you need to compensate for that return value.
double angleToTurn = Math.toDegrees(Math.atan2(yDistance, xDistance));
if(angleToTurn < 0)
{
angleToTurn += 360;
}
Related
I want to get an arrow from the point with the direction to another point.
Before begin, I'm using this method to get the arrow according to the yaw:
public static String getArrow(double yaw) {
if (22.50 < yaw && yaw < 67.50) return "⬉";
else if (67.50 < yaw && yaw < 112.5) return "⬅";
else if (112.50 < yaw && yaw < 157.5) return "⬋";
else if (157.50 < yaw && yaw < 202.5) return "⬇";
else if (202.50 < yaw && yaw < 247.5) return "⬊";
else if (247.50 < yaw && yaw < 292.5) return "➡";
else if (292.50 < yaw && yaw < 337.5)
return "⬈";
return "⬆";
}
I started by using a method like that:
public static String getArrowTo(Location position, Vector direction, Location watched) {
Vector a = watched.clone().subtract(position).toVector().normalize();
double angle = Math.acos(a.dot(direction));
return getArrow(Math.toDegrees(angle));
}
But each time that the point was on left, the arrow show the forward arrow. So, I made something when it's on left, but it's not fixed even with this trick. Actually I'm using:
public static String getArrowTo(Location position, Vector direction, Location watched) {
Vector a = watched.clone().subtract(position).toVector().normalize();
double angle = Math.acos(a.dot(direction));
if (isLeft(position, position.clone().add(direction), watched.toVector()))
angle = 360 - angle;
return getArrow(Math.toDegrees(angle));
}
public static boolean isLeft(Location a, Location b, Vector c) {
return ((b.getX() - a.getX()) * (c.getZ() - a.getZ()) - (b.getZ() - a.getZ()) * (c.getX() - a.getX())) > 0;
}
The isLeft method comes from here.
PS: the class used are Location and Vector, here showed for spigot 1.19 but I'm using 1.8.8.
The left method seems to don't enough work in my case (I don't know why). By adding angle = angle < 0 ? (360 + angle) : angle it should works better but it never goes below 0. It's always in 0-180 range.
I tested the MBo solution: it find the right, but that's all. The front is something known as back, the right is also on the left etc..
How can I fix it ?
Try this:
Location playerLocation = player.getLocation();
Vector locVector = location.toVector().subtract(playerLocation.toVector());
String direction = null;
double locAngle = Math.atan2(locVector.getZ(), locVector.getX());
double playerAngle = Math.atan2(playerLocation.getDirection().getZ(), playerLocation.getDirection().getX());
double angle = playerAngle - locAngle;
while (angle > Math.PI) {
angle = angle - 2 * Math.PI;
}
while (angle < -Math.PI) {
angle = angle + 2 * Math.PI;
}
if (angle < -2.749 || angle >= 2.749) { // -7/8 pi
direction = "⬇";
} else if (angle < -1.963) { // -5/8 pi
direction = "⬊";
} else if (angle < -1.178) { // -3/8 pi
direction = "➡";
} else if (angle < -0.393) { // -1/8 pi
direction = "⬈";
} else if (angle < 0.393) { // 1/8 pi
direction = "⬆";
} else if (angle < 1.178) { // 3/8 pi
direction = "⬉";
} else if (angle < 1.963) { // 5/8 p
direction = "⬅";
} else if (angle < 2.749) { // 7/8 pi
direction = "⬋";
}
For two point a and b you can find direction angle a->b as
double angle = Math.atan2(b.getZ()-a.getZ(), b.getX()-a.getX());
if (angle<0)
angle += 2*Math.Pi;
result is in radians in range -Pi..Pi, so you can adapt result to 0..2*Pi range
I am currently working on a 2D side scroller and have implemented the techniques use in this article for a grapple hook, and it works really well. My problem is I want my player to be able to swing around the rope a little bit to gain a bit of momentum, but currently I can't stop the player from moving all the way up to 90 degrees either side. What techniques can be applied to force this limit?
I have tried using a separate player speed for swinging but this only slows the process down I can still swing up to 90 deg each side.
Here's my update function in the player
public void update(float dt){
//handle friction and air resistance
if(dx !=0){
if(touchingGround) {
// apply friction
if (dx > 0) {
dx -= retardation;
} else {
dx += retardation;
}
} else {
//applied air resistance
if (dx > 0) {
dx -= airResistance;
} else {
dx += airResistance;
}
}
}
// handle gravity
dy -= Constants.GRAVITY * dt;
if(dy < -terminalVelocity){
dy = -terminalVelocity;
}
/*
Handle Player movement
*/
if(right){
if(dx <= maxSpeed){
dx += acceleration;
}
dx = maxSpeed;
}
if(left){
if(dx <= -maxSpeed){
dx -= acceleration;
}
dx = -maxSpeed;
}
if(isGrappling){
//If we collide with something we need to stop grappling
if(hasCollided){
isGrappling = false;
} else {
// This algorithm from here:
// http://gamedev.stackexchange.com/questions/61596/player-rope-swing
float currentD = (float) Math.sqrt(((grappleX - x) * (grappleX - x)) + ((grappleY - y) * (grappleY - y)));
float prevX = getX(), prevY = getY();
if (currentD > grappleRadius) {
Vector2 hookPos = new Vector2(grappleX, grappleY);
Vector2 testPos = (new Vector2(x, y).sub(hookPos)).nor();
y = (hookPos.y + testPos.y * grappleRadius);
x = (hookPos.x + testPos.x * grappleRadius);
// s = d / t
dx += (x - prevX) / dt;
dy += (y - prevY) / dt;
}
}
}
/*
Collision Detection, handle last always!
*/
float oldX = getX(), oldY = getY();
boolean collisionX = false, collisionY = false;
// move on x
x += dx * dt;
// calculate the increment for step in #collidesLeft() and #collidesRight()
increment = collisionLayer.getTileWidth();
increment = getWidth() < increment ? getWidth() / 2 : increment / 2;
if(dx < 0) // going left
collisionX = collidesLeft();
else if(dx > 0) // going right
collisionX = collidesRight();
// react to x collision
if(collisionX) {
setX(oldX);
dx = 0;
}
// move on y
y += dy * dt;
// calculate the increment for step in #collidesBottom() and #collidesTop()
increment = collisionLayer.getTileHeight();
increment = getHeight() < increment ? getHeight() / 2 : increment / 2;
if(dy < 0) {
touchingGround = collisionY = collidesBottom();
// we can only jump 2 times before we have to touch the floor again
if(collisionY){
numberOfJumps = 2;
}
} else if(dy > 0) {
collisionY = collidesTop();
}
// react to y collision
if(collisionY) {
setY(oldY);
dy = 0;
}
hasCollided = collisionX || collisionY;
}
As I am not using any physics engine I chose to just emulate the physics by limiting the angle at which the player can apply force to the swing.
// check if angle permits movement
if(grappleAngle < Math.PI/9 && grappleAngle > -Math.PI/9) {
// handle momentum gaining on rope
if (right) {
dx += swingAcceleration * dt;
}
if (left) {
dx -= swingAcceleration * dt;
}
}
So I am working on a blackjack game, I have wrote a render process which will render a card going out of the cards stack and sliding to the place where it shows all dealer's cards.
My method works fine, except one problem which I will elaborate:
Whenever Y coordinate reaches the target Y coordinate first, the sprite will only move on X-asis because it cant move Y anymore, instead of making a straight angle to the point.
So what it will do is move up diagonally and then instantly go to the right (in my case)
GIF:
(source: gyazo.com)
MP4 (choose mp4 in the (..) menu http://gyazo.com/bec6daadcb46bedc4777a3e4c5ff8c77)
As you can see, it does what I just said.
What did I do wrong? how can I make it motion in a straight angle to the target without going diagonal up and than turn right away?
My process code:
// If the target is on the right side of the start point
if (startPoint.getX() < endPoint.getX()) {
if (current.getX() < endPoint.getX()) {
current.x += moveSpeed;
if (current.getX() > endPoint.getX()) {
current.x = (int) endPoint.getX();
}
}
else {
xDone = true;
}
}
else {
if (current.getX() > endPoint.getX()) {
current.x -= moveSpeed;
if (current.getX() < endPoint.getX()) {
current.x = (int) endPoint.getX();
}
}
else {
xDone = true;
}
}
// Vise-versa
if (startPoint.getY() < endPoint.getY()) {
if (current.getY() < endPoint.getY()) {
current.y += moveSpeed;
if (current.getY() > endPoint.getY()) {
current.y = (int) endPoint.getY();
}
}
else {
yDone = true;
}
}
else {
if (current.getY() > endPoint.getY()) {
current.y -= moveSpeed;
if (current.getY() < endPoint.getY()) {
current.y = (int) endPoint.getY();
}
}
else {
yDone = true;
}
}
// Callback, dw about it
CardContainer.getCardSprite(CardContainer.SPECIAL, 0).drawSprite((int) current.getX(), (int) current.getY());
// Alert finished, in poisiuton
if (xDone && yDone) {
ch.submitCard(card);
}
current = current position
startPoint = the start point
endPoint = the end point
Thanks!
EDited code:
private void applyMovement(double alpha) {
double dx = endPoint.getX() - startPoint.getX();
double dy = endPoint.getY() - startPoint.getY();
this.current.setLocation(startPoint.getX() + alpha * dx, startPoint.getY() + alpha * dy);
}
public void process() {
double alpha = (double) stepsDone / distance;
applyMovement(alpha);
stepsDone++;
// Callback, dw about it
CardContainer.getCardSprite(CardContainer.SPECIAL, 0).drawSprite((int) current.getX(), (int) current.getY());
// Alert finished, in poisiuton
if (stepsDone >= distance) {
ch.submitCard(card);
}
}
Distance calculation:
this.distance = (int) start.distance(end);
Used Point2D distance method:
public double distance(Point2D pt) {
double px = pt.getX() - this.getX();
double py = pt.getY() - this.getY();
return Math.sqrt(px * px + py * py);
}
I would recommend to not use any form of "slope" in such a computation. You will run into problems when the difference in x-direction approaches zero, because then the slope will tend towards infinity.
Assuming that your points are Point2D.Double (or something similar - you should include this kind of information in your questions!), you can compute the movement as follows:
private Point2D.Double initial = ... // The initial position
private Point2D.Double current = ... // The current position
private Point2D.Double target = ... // The target position
void applyMovment(double alpha) {
double dx = target.getX() - initial.getX();
double dy = target.getY() - initial.getY();
current.x = initial.getX() + alpha * dx;
current.y = initial.getY() + alpha * dy;
}
The applyMovment method sketched here can be called with a double value between 0.0 and 1.0, where 0.0 corresponds to the initial position and 1.0 corresponds to the target position. This is just a Linear Interpolation.
So for example, when you have some sort of loop for the animation, you can use the method as follows:
int numberOfSteps = 10;
for (int i=0; i<=numberOfSteps; i++)
{
double alpha = (double)i / numberOfSteps;
applyMovement(alpha);
repaint();
}
This works for any arrangement of the start- and end points, without any sign- or direction issues. It just interpolates between the two positions.
Your calculation needs to be based upon moving the currentY and currentX along a specific line, not a specific set of intervals (moveSpeed). The formula for graphing points on a line is:
y = mx + b
Where x and y are the varying points, m is equal to the slope of the line, and b is what's called the y-intercept.
Your slope is calculated by the formula:
double slope = ((double) endPoint.getY() - startPoint.getY()) / ((double) endPoint.getX() - startPoint.getX());
And the Y intercept can be calculated by just plugging in a bunch of known values once you have them:
double yIntercept = (double) endPoint.getY() - (slope * endPoint.getX())
Then, just loop through the count of the difference in X:
for (int xVal = startPoint.getX(); xVal < endPoint.getX(); xVal++){
currentX = xVal;
currentY = (slope * xVal) + yIntercept;
}
And you should be good.
Warning: this is all off of the top of my head, I don't know if it'll compile.
Maybe a beginner question, but thank you for reading. I'm working on a 2d Java game in which I have missiles that track the position of an object using the following code. I'd like the missiles to stop homing when they reach a certain minimum displacement from their target, at which point they should fall straight down. Right now, the homing behavior turns off whenever the missile is within the minimum displacement, and turns on again if the displacement increases. I'd like the behavior to turn off only once, staying off for the remainder of the missile's lifespan. How can I accomplish this?
public void home(int targetX, int targetY, int scale){
int dy = targetY - y;
int dx = targetX - x;
double speed, sep;
sep = Math.sqrt(dx * dx + dy * dy);
speed = scale/sep;
if(dy > 50 || dx > 50){
x += dx * speed;
y += dy * speed;
}
else{
x += 0;
y += scale;
}
}
Add a member variable, such as boolean homing = true. Then, change your conditional to something like the following:
if (dy < 50 && dx < 50)
homing = false;
if(homing){
x += dx * speed;
y += dy * speed;
}
else{
x += 0;
y += scale;
}
You basically just need to break the mutual dependence between you missile's behaviour and its state.
I have a simple Java applet that has two user-controlled balls, drawn using java.awt. I need a way to detect a collision with between them. I have an algorithm for detecting collision with the walls:
if (xPosition > (300 - radius)){
xSpeed = -xSpeed;
}
else if (xPosition < radius){
xSpeed = -xSpeed;
}
else if (yPosition > (300 - radius)) {
ySpeed = -ySpeed;
}
else if (yPosition < radius){
ySpeed = -ySpeed;
}
xPosition += xSpeed;
yPosition += ySpeed;
and for the second ball:
if (xPosition2 > (300 - radius)){
xSpeed2 = -xSpeed2;
}
else if (xPosition2 < radius){
xSpeed2 = -xSpeed2;
}
else if (yPosition2 > (300 - radius)) {
ySpeed2 = -ySpeed2;
}
else if (yPosition2 < radius){
ySpeed2 = -ySpeed2;
}
xPosition2 += xSpeed2;
yPosition2 += ySpeed2;
The applet is 300 pixels by 300 pixels.
radius stores the radius of the circles.
xPosition and xPosition2 store the x coordinates for the two balls.
yPosition and yPosition store the y coordinates for the two balls,
xSpeed and xSpeed2 store the x velocities for the two balls.
ySpeed and ySpeed2 store the y velocities for the two balls.
Use http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.html, there's a distance method there, if it's less than the radius they're colliding.
EDIT:
Err, less than the radius * 2 , sorry
There's Point2D in Java or you can do it yourself, it is trivially easy for circle/circle collisions or sphere/sphere collisions.
int distXX = (xPosition1 - xPosition2) * (xPosition1 - xPosition2);
int distYY = (yPosition1 - yPosition2) * (yPosition1 - yPosition2);
if ( radius*radius > distXX * distYY ) {
... // There's a collision
}
public boolean colliding(Ball anotherBall) {
double xDelta = (this.x + this.ballSize/2 + this.dx) - (anotherBall.x + anotherBall.ballSize/2 + anotherBall.dx);
double YDelta = (this.y + this.ballSize/2 + this.dy) - (anotherBall.y + anotherBall.ballSize/2 + anotherBall.dy);
double distance = Math.sqrt(Math.pow(xDelta, 2) + Math.pow(YDelta, 2));
return (distance <= this.ballSize/2 + anotherBall.ballSize/2);
}
This Link is pretty useful!
Circle-Circle Collisions
It's very detailed and didatic
At the bottom of that page there are another links, to even more detailed stuff!
I used the Distance Between Centers method ---
Circles
By measuring the distance between each center you can say if they are colliding.
The distance should never be more then the sum of the 2 radius.
Here's what I did:
private boolean checkDrawContains(ShapeDrawable newHole)
{
long newCenterX = newHole.getBounds().left + (newHole.getBounds().width()/2); //Get the center of my shapes
long newCenterY = newHole.getBounds().top + (newHole.getBounds().height()/2);
for(ShapeDrawable hole: mHoles) // I was storing the circles in an ArrayList
{
long centerX = hole.getBounds().left + (hole.getBounds().width()/2); //Get the center of my shapes
long centerY = hole.getBounds().top + (hole.getBounds().height()/2);
long x = centerX - newCenterX;
long y = centerY - newCenterY;
long aux = (long) ((Math.pow(Math.abs(x),2)) + (Math.pow(Math.abs(y),2))); //Pythagoras the hard way :P
long distance = (long) Math.sqrt(aux);
long sRads = (newHole.getBounds().width()/2) + (hole.getBounds().width()/2);
if(distance <= sRads ) {
return true; //Is Colliding!
}
}
return false; // Is not Colliding!
}