Java for loop to get X - java

I need help with a for loop I have for an assignment.
There is a math problem called N!, I bet some of you have heard of it. It goes like 1*2*3*4*5*n=x
I made a table like this:
1 = 1
1 * 2 = 2
1 * 2 * 3 = 6
1 * 2 * 3 * 4 = 24
1 * 2 * 3 * 4 * 5 = 120
1 * 2 * 3 * 4 * 5 * 6 = 720
But I just can't seem to solve the problem. How do I get what x is from 1*2*3*4....*n=x? Here's my code so far:
Scanner input = new Scanner(System.in);
System.out.println("\n~~Assignment 8.5~~");
boolean go = true;
do {
int n;
int total;
System.out.println("Loop until:");
n = input.nextInt();
for (int i = 1;i <= n;i++)
{
System.out.print(i);
if (i == n) { System.out.print(" = " + "idk" + "\n"); break;} else { System.out.print(" * ");}
}
} while ( go == true);

Just add total calculation s
inside the for loop:
total *= i;
and after the for loop print it. Remember to initialize total with value 1

You can use following Class;
public class RecursiveTest {
public RecursiveTest(int x){
int i=1;
int temptotal=1;
while(true){
System.out.print(i+"*");
if(temptotal==x || temptotal>x) break;
temptotal=temptotal*(++i);
}
}
public static void main(String[] args) {
new RecursiveTest(100);
}
}

Here's the hint,
fact(x) = x * fact(x-1) iff x > 0
fact(x) = 1 iff x == 0
fact(x) = ERROR iff x < 0
Create and implement the function public int fact(int x) and call it from inside a main function after picking up input from the command line or from reading user input. (and validating the input is a number)

int rec_n( int n){
int result = 1;
for(int i = 1; i <= n; i++ ){
result *= i;
}
return result;
}

Related

Java function multiplying itself while printing?

I'm new to Java and I have a problem. I created a class that calculates factorial of n:
public class factorial {
double result=1;
public double equation (int x){
for (int i=1;i<x+1;i=i+1) {
result = result*i;
}
return result;
}
}
I know I'm missing the case when x=0 but that's not the point Whenever I print it in other class it seems to multiply by itself
public class task1 {
factorial fa =new factorial();
void printit(){
System.out.println(fa.equation(3));
System.out.println(fa.equation(3));
System.out.println(fa.equation(3));
}
}
Main class:
public class Main {
public static void main(String[] args) {
task1 ta = new task1();
ta.printit();
}
}
Output:
6.0
36.0
216.0
How should I do it so it prints 6 three times instead of multiplying by itself
You have to declare result inside the method equation. This way, the variable result is fresh whenever you run the method equation.
public class factorial {
public double equation (int x){
double result = 1;
for (int i = 1; i < x + 1; i = i + 1) {
result = result * i;
}
return result;
}
}
If you don't do this, then the variable result stays the same with that instance of factorial. Also note that Java class names usually start with a capital letter, so instead of factorial, it would be Factorial.
Instead of i = i + 1, you can use i++ or i += 1. Similarly, instead of result = result * i, you can do result *= i.
Some examples:
i = i + 10 == i += 10
i = i - 10 == i -= 10
i = i * 10 == i *= 10
i = i / 10 == i /= 10
i = i % 10 == i %= 10
i = i + 1 == i += 1 == i++
i = i - 1 == i -= 1 == i--

Fibonacci Modified:How to fix this algorithm?

I have this problem in front of me and I can't figure out how to solve it.
It's about the series 0,1,1,2,5,29,866... (Every number besides the first two is the sum of the squares of the previous two numbers (2^2+5^2=29)).
In the first part I had to write an algorithm (Not a native speaker so I don't really know the terminology) that would receive a place in the series and return it's value (6 returned 29)
This is how I wrote it:
public static int mod(int n)
{
if (n==1)
return 0;
if (n==2)
return 1;
else
return (int)(Math.pow(mod(n-1), 2))+(int)(Math.pow(mod(n-2), 2));
}
However, now I need that the algorithm will receive a number and return the total sum up to it in the series (6- 29+5+2+1+1+0=38)
I have no idea how to do this, I am trying but I am really unable to understand recursion so far, even if I wrote something right, how can I check it to be sure? And how generally to reach the right algorithm?
Using any extra parameters is forbidden.
Thanks in advance!
We want:
mod(1) = 0
mod(2) = 0+1
mod(3) = 0+1+1
mod(4) = 0+1+1+2
mod(5) = 0+1+1+2+5
mod(6) = 0+1+1+2+5+29
and we know that each term is defined as something like:
2^2+5^2=29
So to work out mod(7) we need to add the next term in the sequence x to mod(6).
Now we can work out the term using mod:
x = term(5)^2 + term(6)^2
term(5) = mod(5) - mod(4)
term(6) = mod(6) - mod(5)
x = (mod(5)-mod(4))^2 + (mod(6)-mod(5))^2
So we can work out mod(7) by evaluating mod(4),mod(5),mod(6) and combining the results.
Of course, this is going to be incredibly inefficient unless you memoize the function!
Example Python code:
def f(n):
if n<=0:
return 0
if n==1:
return 1
a=f(n-1)
b=f(n-2)
c=f(n-3)
return a+(a-b)**2+(b-c)**2
for n in range(10):
print f(n)
prints:
0
1
2
4
9
38
904
751701
563697636866
317754178345850590849300
How about this? :)
class Main {
public static void main(String[] args) {
final int N = 6; // Your number here.
System.out.println(result(N));
}
private static long result(final int n) {
if (n == 0) {
return 0;
} else {
return element(n) + result(n - 1);
}
}
private static long element(final int n) {
if (n == 1) {
return 0L;
} else if (n == 2) {
return 1L;
} else {
return sqr(element(n - 2)) + sqr(element(n - 1));
}
}
private static long sqr(final long x) {
return x * x;
}
}
Here is the idea that separate function (element) is responsible for finding n-th element in the sequence, and result is responsible for summing them up. Most probably there is a more efficient solution though. However, there is only one parameter.
I can think of a way of doing this with the constraints in your comments but it's a total hack. You need one method to do two things: find the current value and add previous values. One option is to use negative numbers to flag one of those function:
int f(int n) {
if (n > 0)
return f(-n) + f(n-1);
else if (n > -2)
return 0;
else if (n == -2)
return 1;
else
return f(n+1)*f(n+1)+f(n+2)*f(n+2);
}
The first 8 numbers output (before overflow) are:
0
1
2
4
9
38
904
751701
I don't recommend this solution but it does meet your constraints of being a single recursive method with a single argument.
Here is my proposal.
We know that:
f(n) = 0; n < 2
f(n) = 1; 2 >= n <= 3
f(n) = f(n-1)^2 + f(n-2)^2; n>3
So:
f(0)= 0
f(1)= 0
f(2)= f(1) + f(0) = 1
f(3)= f(2) + f(1) = 1
f(4)= f(3) + f(2) = 2
f(5)= f(4) + f(3) = 5
and so on
According with this behaivor we must implement a recursive function to return:
Total = sum f(n); n= 0:k; where k>0
I read you can use a static method but not use more than one parameter into the function. So, i used a static variable with the static method, just for control the execution of loop:
class Dummy
{
public static void main (String[] args) throws InterruptedException {
int n=10;
for(int i=1; i<=n; i++)
{
System.out.println("--------------------------");
System.out.println("Total for n:" + i +" = " + Dummy.f(i));
}
}
private static int counter = 0;
public static long f(int n)
{
counter++;
if(counter == 1)
{
long total = 0;
while(n>=0)
{
total += f(n);
n--;
}
counter--;
return total;
}
long result = 0;
long n1=0,n2=0;
if(n >= 2 && n <=3)
result++; //Increase 1
else if(n>3)
{
n1 = f(n-1);
n2 = f(n-2);
result = n1*n1 + n2*n2;
}
counter--;
return result;
}
}
the output:
--------------------------
Total for n:1 = 0
--------------------------
Total for n:2 = 1
--------------------------
Total for n:3 = 2
--------------------------
Total for n:4 = 4
--------------------------
Total for n:5 = 9
--------------------------
Total for n:6 = 38
--------------------------
Total for n:7 = 904
--------------------------
Total for n:8 = 751701
--------------------------
Total for n:9 = 563697636866
--------------------------
Total for n:10 = 9011676203564263700
I hope it helps you.
UPDATE: Here is another version without a static method and has the same output:
class Dummy
{
public static void main (String[] args) throws InterruptedException {
Dummy app = new Dummy();
int n=10;
for(int i=1; i<=n; i++)
{
System.out.println("--------------------------");
System.out.println("Total for n:" + i +" = " + app.mod(i));
}
}
private static int counter = 0;
public long mod(int n)
{
Dummy.counter++;
if(counter == 1)
{
long total = 0;
while(n>=0)
{
total += mod(n);
n--;
}
Dummy.counter--;
return total;
}
long result = 0;
long n1=0,n2=0;
if(n >= 2 && n <=3)
result++; //Increase 1
else if(n>3)
{
n1 = mod(n-1);
n2 = mod(n-2);
result = n1*n1 + n2*n2;
}
Dummy.counter--;
return result;
}
}
Non-recursive|Memoized
You should not use recursion since it will not be good in performance.
Use memoization instead.
def FibonacciModified(n):
fib = [0]*n
fib[0],fib[1]=0,1
for idx in range(2,n):
fib[idx] = fib[idx-1]**2 + fib[idx-2]**2
return fib
if __name__ == '__main__':
fib = FibonacciModified(8)
for x in fib:
print x
Output:
0
1
1
2
5
29
866
750797
The above will calculate every number in the series once[not more than that].
While in recursion an element in the series will be calculated multiple times irrespective of the fact that the number was calculated before.
http://www.geeksforgeeks.org/program-for-nth-fibonacci-number/

Multiplying Using Bitwise Shift Operators Giving TLE

Question
Given N and M, write an equation using left shift operators whose
result will be equal to the product N * M.
Input : First line has 0 < T ≤ 50000 denoting number of test cases.
Next T lines have two integers 0 < N, M ≤ 10¹⁶.
Output : For each test case print an equation for N * M resembling
(N << p1) + (N << p2)+ ...+(N << pk) where p1 ≥ p2 ≥ ... ≥ pk
and k is minimum.
SAMPLE INPUT SAMPLE OUTPUT
2
2 1 (2<<0)
2 3 (2<<1) + (2<<0)
Time Limit: 1.0 sec
My Solution 1st approach
int dig = (int)(Math.floor(Math.log10(m)/Math.log10(2))+1);
boolean flag = false;
for(long i = dig; i>=0; --i) {
if(((m>>(i-1l)) & 1l) == 1l) {
if(flag)
System.out.print(" + ("+n+ "<<"+(i-1)+")");
else {
System.out.print("("+n+"<<"+(i-1)+")");
flag = true;
}
}
}
Second Approach
boolean[] arr = new boolean[dig];
int i = dig-1;
while(m > 0) {
if((m&1) == 1 ) {
arr[i] = true;
}
i--;
m = m>>1l;
}
int j = dig-1;
for( i = 0; i < dig; ++i) {
if(arr[i]) {
if(flag)
System.out.print(" + ("+n+"<<"+j+")");
else {
System.out.print("("+n+"<<"+j+")");
flag = true;
}
}
j--;
}
In both cases I am getting 5 correct out of 8 and rest 3 are TLE why?
I don't actually see anything in both of your approaches preventing some ten-thousands of products of numbers up to 57 bit to be represented as Strings in one second:
TLE may be due to System.out.print() taking an inordinate amount of time.
That said, use a utility like
/** builds <code>n * m</code> in the form
* <code>(n<<p1) + (n<<p2) + ... + (n<<pk)</code>
* using left shift.
* #param n (0 < multiplicand <= 10**16)
* #param m 0 < multiplier <= 10**16
* #return a verbose <code>String</code> for <code>n * m</code>
*/
static String verboseBinaryProduct(Object n, long m) {
int shift = Long.SIZE - Long.numberOfLeadingZeros(m) - 1;
final long highest = 1 << shift;
final StringBuilder binary = new StringBuilder(42);
final String chatter = ") + (" + n + "<<";
final long rest = highest - 1;
while (true) {
if (0 != (highest & m))
binary.append(chatter).append(shift);
if (0 == (rest & m)) {
binary.append(')');
return binary.substring(4);
}
m <<= 1;
shift -= 1;
}
}
and System.out.println(verboseBinaryProduct(n, m));.

How do I make it so the last multiplication sign is not included in the line of factorials?

So I need to get rid of this final multiplication sign in each line. I've tried a few different ways but they just messed up my code or didn't work, and I can't seem to wrap my head around how to go about this.
Here's an example of the output:
Starting value (at least 2):
59
Ending value (at least 2):
64
59 = 59 x
60 = 2 x 2 x 3 x 5 x
61 = 61 x
62 = 2 x 31 x
63 = 3 x 3 x 7 x
64 = 2 x 2 x 2 x 2 x 2 x 2 x
Here's how I want it to look:
Starting value (at least 2):
59
Ending value (at least 2):
64
59 = 59
60 = 2 x 2 x 3 x 5
61 = 61
62 = 2 x 31
63 = 3 x 3 x 7
64 = 2 x 2 x 2 x 2 x 2 x 2
And here's the code:
import java.util.Scanner;
public class PrimeFact {
public static void main(String[] args) {
int start, stop;
int number = 0;
Scanner input = new Scanner(System.in);
System.out.println("Starting value (at least 2): ");
start = input.nextInt();
System.out.println("Ending value (at least 2): ");
stop = input.nextInt();
// stops the program if the user entered n input that cannot be factored
if (start < 2 || stop < 2) {
System.out.println("Amount must be at least 2 rather than " + start + " and " + stop + ". Quitting.");
System.exit(0);
} // end if
// loop
// calls factors
for (int i = start; i <= stop; i++) {
number = i;
printFactors(i);
System.out.println();
} // ends loop
}// ends main
// prints prime factors
public static void printFactors(int number) {
int out = number;
int count = 0;
System.out.print(out + " = ");
for (int factor = 2; factor <= number; factor++) {
int exponent = 0;
while (number % factor == 0) {
number /= factor;
exponent++;
count++;
}
if (exponent > 0) {
printExponents(exponent, factor, count);
}
}
}
//prints the factors the required number of times
public static void printExponents(int exponent, int factor, int count) {
for (int q = 1; q <= exponent; q++) {
System.out.print(factor + " x ");
// if (q /= count) {
// System.out.print(factor);
// }
}
}
}// ends class
into printFactors near the declarations of the ints add in
boolean hadFactor = false;
also amend your call there to:
if (exponent > 0) {
printExponents(exponent, factor, count, hadFactor);
hadFactor=true;
}
and in printExponents do
public static void printExponents(int exponent, int factor, int count, boolean hadFactor) {
for (int q = 1; q <= exponent; q++) {
if (hadFactor){System.out.print(" x ")}
System.out.print(factor);
hadFactor=true;
// if (q /= count) {
// System.out.print(factor);
// }
}

Find the largest palindrome made from the product of two 3-digit numbers

package testing.project;
public class PalindromeThreeDigits {
public static void main(String[] args) {
int value = 0;
for(int i = 100;i <=999;i++)
{
for(int j = i;j <=999;j++)
{
int value1 = i * j;
StringBuilder sb1 = new StringBuilder(""+value1);
String sb2 = ""+value1;
sb1.reverse();
if(sb2.equals(sb1.toString()) && value<value1) {
value = value1;
}
}
}
System.out.println(value);
}
}
This is the code that I wrote in Java... Is there any efficient way other than this.. And can we optimize this code more??
We suppose the largest such palindrome will have six digits rather than five, because 143*777 = 111111 is a palindrome.
As noted elsewhere, a 6-digit base-10 palindrome abccba is a multiple of 11. This is true because a*100001 + b*010010 + c*001100 is equal to 11*a*9091 + 11*b*910 + 11*c*100. So, in our inner loop we can decrease n by steps of 11 if m is not a multiple of 11.
We are trying to find the largest palindrome under a million that is a product of two 3-digit numbers. To find a large result, we try large divisors first:
We step m downwards from 999, by 1's;
Run n down from 999 by 1's (if 11 divides m, or 9% of the time) or from 990 by 11's (if 11 doesn't divide m, or 91% of the time).
We keep track of the largest palindrome found so far in variable q. Suppose q = r·s with r <= s. We usually have m < r <= s. We require m·n > q or n >= q/m. As larger palindromes are found, the range of n gets more restricted, for two reasons: q gets larger, m gets smaller.
The inner loop of attached program executes only 506 times, vs the ~ 810000 times the naive program used.
#include <stdlib.h>
#include <stdio.h>
int main(void) {
enum { A=100000, B=10000, C=1000, c=100, b=10, a=1, T=10 };
int m, n, p, q=111111, r=143, s=777;
int nDel, nLo, nHi, inner=0, n11=(999/11)*11;
for (m=999; m>99; --m) {
nHi = n11; nDel = 11;
if (m%11==0) {
nHi = 999; nDel = 1;
}
nLo = q/m-1;
if (nLo < m) nLo = m-1;
for (n=nHi; n>nLo; n -= nDel) {
++inner;
// Check if p = product is a palindrome
p = m * n;
if (p%T==p/A && (p/B)%T==(p/b)%T && (p/C)%T==(p/c)%T) {
q=p; r=m; s=n;
printf ("%d at %d * %d\n", q, r, s);
break; // We're done with this value of m
}
}
}
printf ("Final result: %d at %d * %d inner=%d\n", q, r, s, inner);
return 0;
}
Note, the program is in C but same techniques will work in Java.
What I would do:
Start at 999, working my way backwards to 998, 997, etc
Create the palindrome for my current number.
Determine the prime factorization of this number (not all that expensive if you have a pre-generated list of primes.
Work through this prime factorization list to determine if I can use a combination of the factors to make 2 3 digit numbers.
Some code:
int[] primes = new int[] {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,
73,79,83,89,97,101,103,107,109,113,,127,131,137,139,149,151,157,163,167,173,
179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,
283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,
419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,
547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,
661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,
811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,
947,953,967,971,977,983,991,997};
for(int i = 999; i >= 100; i--) {
String palstr = String.valueOf(i) + (new StringBuilder().append(i).reverse());
int pal = Integer.parseInt(pal);
int[] factors = new int[20]; // cannot have more than 20 factors
int remainder = pal;
int facpos = 0;
primeloop:
for(int p = 0; p < primes.length; i++) {
while(remainder % p == 0) {
factors[facpos++] = p;
remainder /= p;
if(remainder < p) break primeloop;
}
}
// now to do the combinations here
}
We can translate the task into the language of mathematics.
For a short start, we use characters as digits:
abc * xyz = n
abc is a 3-digit number, and we deconstruct it as 100*a+10*b+c
xyz is a 3-digit number, and we deconstruct it as 100*x+10*y+z
Now we have two mathematical expressions, and can define a,b,c,x,y,z as € of {0..9}.
It is more precise to define a and x as of element from {1..9}, not {0..9}, because 097 isn't really a 3-digit number, is it?
Ok.
If we want to produce a big number, we should try to reach a 9......-Number, and since it shall be palindromic, it has to be of the pattern 9....9. If the last digit is a 9, then from
(100*a + 10*b + c) * (100*x + 10*y + z)
follows that z*c has to lead to a number, ending in digit 9 - all other calculations don't infect the last digit.
So c and z have to be from (1,3,7,9) because (1*9=9, 9*1=9, 3*3=9, 7*7=49).
Now some code (Scala):
val n = (0 to 9)
val m = n.tail // 1 to 9
val niners = Seq (1, 3, 7, 9)
val highs = for (a <- m;
b <- n;
c <- niners;
x <- m;
y <- n;
z <- niners) yield ((100*a + 10*b + c) * (100*x + 10*y + z))
Then I would sort them by size, and starting with the biggest one, test them for being palindromic. So I would omit to test small numbers for being palindromic, because that might not be so cheap.
For aesthetic reasons, I wouldn't take a (toString.reverse == toString) approach, but a recursive divide and modulo solution, but on todays machines, it doesn't make much difference, does it?
// Make a list of digits from a number:
def digitize (z: Int, nums : List[Int] = Nil) : List[Int] =
if (z == 0) nums else digitize (z/10, z%10 :: nums)
/* for 342243, test 3...==...3 and then 4224.
Fails early for 123329 */
def palindromic (nums : List[Int]) : Boolean = nums match {
case Nil => true
case x :: Nil => true
case x :: y :: Nil => x == y
case x :: xs => x == xs.last && palindromic (xs.init) }
def palindrom (z: Int) = palindromic (digitize (z))
For serious performance considerations, I would test it against a toString/reverse/equals approach. Maybe it is worse. It shall fail early, but division and modulo aren't known to be the fastest operations, and I use them to make a List from the Int. It would work for BigInt or Long with few redeclarations, and works nice with Java; could be implemented in Java but look different there.
Okay, putting the things together:
highs.filter (_ > 900000) .sortWith (_ > _) find (palindrom)
res45: Option[Int] = Some(906609)
There where 835 numbers left > 900000, and it returns pretty fast, but I guess even more brute forcing isn't much slower.
Maybe there is a much more clever way to construct the highest palindrom, instead of searching for it.
One problem is: I didn't knew before, that there is a solution > 900000.
A very different approach would be, to produce big palindromes, and deconstruct their factors.
public class Pin
{
public static boolean isPalin(int num)
{
char[] val = (""+num).toCharArray();
for(int i=0;i<val.length;i++)
{
if(val[i] != val[val.length - i - 1])
{
return false;
}
}
return true;
}
public static void main(String[] args)
{
for(int i=999;i>100;i--)
for(int j=999;j>100;j--)
{
int mul = j*i;
if(isPalin(mul))
{
System.out.printf("%d * %d = %d",i,j,mul);
return;
}
}
}
}
package ex;
public class Main {
public static void main(String[] args) {
int i = 0, j = 0, k = 0, l = 0, m = 0, n = 0, flag = 0;
for (i = 999; i >= 100; i--) {
for (j = i; j >= 100; j--) {
k = i * j;
// System.out.println(k);
m = 0;
n = k;
while (n > 0) {
l = n % 10;
m = m * 10 + l;
n = n / 10;
}
if (m == k) {
System.out.println("pal " + k + " of " + i + " and" + j);
flag = 1;
break;
}
}
if (flag == 1) {
// System.out.println(k);
break;
}
}
}
}
A slightly different approach that can easily calculate the largest palindromic number made from the product of up to two 6-digit numbers.
The first part is to create a generator of palindrome numbers. So there is no need to check if a number is palindromic, the second part is a simple loop.
#include <memory>
#include <iostream>
#include <cmath>
using namespace std;
template <int N>
class PalindromeGenerator {
unique_ptr <int []> m_data;
bool m_hasnext;
public :
PalindromeGenerator():m_data(new int[N])
{
for(auto i=0;i<N;i++)
m_data[i]=9;
m_hasnext=true;
}
bool hasNext() const {return m_hasnext;}
long long int getnext()
{
long long int v=0;
long long int b=1;
for(int i=0;i<N;i++){
v+=m_data[i]*b;
b*=10;
}
for(int i=N-1;i>=0;i--){
v+=m_data[i]*b;
b*=10;
}
auto i=N-1;
while (i>=0)
{
if(m_data[i]>=1) {
m_data[i]--;
return v;
}
else
{
m_data[i]=9;
i--;
}
}
m_hasnext=false;
return v;
}
};
template<int N>
void findmaxPalindrome()
{
PalindromeGenerator<N> gen;
decltype(gen.getnext()) minv=static_cast<decltype(gen.getnext())> (pow(10,N-1));
decltype(gen.getnext()) maxv=static_cast<decltype(gen.getnext())> (pow(10,N)-1);
decltype(gen.getnext()) start=11*(maxv/11);
while(gen.hasNext())
{
auto v=gen.getnext();
for (decltype(gen.getnext()) i=start;i>minv;i-=11)
{
if (v%i==0)
{
auto r=v/i;
if (r>minv && r<maxv ){
cout<<"done:"<<v<<" "<<i<< "," <<r <<endl;
return ;
}
}
}
}
return ;
}
int main(int argc, char* argv[])
{
findmaxPalindrome<6>();
return 0;
}
You can use the fact that 11 is a multiple of the palindrome to cut down on the search space. We can get this since we can assume the palindrome will be 6 digits and >= 111111.
e.g. ( from projecteuler ;) )
P= xyzzyx = 100000x + 10000y + 1000z + 100z + 10y +x
P=100001x+10010y+1100z
P=11(9091x+910y+100z)
Check if i mod 11 != 0, then the j loop can be subtracted by 11 (starting at 990) since at least one of the two must be divisible by 11.
You can try the following which prints
999 * 979 * 989 = 967262769
largest palindrome= 967262769 took 0.015
public static void main(String... args) throws IOException, ParseException {
long start = System.nanoTime();
int largestPalindrome = 0;
for (int i = 999; i > 100; i--) {
LOOP:
for (int j = i; j > 100; j--) {
for (int k = j; k > 100; k++) {
int n = i * j * k;
if (n < largestPalindrome) continue LOOP;
if (isPalindrome(n)) {
System.out.println(i + " * " + j + " * " + k + " = " + n);
largestPalindrome = n;
}
}
}
}
long time = System.nanoTime() - start;
System.out.printf("largest palindrome= %d took %.3f seconds%n", largestPalindrome, time / 1e9);
}
private static boolean isPalindrome(int n) {
if (n >= 100 * 1000 * 1000) {
// 9 digits
return n % 10 == n / (100 * 1000 * 1000)
&& (n / 10 % 10) == (n / (10 * 1000 * 1000) % 10)
&& (n / 100 % 10) == (n / (1000 * 1000) % 10)
&& (n / 1000 % 10) == (n / (100 * 1000) % 10);
} else if (n >= 10 * 1000 * 1000) {
// 8 digits
return n % 10 == n / (10 * 1000 * 1000)
&& (n / 10 % 10) == (n / (1000 * 1000) % 10)
&& (n / 100 % 10) == (n / (100 * 1000) % 10)
&& (n / 1000 % 10) == (n / (10 * 1000) % 10);
} else if (n >= 1000 * 1000) {
// 7 digits
return n % 10 == n / (1000 * 1000)
&& (n / 10 % 10) == (n / (100 * 1000) % 10)
&& (n / 100 % 10) == (n / (10 * 1000) % 10);
} else throw new AssertionError();
}
i did this my way , but m not sure if this is the most efficient way of doing this .
package problems;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class P_4 {
/**
* #param args
* #throws IOException
*/
static int[] arry = new int[6];
static int[] arry2 = new int[6];
public static boolean chk()
{
for(int a=0;a<arry.length;a++)
if(arry[a]!=arry2[a])
return false;
return true;
}
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
InputStreamReader ir = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(ir);
int temp,z,i;
for(int x=999;x>100;x--)
for(int y=999;y>100;y--)
{
i=0;
z=x*y;
while(z>0)
{
temp=z%10;
z=z/10;
arry[i]=temp;
i++;
}
for(int k = arry.length;k>0;k--)
arry2[arry.length- k]=arry[k-1];
if(chk())
{
System.out.print("pelindrome = ");
for(int l=0;l<arry2.length;l++)
System.out.print(arry2[l]);
System.out.println(x);
System.out.println(y);
}
}
}
}
This is code in C, a little bit long, but gets the job done.:)
#include <stdio.h>
#include <stdlib.h>
/*
A palindromic number reads the same both ways. The largest palindrome made from the product of two
2-digit numbers is 9009 = 91 99.
Find the largest palindrome made from the product of two 3-digit numbers.*/
int palndr(int b)
{
int *x,*y,i=0,j=0,br=0;
int n;
n=b;
while(b!=0)
{
br++;
b/=10;
}
x=(int *)malloc(br*sizeof(int));
y=(int *)malloc(br*sizeof(int));
int br1=br;
while(n!=0)
{
x[i++]=y[--br]=n%10;
n/=10;
}
int ind = 1;
for(i=0;i<br1;i++)
if(x[i]!=y[i])
ind=0;
free(x);
free(y);
return ind;
}
int main()
{
int i,cek,cekmax=1;
int j;
for(i=100;i<=999;i++)
{
for(j=i;j<=999;j++)
{
cek=i*j;
if(palndr(cek))
{
if(pp>cekmax)
cekmax=cek;
}
}
}
printf("The largest palindrome is: %d\n\a",cekmax);
}
You can actually do it with Python, it's easy just take a look:
actualProduct = 0
highestPalindrome = 0
# Setting the numbers. In case it's two digit 10 and 99, in case is three digit 100 and 999, etc.
num1 = 100
num2 = 999
def isPalindrome(number):
number = str(number)
reversed = number[::-1]
if number==reversed:
return True
else:
return False
a = 0
b = 0
for i in range(num1,num2+1):
for j in range(num1,num2+1):
actualProduct = i * j
if (isPalindrome(actualProduct) and (highestPalindrome < actualProduct)):
highestPalindrome = actualProduct
a = i
b = j
print "Largest palindrome made from the product of two %d-digit numbers is [ %d ] made of %d * %d" % (len(str(num1)), highestPalindrome, a, b)
Since we are not cycling down both iterators (num1 and num2) at the same time, the first palindrome number we find will be the largest. We don’t need to test to see if the palindrome we found is the largest. This significantly reduces the time it takes to calculate.
package testing.project;
public class PalindromeThreeDigits {
public static void main(String[] args) {
int limit = 99;
int max = 999;
int num1 = max, num2, prod;
while(num1 > limit)
{
num2 = num1;
while(num2 > limit)
{
total = num1 * num2;
StringBuilder sb1 = new StringBuilder(""+prod);
String sb2 = ""+prod;
sb1.reverse();
if( sb2.equals(sb1.toString()) ) { //optimized here
//print and exit
}
num2--;
}
num1--;
}
}//end of main
}//end of class PalindromeThreeDigits
I tried the solution by Tobin joy and vickyhacks and both of them produce the result 580085 which is wrong here is my solution, though very clumsy:
import java.util.*;
class ProjEu4
{
public static void main(String [] args) throws Exception
{
int n=997;
ArrayList<Integer> al=new ArrayList<Integer>();
outerloop:
while(n>100){
int k=reverse(n);
int fin=n*1000+k;
al=findfactors(fin);
if(al.size()>=2)
{
for(int i=0;i<al.size();i++)
{
if(al.contains(fin/al.get(i))){
System.out.println(fin+" factors are:"+al.get(i)+","+fin/al.get(i));
break outerloop;}
}
}
n--;
}
}
private static ArrayList<Integer> findfactors(int fin)
{
ArrayList<Integer> al=new ArrayList<Integer>();
for(int i=100;i<=999;i++)
{
if(fin%i==0)
al.add(i);
}
return al;
}
private static int reverse(int number)
{
int reverse = 0;
while(number != 0){
reverse = (reverse*10)+(number%10);
number = number/10;
}
return reverse;
}
}
Most probably it is replication of one of the other solution but it looks simple owing to pythonified code ,even it is a bit brute-force.
def largest_palindrome():
largest_palindrome = 0;
for i in reversed(range(1,1000,1)):
for j in reversed(range(1, i+1, 1)):
num = i*j
if check_palindrome(str(num)) and num > largest_palindrome :
largest_palindrome = num
print "largest palindrome ", largest_palindrome
def check_palindrome(term):
rev_term = term[::-1]
return rev_term == term
What about : in python
>>> for i in range((999*999),(100*100), -1):
... if str(i) == str(i)[::-1]:
... print i
... break
...
997799
>>>
I believe there is a simpler approach: Examine palindromes descending from the largest product of two three digit numbers, selecting the first palindrome with two three digit factors.
Here is the Ruby code:
require './palindrome_range'
require './prime'
def get_3_digit_factors(n)
prime_factors = Prime.factors(n)
rf = [prime_factors.pop]
rf << prime_factors.shift while rf.inject(:*) < 100 || prime_factors.inject(:*) > 999
lf = prime_factors.inject(:*)
rf = rf.inject(:*)
lf < 100 || lf > 999 || rf < 100 || rf > 999 ? [] : [lf, rf]
end
def has_3_digit_factors(n)
return !get_3_digit_factors(n).empty?
end
pr = PalindromeRange.new(0, 999 * 999)
n = pr.downto.find {|n| has_3_digit_factors(n)}
puts "Found #{n} - Factors #{get_3_digit_factors(n).inspect}, #{Prime.factors(n).inspect}"
prime.rb:
class Prime
class<<self
# Collect all prime factors
# -- Primes greater than 3 follow the form of (6n +/- 1)
# Being of the form 6n +/- 1 does not mean it is prime, but all primes have that form
# See http://primes.utm.edu/notes/faq/six.html
# -- The algorithm works because, while it will attempt non-prime values (e.g., (6 *4) + 1 == 25),
# they will fail since the earlier repeated division (e.g., by 5) means the non-prime will fail.
# Put another way, after repeatedly dividing by a known prime, the remainder is itself a prime
# factor or a multiple of a prime factor not yet tried (e.g., greater than 5).
def factors(n)
square_root = Math.sqrt(n).ceil
factors = []
while n % 2 == 0
factors << 2
n /= 2
end
while n % 3 == 0
factors << 3
n /= 3
end
i = 6
while i < square_root
[(i - 1), (i + 1)].each do |f|
while n % f == 0
factors << f
n /= f
end
end
i += 6
end
factors << n unless n == 1
factors
end
end
end
palindrome_range.rb:
class PalindromeRange
FIXNUM_MAX = (2**(0.size * 8 -2) -1)
def initialize(min = 0, max = FIXNUM_MAX)
#min = min
#max = max
end
def downto
return enum_for(:downto) unless block_given?
n = #max
while n >= #min
yield n if is_palindrome(n)
n -= 1
end
nil
end
def each
return upto
end
def upto
return enum_for(:downto) unless block_given?
n = #min
while n <= #max
yield n if is_palindrome(n)
n += 1
end
nil
end
private
def is_palindrome(n)
s = n.to_s
i = 0
j = s.length - 1
while i <= j
break if s[i] != s[j]
i += 1
j -= 1
end
i > j
end
end
public class ProjectEuler4 {
public static void main(String[] args) {
int x = 999; // largest 3-digit number
int largestProduct = 0;
for(int y=x; y>99; y--){
int product = x*y;
if(isPalindormic(x*y)){
if(product>largestProduct){
largestProduct = product;
System.out.println("3-digit numbers product palindormic number : " + x + " * " + y + " : " + product);
}
}
if(y==100 || product < largestProduct){y=x;x--;}
}
}
public static boolean isPalindormic(int n){
int palindormic = n;
int reverse = 0;
while(n>9){
reverse = (reverse*10) + n%10;
n=n/10;
}
reverse = (reverse*10) + n;
return (reverse == palindormic);
}
}

Categories