I am trying to solve this question as the preparation for a programming interview:
A frog only moves forward, but it can move in steps 1 inch long or in jumps 2 inches long. A frog can cover the same distance using different combinations of steps and jumps.
Write a function that calculates the number of different combinations a frog can use to cover a given distance.
For example, a distance of 3 inches can be covered in three ways: step-step-step, step-jump, and jump-step.
I think there is a quite simple solution to this, but I just can't seem to find it. I would like to use recursion, but I can't see how. Here is what I have so far:
public class Frog {
static int combinations = 0;
static int step = 1;
static int jump = 2;
static int[] arr = {step, jump};
public static int numberOfWays(int n) {
for (int i = 0; i < arr.length; i++) {
int sum = 0;
sum += arr[i];
System.out.println("SUM outer loop: " + sum + " : " + arr[i]);
while (sum != 3) {
for (int j = 0; j < arr.length; j++) {
if (sum + arr[j] <= 3) {
sum += arr[j];
System.out.println("SUM inner loop: " + sum + " : " + arr[j]);
if (sum == 3) {
combinations++;
System.out.println("Combinations " + combinations);
}
}
}
}
}
return combinations;
}
public static void main(String[] args) {
System.out.println(numberOfWays(3));
}
}
It doesn't find all combinations, and I think the code is quite bad. Anyone have a good solution to this question?
Think you have an oracle that knows how to solve the problem for "smaller problems", you just need to feed it with smaller problems. This is the recursive method.
In your case, you solve foo(n), by splitting the possible moves the frog can do in the last step, and summing them):
foo(n) = foo(n-1) + foo(n-2)
^ ^
1 step 2 steps
In addition, you need a stop clause of foo(0) = 1, foo(1)=1 (one way to move 0 or 1 inches).
Is this recursive formula looks familiar? Can you solve it better than the naive recursive solution?
Spoiler:
Fibonacci Sequence
Here's a simple pseudo-code implementation that should work:
var results = []
function plan(previous, n){
if (n==0) {
results.push(previous)
} else if (n > 0){
plan(previous + ' step', n-1)
plan(previous + ' hop', n-2)
}
}
plan('', 5)
If you want to improve the efficiency of an algorithm like this you could look into using memoization
Here's a combinatoric way: think of n as 1 + 1 + 1 ... = n. Now bunch the 1's in pairs, gradually increasing the number of bunched 1's, summing the possibilities to arrange them.
For example, consider 5 as 1 1 1 1 1:
one bunch => (1) (1) (1) (11) => 4 choose 1 possibilities to arrange one 2 with three 1's
two bunches => (1) (11) (11) => 3 choose 2 possibilities to arrange two 2's with one 1
etc.
This seems directly related to Wikipedia's description of Fibonacci numbers' "Use in Mathematics," for example, in counting "the number of compositions of 1s and 2s that sum to a given total n" (http://en.wikipedia.org/wiki/Fibonacci_number).
This logic is working fine. (Recursion)
public static int numberOfWays(int n) {
if (n== 1) {
return 1; // step
} else if (n== 2) {
return 2; // (step + step) or jump
} else {
return numberOfWays(n- 1)
+ numberOfWays(n- 2);
}
}
The accepted answer fails performance test for larger sets. Here is a version with for loop that satisfies performance tests at testdome.
using System;
public class Frog
{
public static int NumberOfWays (int n)
{
int first = 0, second = 1;
for ( int i = 0; i<n; i++ )
{
int at = first;
first = second;
second = at + second;
}
return second;
}
public static void Main (String[] args)
{
Console.WriteLine (NumberOfWays (3));
}
}
C++ code works fine.
static int numberOfWays(int n)
{
if (n == 1) return 1;
else if (n == 2) return 2;
else
{
static std::unordered_map<int,int> m;
auto i = m.find(n);
if (i != m.end())
return i->second;
int x = numberOfWays(n - 1) + numberOfWays(n - 2);
m[n] = x;
return x;
}
}
package testing.project;
public class PalindromeThreeDigits {
public static void main(String[] args) {
int value = 0;
for(int i = 100;i <=999;i++)
{
for(int j = i;j <=999;j++)
{
int value1 = i * j;
StringBuilder sb1 = new StringBuilder(""+value1);
String sb2 = ""+value1;
sb1.reverse();
if(sb2.equals(sb1.toString()) && value<value1) {
value = value1;
}
}
}
System.out.println(value);
}
}
This is the code that I wrote in Java... Is there any efficient way other than this.. And can we optimize this code more??
We suppose the largest such palindrome will have six digits rather than five, because 143*777 = 111111 is a palindrome.
As noted elsewhere, a 6-digit base-10 palindrome abccba is a multiple of 11. This is true because a*100001 + b*010010 + c*001100 is equal to 11*a*9091 + 11*b*910 + 11*c*100. So, in our inner loop we can decrease n by steps of 11 if m is not a multiple of 11.
We are trying to find the largest palindrome under a million that is a product of two 3-digit numbers. To find a large result, we try large divisors first:
We step m downwards from 999, by 1's;
Run n down from 999 by 1's (if 11 divides m, or 9% of the time) or from 990 by 11's (if 11 doesn't divide m, or 91% of the time).
We keep track of the largest palindrome found so far in variable q. Suppose q = r·s with r <= s. We usually have m < r <= s. We require m·n > q or n >= q/m. As larger palindromes are found, the range of n gets more restricted, for two reasons: q gets larger, m gets smaller.
The inner loop of attached program executes only 506 times, vs the ~ 810000 times the naive program used.
#include <stdlib.h>
#include <stdio.h>
int main(void) {
enum { A=100000, B=10000, C=1000, c=100, b=10, a=1, T=10 };
int m, n, p, q=111111, r=143, s=777;
int nDel, nLo, nHi, inner=0, n11=(999/11)*11;
for (m=999; m>99; --m) {
nHi = n11; nDel = 11;
if (m%11==0) {
nHi = 999; nDel = 1;
}
nLo = q/m-1;
if (nLo < m) nLo = m-1;
for (n=nHi; n>nLo; n -= nDel) {
++inner;
// Check if p = product is a palindrome
p = m * n;
if (p%T==p/A && (p/B)%T==(p/b)%T && (p/C)%T==(p/c)%T) {
q=p; r=m; s=n;
printf ("%d at %d * %d\n", q, r, s);
break; // We're done with this value of m
}
}
}
printf ("Final result: %d at %d * %d inner=%d\n", q, r, s, inner);
return 0;
}
Note, the program is in C but same techniques will work in Java.
What I would do:
Start at 999, working my way backwards to 998, 997, etc
Create the palindrome for my current number.
Determine the prime factorization of this number (not all that expensive if you have a pre-generated list of primes.
Work through this prime factorization list to determine if I can use a combination of the factors to make 2 3 digit numbers.
Some code:
int[] primes = new int[] {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,
73,79,83,89,97,101,103,107,109,113,,127,131,137,139,149,151,157,163,167,173,
179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,
283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,
419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,
547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,
661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,
811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,
947,953,967,971,977,983,991,997};
for(int i = 999; i >= 100; i--) {
String palstr = String.valueOf(i) + (new StringBuilder().append(i).reverse());
int pal = Integer.parseInt(pal);
int[] factors = new int[20]; // cannot have more than 20 factors
int remainder = pal;
int facpos = 0;
primeloop:
for(int p = 0; p < primes.length; i++) {
while(remainder % p == 0) {
factors[facpos++] = p;
remainder /= p;
if(remainder < p) break primeloop;
}
}
// now to do the combinations here
}
We can translate the task into the language of mathematics.
For a short start, we use characters as digits:
abc * xyz = n
abc is a 3-digit number, and we deconstruct it as 100*a+10*b+c
xyz is a 3-digit number, and we deconstruct it as 100*x+10*y+z
Now we have two mathematical expressions, and can define a,b,c,x,y,z as € of {0..9}.
It is more precise to define a and x as of element from {1..9}, not {0..9}, because 097 isn't really a 3-digit number, is it?
Ok.
If we want to produce a big number, we should try to reach a 9......-Number, and since it shall be palindromic, it has to be of the pattern 9....9. If the last digit is a 9, then from
(100*a + 10*b + c) * (100*x + 10*y + z)
follows that z*c has to lead to a number, ending in digit 9 - all other calculations don't infect the last digit.
So c and z have to be from (1,3,7,9) because (1*9=9, 9*1=9, 3*3=9, 7*7=49).
Now some code (Scala):
val n = (0 to 9)
val m = n.tail // 1 to 9
val niners = Seq (1, 3, 7, 9)
val highs = for (a <- m;
b <- n;
c <- niners;
x <- m;
y <- n;
z <- niners) yield ((100*a + 10*b + c) * (100*x + 10*y + z))
Then I would sort them by size, and starting with the biggest one, test them for being palindromic. So I would omit to test small numbers for being palindromic, because that might not be so cheap.
For aesthetic reasons, I wouldn't take a (toString.reverse == toString) approach, but a recursive divide and modulo solution, but on todays machines, it doesn't make much difference, does it?
// Make a list of digits from a number:
def digitize (z: Int, nums : List[Int] = Nil) : List[Int] =
if (z == 0) nums else digitize (z/10, z%10 :: nums)
/* for 342243, test 3...==...3 and then 4224.
Fails early for 123329 */
def palindromic (nums : List[Int]) : Boolean = nums match {
case Nil => true
case x :: Nil => true
case x :: y :: Nil => x == y
case x :: xs => x == xs.last && palindromic (xs.init) }
def palindrom (z: Int) = palindromic (digitize (z))
For serious performance considerations, I would test it against a toString/reverse/equals approach. Maybe it is worse. It shall fail early, but division and modulo aren't known to be the fastest operations, and I use them to make a List from the Int. It would work for BigInt or Long with few redeclarations, and works nice with Java; could be implemented in Java but look different there.
Okay, putting the things together:
highs.filter (_ > 900000) .sortWith (_ > _) find (palindrom)
res45: Option[Int] = Some(906609)
There where 835 numbers left > 900000, and it returns pretty fast, but I guess even more brute forcing isn't much slower.
Maybe there is a much more clever way to construct the highest palindrom, instead of searching for it.
One problem is: I didn't knew before, that there is a solution > 900000.
A very different approach would be, to produce big palindromes, and deconstruct their factors.
public class Pin
{
public static boolean isPalin(int num)
{
char[] val = (""+num).toCharArray();
for(int i=0;i<val.length;i++)
{
if(val[i] != val[val.length - i - 1])
{
return false;
}
}
return true;
}
public static void main(String[] args)
{
for(int i=999;i>100;i--)
for(int j=999;j>100;j--)
{
int mul = j*i;
if(isPalin(mul))
{
System.out.printf("%d * %d = %d",i,j,mul);
return;
}
}
}
}
package ex;
public class Main {
public static void main(String[] args) {
int i = 0, j = 0, k = 0, l = 0, m = 0, n = 0, flag = 0;
for (i = 999; i >= 100; i--) {
for (j = i; j >= 100; j--) {
k = i * j;
// System.out.println(k);
m = 0;
n = k;
while (n > 0) {
l = n % 10;
m = m * 10 + l;
n = n / 10;
}
if (m == k) {
System.out.println("pal " + k + " of " + i + " and" + j);
flag = 1;
break;
}
}
if (flag == 1) {
// System.out.println(k);
break;
}
}
}
}
A slightly different approach that can easily calculate the largest palindromic number made from the product of up to two 6-digit numbers.
The first part is to create a generator of palindrome numbers. So there is no need to check if a number is palindromic, the second part is a simple loop.
#include <memory>
#include <iostream>
#include <cmath>
using namespace std;
template <int N>
class PalindromeGenerator {
unique_ptr <int []> m_data;
bool m_hasnext;
public :
PalindromeGenerator():m_data(new int[N])
{
for(auto i=0;i<N;i++)
m_data[i]=9;
m_hasnext=true;
}
bool hasNext() const {return m_hasnext;}
long long int getnext()
{
long long int v=0;
long long int b=1;
for(int i=0;i<N;i++){
v+=m_data[i]*b;
b*=10;
}
for(int i=N-1;i>=0;i--){
v+=m_data[i]*b;
b*=10;
}
auto i=N-1;
while (i>=0)
{
if(m_data[i]>=1) {
m_data[i]--;
return v;
}
else
{
m_data[i]=9;
i--;
}
}
m_hasnext=false;
return v;
}
};
template<int N>
void findmaxPalindrome()
{
PalindromeGenerator<N> gen;
decltype(gen.getnext()) minv=static_cast<decltype(gen.getnext())> (pow(10,N-1));
decltype(gen.getnext()) maxv=static_cast<decltype(gen.getnext())> (pow(10,N)-1);
decltype(gen.getnext()) start=11*(maxv/11);
while(gen.hasNext())
{
auto v=gen.getnext();
for (decltype(gen.getnext()) i=start;i>minv;i-=11)
{
if (v%i==0)
{
auto r=v/i;
if (r>minv && r<maxv ){
cout<<"done:"<<v<<" "<<i<< "," <<r <<endl;
return ;
}
}
}
}
return ;
}
int main(int argc, char* argv[])
{
findmaxPalindrome<6>();
return 0;
}
You can use the fact that 11 is a multiple of the palindrome to cut down on the search space. We can get this since we can assume the palindrome will be 6 digits and >= 111111.
e.g. ( from projecteuler ;) )
P= xyzzyx = 100000x + 10000y + 1000z + 100z + 10y +x
P=100001x+10010y+1100z
P=11(9091x+910y+100z)
Check if i mod 11 != 0, then the j loop can be subtracted by 11 (starting at 990) since at least one of the two must be divisible by 11.
You can try the following which prints
999 * 979 * 989 = 967262769
largest palindrome= 967262769 took 0.015
public static void main(String... args) throws IOException, ParseException {
long start = System.nanoTime();
int largestPalindrome = 0;
for (int i = 999; i > 100; i--) {
LOOP:
for (int j = i; j > 100; j--) {
for (int k = j; k > 100; k++) {
int n = i * j * k;
if (n < largestPalindrome) continue LOOP;
if (isPalindrome(n)) {
System.out.println(i + " * " + j + " * " + k + " = " + n);
largestPalindrome = n;
}
}
}
}
long time = System.nanoTime() - start;
System.out.printf("largest palindrome= %d took %.3f seconds%n", largestPalindrome, time / 1e9);
}
private static boolean isPalindrome(int n) {
if (n >= 100 * 1000 * 1000) {
// 9 digits
return n % 10 == n / (100 * 1000 * 1000)
&& (n / 10 % 10) == (n / (10 * 1000 * 1000) % 10)
&& (n / 100 % 10) == (n / (1000 * 1000) % 10)
&& (n / 1000 % 10) == (n / (100 * 1000) % 10);
} else if (n >= 10 * 1000 * 1000) {
// 8 digits
return n % 10 == n / (10 * 1000 * 1000)
&& (n / 10 % 10) == (n / (1000 * 1000) % 10)
&& (n / 100 % 10) == (n / (100 * 1000) % 10)
&& (n / 1000 % 10) == (n / (10 * 1000) % 10);
} else if (n >= 1000 * 1000) {
// 7 digits
return n % 10 == n / (1000 * 1000)
&& (n / 10 % 10) == (n / (100 * 1000) % 10)
&& (n / 100 % 10) == (n / (10 * 1000) % 10);
} else throw new AssertionError();
}
i did this my way , but m not sure if this is the most efficient way of doing this .
package problems;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class P_4 {
/**
* #param args
* #throws IOException
*/
static int[] arry = new int[6];
static int[] arry2 = new int[6];
public static boolean chk()
{
for(int a=0;a<arry.length;a++)
if(arry[a]!=arry2[a])
return false;
return true;
}
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
InputStreamReader ir = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(ir);
int temp,z,i;
for(int x=999;x>100;x--)
for(int y=999;y>100;y--)
{
i=0;
z=x*y;
while(z>0)
{
temp=z%10;
z=z/10;
arry[i]=temp;
i++;
}
for(int k = arry.length;k>0;k--)
arry2[arry.length- k]=arry[k-1];
if(chk())
{
System.out.print("pelindrome = ");
for(int l=0;l<arry2.length;l++)
System.out.print(arry2[l]);
System.out.println(x);
System.out.println(y);
}
}
}
}
This is code in C, a little bit long, but gets the job done.:)
#include <stdio.h>
#include <stdlib.h>
/*
A palindromic number reads the same both ways. The largest palindrome made from the product of two
2-digit numbers is 9009 = 91 99.
Find the largest palindrome made from the product of two 3-digit numbers.*/
int palndr(int b)
{
int *x,*y,i=0,j=0,br=0;
int n;
n=b;
while(b!=0)
{
br++;
b/=10;
}
x=(int *)malloc(br*sizeof(int));
y=(int *)malloc(br*sizeof(int));
int br1=br;
while(n!=0)
{
x[i++]=y[--br]=n%10;
n/=10;
}
int ind = 1;
for(i=0;i<br1;i++)
if(x[i]!=y[i])
ind=0;
free(x);
free(y);
return ind;
}
int main()
{
int i,cek,cekmax=1;
int j;
for(i=100;i<=999;i++)
{
for(j=i;j<=999;j++)
{
cek=i*j;
if(palndr(cek))
{
if(pp>cekmax)
cekmax=cek;
}
}
}
printf("The largest palindrome is: %d\n\a",cekmax);
}
You can actually do it with Python, it's easy just take a look:
actualProduct = 0
highestPalindrome = 0
# Setting the numbers. In case it's two digit 10 and 99, in case is three digit 100 and 999, etc.
num1 = 100
num2 = 999
def isPalindrome(number):
number = str(number)
reversed = number[::-1]
if number==reversed:
return True
else:
return False
a = 0
b = 0
for i in range(num1,num2+1):
for j in range(num1,num2+1):
actualProduct = i * j
if (isPalindrome(actualProduct) and (highestPalindrome < actualProduct)):
highestPalindrome = actualProduct
a = i
b = j
print "Largest palindrome made from the product of two %d-digit numbers is [ %d ] made of %d * %d" % (len(str(num1)), highestPalindrome, a, b)
Since we are not cycling down both iterators (num1 and num2) at the same time, the first palindrome number we find will be the largest. We don’t need to test to see if the palindrome we found is the largest. This significantly reduces the time it takes to calculate.
package testing.project;
public class PalindromeThreeDigits {
public static void main(String[] args) {
int limit = 99;
int max = 999;
int num1 = max, num2, prod;
while(num1 > limit)
{
num2 = num1;
while(num2 > limit)
{
total = num1 * num2;
StringBuilder sb1 = new StringBuilder(""+prod);
String sb2 = ""+prod;
sb1.reverse();
if( sb2.equals(sb1.toString()) ) { //optimized here
//print and exit
}
num2--;
}
num1--;
}
}//end of main
}//end of class PalindromeThreeDigits
I tried the solution by Tobin joy and vickyhacks and both of them produce the result 580085 which is wrong here is my solution, though very clumsy:
import java.util.*;
class ProjEu4
{
public static void main(String [] args) throws Exception
{
int n=997;
ArrayList<Integer> al=new ArrayList<Integer>();
outerloop:
while(n>100){
int k=reverse(n);
int fin=n*1000+k;
al=findfactors(fin);
if(al.size()>=2)
{
for(int i=0;i<al.size();i++)
{
if(al.contains(fin/al.get(i))){
System.out.println(fin+" factors are:"+al.get(i)+","+fin/al.get(i));
break outerloop;}
}
}
n--;
}
}
private static ArrayList<Integer> findfactors(int fin)
{
ArrayList<Integer> al=new ArrayList<Integer>();
for(int i=100;i<=999;i++)
{
if(fin%i==0)
al.add(i);
}
return al;
}
private static int reverse(int number)
{
int reverse = 0;
while(number != 0){
reverse = (reverse*10)+(number%10);
number = number/10;
}
return reverse;
}
}
Most probably it is replication of one of the other solution but it looks simple owing to pythonified code ,even it is a bit brute-force.
def largest_palindrome():
largest_palindrome = 0;
for i in reversed(range(1,1000,1)):
for j in reversed(range(1, i+1, 1)):
num = i*j
if check_palindrome(str(num)) and num > largest_palindrome :
largest_palindrome = num
print "largest palindrome ", largest_palindrome
def check_palindrome(term):
rev_term = term[::-1]
return rev_term == term
What about : in python
>>> for i in range((999*999),(100*100), -1):
... if str(i) == str(i)[::-1]:
... print i
... break
...
997799
>>>
I believe there is a simpler approach: Examine palindromes descending from the largest product of two three digit numbers, selecting the first palindrome with two three digit factors.
Here is the Ruby code:
require './palindrome_range'
require './prime'
def get_3_digit_factors(n)
prime_factors = Prime.factors(n)
rf = [prime_factors.pop]
rf << prime_factors.shift while rf.inject(:*) < 100 || prime_factors.inject(:*) > 999
lf = prime_factors.inject(:*)
rf = rf.inject(:*)
lf < 100 || lf > 999 || rf < 100 || rf > 999 ? [] : [lf, rf]
end
def has_3_digit_factors(n)
return !get_3_digit_factors(n).empty?
end
pr = PalindromeRange.new(0, 999 * 999)
n = pr.downto.find {|n| has_3_digit_factors(n)}
puts "Found #{n} - Factors #{get_3_digit_factors(n).inspect}, #{Prime.factors(n).inspect}"
prime.rb:
class Prime
class<<self
# Collect all prime factors
# -- Primes greater than 3 follow the form of (6n +/- 1)
# Being of the form 6n +/- 1 does not mean it is prime, but all primes have that form
# See http://primes.utm.edu/notes/faq/six.html
# -- The algorithm works because, while it will attempt non-prime values (e.g., (6 *4) + 1 == 25),
# they will fail since the earlier repeated division (e.g., by 5) means the non-prime will fail.
# Put another way, after repeatedly dividing by a known prime, the remainder is itself a prime
# factor or a multiple of a prime factor not yet tried (e.g., greater than 5).
def factors(n)
square_root = Math.sqrt(n).ceil
factors = []
while n % 2 == 0
factors << 2
n /= 2
end
while n % 3 == 0
factors << 3
n /= 3
end
i = 6
while i < square_root
[(i - 1), (i + 1)].each do |f|
while n % f == 0
factors << f
n /= f
end
end
i += 6
end
factors << n unless n == 1
factors
end
end
end
palindrome_range.rb:
class PalindromeRange
FIXNUM_MAX = (2**(0.size * 8 -2) -1)
def initialize(min = 0, max = FIXNUM_MAX)
#min = min
#max = max
end
def downto
return enum_for(:downto) unless block_given?
n = #max
while n >= #min
yield n if is_palindrome(n)
n -= 1
end
nil
end
def each
return upto
end
def upto
return enum_for(:downto) unless block_given?
n = #min
while n <= #max
yield n if is_palindrome(n)
n += 1
end
nil
end
private
def is_palindrome(n)
s = n.to_s
i = 0
j = s.length - 1
while i <= j
break if s[i] != s[j]
i += 1
j -= 1
end
i > j
end
end
public class ProjectEuler4 {
public static void main(String[] args) {
int x = 999; // largest 3-digit number
int largestProduct = 0;
for(int y=x; y>99; y--){
int product = x*y;
if(isPalindormic(x*y)){
if(product>largestProduct){
largestProduct = product;
System.out.println("3-digit numbers product palindormic number : " + x + " * " + y + " : " + product);
}
}
if(y==100 || product < largestProduct){y=x;x--;}
}
}
public static boolean isPalindormic(int n){
int palindormic = n;
int reverse = 0;
while(n>9){
reverse = (reverse*10) + n%10;
n=n/10;
}
reverse = (reverse*10) + n;
return (reverse == palindormic);
}
}
I am trying to find the fastest way to check whether a given number is prime or not (in Java). Below are several primality testing methods I came up with. Is there any better way than the second implementation(isPrime2)?
public class Prime {
public static boolean isPrime1(int n) {
if (n <= 1) {
return false;
}
if (n == 2) {
return true;
}
for (int i = 2; i <= Math.sqrt(n) + 1; i++) {
if (n % i == 0) {
return false;
}
}
return true;
}
public static boolean isPrime2(int n) {
if (n <= 1) {
return false;
}
if (n == 2) {
return true;
}
if (n % 2 == 0) {
return false;
}
for (int i = 3; i <= Math.sqrt(n) + 1; i = i + 2) {
if (n % i == 0) {
return false;
}
}
return true;
}
}
public class PrimeTest {
public PrimeTest() {
}
#Test
public void testIsPrime() throws IllegalArgumentException, IllegalAccessException, InvocationTargetException {
Prime prime = new Prime();
TreeMap<Long, String> methodMap = new TreeMap<Long, String>();
for (Method method : Prime.class.getDeclaredMethods()) {
long startTime = System.currentTimeMillis();
int primeCount = 0;
for (int i = 0; i < 1000000; i++) {
if ((Boolean) method.invoke(prime, i)) {
primeCount++;
}
}
long endTime = System.currentTimeMillis();
Assert.assertEquals(method.getName() + " failed ", 78498, primeCount);
methodMap.put(endTime - startTime, method.getName());
}
for (Entry<Long, String> entry : methodMap.entrySet()) {
System.out.println(entry.getValue() + " " + entry.getKey() + " Milli seconds ");
}
}
}
Here's another way:
boolean isPrime(long n) {
if(n < 2) return false;
if(n == 2 || n == 3) return true;
if(n%2 == 0 || n%3 == 0) return false;
long sqrtN = (long)Math.sqrt(n)+1;
for(long i = 6L; i <= sqrtN; i += 6) {
if(n%(i-1) == 0 || n%(i+1) == 0) return false;
}
return true;
}
and BigInteger's isProbablePrime(...) is valid for all 32 bit int's.
EDIT
Note that isProbablePrime(certainty) does not always produce the correct answer. When the certainty is on the low side, it produces false positives, as #dimo414 mentioned in the comments.
Unfortunately, I could not find the source that claimed isProbablePrime(certainty) is valid for all (32-bit) int's (given enough certainty!).
So I performed a couple of tests. I created a BitSet of size Integer.MAX_VALUE/2 representing all uneven numbers and used a prime sieve to find all primes in the range 1..Integer.MAX_VALUE. I then looped from i=1..Integer.MAX_VALUE to test that every new BigInteger(String.valueOf(i)).isProbablePrime(certainty) == isPrime(i).
For certainty 5 and 10, isProbablePrime(...) produced false positives along the line. But with isProbablePrime(15), no test failed.
Here's my test rig:
import java.math.BigInteger;
import java.util.BitSet;
public class Main {
static BitSet primes;
static boolean isPrime(int p) {
return p > 0 && (p == 2 || (p%2 != 0 && primes.get(p/2)));
}
static void generatePrimesUpTo(int n) {
primes = new BitSet(n/2);
for(int i = 0; i < primes.size(); i++) {
primes.set(i, true);
}
primes.set(0, false);
int stop = (int)Math.sqrt(n) + 1;
int percentageDone = 0, previousPercentageDone = 0;
System.out.println("generating primes...");
long start = System.currentTimeMillis();
for(int i = 0; i <= stop; i++) {
previousPercentageDone = percentageDone;
percentageDone = (int)((i + 1.0) / (stop / 100.0));
if(percentageDone <= 100 && percentageDone != previousPercentageDone) {
System.out.println(percentageDone + "%");
}
if(primes.get(i)) {
int number = (i * 2) + 1;
for(int p = number * 2; p < n; p += number) {
if(p < 0) break; // overflow
if(p%2 == 0) continue;
primes.set(p/2, false);
}
}
}
long elapsed = System.currentTimeMillis() - start;
System.out.println("finished generating primes ~" + (elapsed/1000) + " seconds");
}
private static void test(final int certainty, final int n) {
int percentageDone = 0, previousPercentageDone = 0;
long start = System.currentTimeMillis();
System.out.println("testing isProbablePrime(" + certainty + ") from 1 to " + n);
for(int i = 1; i < n; i++) {
previousPercentageDone = percentageDone;
percentageDone = (int)((i + 1.0) / (n / 100.0));
if(percentageDone <= 100 && percentageDone != previousPercentageDone) {
System.out.println(percentageDone + "%");
}
BigInteger bigInt = new BigInteger(String.valueOf(i));
boolean bigIntSays = bigInt.isProbablePrime(certainty);
if(isPrime(i) != bigIntSays) {
System.out.println("ERROR: isProbablePrime(" + certainty + ") returns "
+ bigIntSays + " for i=" + i + " while it " + (isPrime(i) ? "is" : "isn't" ) +
" a prime");
return;
}
}
long elapsed = System.currentTimeMillis() - start;
System.out.println("finished testing in ~" + ((elapsed/1000)/60) +
" minutes, no false positive or false negative found for isProbablePrime(" + certainty + ")");
}
public static void main(String[] args) {
int certainty = Integer.parseInt(args[0]);
int n = Integer.MAX_VALUE;
generatePrimesUpTo(n);
test(certainty, n);
}
}
which I ran by doing:
java -Xmx1024m -cp . Main 15
The generating of the primes took ~30 sec on my machine. And the actual test of all i in 1..Integer.MAX_VALUE took around 2 hours and 15 minutes.
This is the most elegant way:
public static boolean isPrime(int n) {
return !new String(new char[n]).matches(".?|(..+?)\\1+");
}
Java 1.4+. No imports needed.
So short. So beautiful.
You took the first step in eliminating all multiples of 2.
However, why did you stop there? you could have eliminated all multiples of 3 except for 3, all multiples of 5 except for 5, etc.
When you follow this reasoning to its conclusion, you get the Sieve of Eratosthenes.
Take a look at the AKS primality test (and its various optimizations). It is a deterministic primality test that runs in polynomial time.
There is an implementation of the algorithm in Java from the University of Tuebingen (Germany) here
i think this method is best. at least for me-
public static boolean isPrime(int num)
{
for (int i = 2; i<= num/i; i++)
{
if (num % i == 0)
{
return false;
}
}
return num > 1;
}
Your algorithm will work well for reasonably small numbers. For big numbers, advanced algorithms should be used (based for example on elliptic curves). Another idea will be to use some "pseuso-primes" test. These will test quickly that a number is a prime, but they aren't 100% accurate. However, they can help you rule out some numbers quicker than with your algorithm.
Finally, although the compiler will probably optimise this for you, you should write:
int max = (int) (Math.sqrt(n) + 1);
for (int i = 3; i <= max; i = i + 2) {
}
A fast test due to Jaeschke (1993) is a deterministic version of the Miller-Rabin test, which has no false positives below 4,759,123,141 and hence can be applied to Java ints.
// Given a positive number n, find the largest number m such
// that 2^m divides n.
private static int val2(int n) {
int m = 0;
if ((n&0xffff) == 0) {
n >>= 16;
m += 16;
}
if ((n&0xff) == 0) {
n >>= 8;
m += 8;
}
if ((n&0xf) == 0) {
n >>= 4;
m += 4;
}
if ((n&0x3) == 0) {
n >>= 2;
m += 2;
}
if (n > 1) {
m++;
}
return m;
}
// For convenience, handle modular exponentiation via BigInteger.
private static int modPow(int base, int exponent, int m) {
BigInteger bigB = BigInteger.valueOf(base);
BigInteger bigE = BigInteger.valueOf(exponent);
BigInteger bigM = BigInteger.valueOf(m);
BigInteger bigR = bigB.modPow(bigE, bigM);
return bigR.intValue();
}
// Basic implementation.
private static boolean isStrongProbablePrime(int n, int base) {
int s = val2(n-1);
int d = modPow(base, n>>s, n);
if (d == 1) {
return true;
}
for (int i = 1; i < s; i++) {
if (d+1 == n) {
return true;
}
d = d*d % n;
}
return d+1 == n;
}
public static boolean isPrime(int n) {
if ((n&1) == 0) {
return n == 2;
}
if (n < 9) {
return n > 1;
}
return isStrongProbablePrime(n, 2) && isStrongProbablePrime(n, 7) && isStrongProbablePrime(n, 61);
}
This doesn't work for long variables, but a different test does: the BPSW test has no counterexamples up to 2^64. This basically consists of a 2-strong probable prime test like above followed by a strong Lucas test which is a bit more complicated but not fundamentally different.
Both of these tests are vastly faster than any kind of trial division.
If you are just trying to find if a number is prime or not it's good enough, but if you're trying to find all primes from 0 to n a better option will be the Sieve of Eratosthenes
But it will depend on limitations of java on array sizes etc.
There are of course hundreds of primality tests, all with various advantages and disadvantages based on size of number, special forms, factor size, etc.
However, in java I find the most useful one to be this:
BigInteger.valueOf(long/int num).isProbablePrime(int certainty);
Its already implemented, and is quite fast (I find it takes ~6 seconds for a 1000x1000 matrix filled with longs 0–2^64 and a certainty of 15) and probably better optimized than anything we mortals could come up with.
It uses a version of the Baillie–PSW primality test, which has no know counterexamples. (though it might use a slightly weaker version of the test, which may err sometimes. maybe)
What you have written is what most common programmers do and which should be sufficient most of the time.
However, if you are after the "best scientific algorithm" there are many variations (with varying levels of certainty) documented http://en.wikipedia.org/wiki/Prime_number.
For example, if you have a 70 digit number JVM's physical limitations can prevent your code from running in which case you can use "Sieves" etc.
Again, like I said if this was a programming question or a general question of usage in software your code should be perfect :)
Dependent on the length of the number you need to test you could precompute a list of prime numbers for small values (n < 10^6), which is used first, if the asked number is within this range. This is of course the fastest way.
Like mentioned in other answers the Sieve of Eratosthenes is the preferred method to generate such a precomputed list.
If your numbers are larger than this, you can use the primality test of Rabin.
Rabin primality test
Algorithm Efficiency : O( n^(1/2)) Algorithm
Note: This sample code below contains count variables and calls to a print function for the purposes of printing the results :
import java.util.*;
class Primality{
private static void printStats(int count, int n, boolean isPrime) {
System.err.println( "Performed " + count + " checks, determined " + n
+ ( (isPrime) ? " is PRIME." : " is NOT PRIME." ) );
}
/**
* Improved O( n^(1/2)) ) Algorithm
* Checks if n is divisible by 2 or any odd number from 3 to sqrt(n).
* The only way to improve on this is to check if n is divisible by
* all KNOWN PRIMES from 2 to sqrt(n).
*
* #param n An integer to be checked for primality.
* #return true if n is prime, false if n is not prime.
**/
public static boolean primeBest(int n){
int count = 0;
// check lower boundaries on primality
if( n == 2 ){
printStats(++count, n, true);
return true;
} // 1 is not prime, even numbers > 2 are not prime
else if( n == 1 || (n & 1) == 0){
printStats(++count, n, false);
return false;
}
double sqrtN = Math.sqrt(n);
// Check for primality using odd numbers from 3 to sqrt(n)
for(int i = 3; i <= sqrtN; i += 2){
count++;
// n is not prime if it is evenly divisible by some 'i' in this range
if( n % i == 0 ){
printStats(++count, n, false);
return false;
}
}
// n is prime
printStats(++count, n, true);
return true;
}
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
while(scan.hasNext()) {
int n = scan.nextInt();
primeBest(n);
System.out.println();
}
scan.close();
}
}
When the prime number 2147483647 is entered, it produces the following output:
Performed 23170 checks, determined 2147483647 is PRIME.
tested in a Intel Atom # 1.60GHz, 2GB RAM, 32-bit Operating System
test result:
largest prime number below Long.MAX_VALUE=9223372036854775807 is 9223372036854775783
elapsed time is 171499 milliseconds or 2 minutes and 51 seconds
public class PrimalityTest
{
public static void main(String[] args)
{
long current_local_time = System.currentTimeMillis();
long long_number = 9223372036854775783L;
long long_a;
long long_b;
if (long_number < 2)
{
System.out.println(long_number + " is not a prime number");
}
else if (long_number < 4)
{
System.out.println(long_number + " is a prime number");
}
else if (long_number % 2 == 0)
{
System.out.println(long_number + " is not a prime number and is divisible by 2");
}
else
{
long_a = (long) (Math.ceil(Math.sqrt(long_number)));
terminate_loop:
{
for (long_b = 3; long_b <= long_a; long_b += 2)
{
if (long_number % long_b == 0)
{
System.out.println(long_number + " is not a prime number and is divisible by " + long_b);
break terminate_loop;
}
}
System.out.println(long_number + " is a prime number");
}
}
System.out.println("elapsed time: " + (System.currentTimeMillis() - current_local_time) + " millisecond/s");
}
}
First and foremost, primes start from 2. 2 and 3 are primes. Prime should not be dividable by 2 or 3. The rest of the primes are in the form of 6k-1 and 6k+1. Note that you should check the numbers up to SQRT(input). This approach is very efficient. I hope it helps.
public class Prime {
public static void main(String[] args) {
System.out.format("%d is prime: %s.\n", 199, isPrime(199)); // Prime
System.out.format("%d is prime: %s.\n", 198, isPrime(198)); // Not prime
System.out.format("%d is prime: %s.\n", 104729, isPrime(104729)); // Prime
System.out.format("%d is prime: %s.\n", 104727, isPrime(982443529)); // Prime
}
/**
* Tells if a number is prime or not.
*
* #param input the input
* #return If the input is prime or not
*/
private boolean isPrime(long input) {
if (input <= 1) return false; // Primes start from 2
if (input <= 3) return true; // 2 and 3 are primes
if (input % 2 == 0 || input % 3 == 0) return false; // Not prime if dividable by 2 or 3
// The rest of the primes are in the shape of 6k-1 and 6k+1
for (long i = 5; i <= Math.sqrt(input); i += 6) if (input % i == 0 || input % (i + 2) == 0) return false;
return true;
}
}
In general, all primes greater than some Primorial integer C is of the form Ck+i for i < C where i and k are integers and i represents the numbers that are coprime to C
Here is an example with C=30, it should work faster than Bart Kiers answer for C=6 and you can improve it by computing C=210
boolean isPrime(long n) {
if(n < 2){
return false;
}
if(n == 2 || n == 3 || n == 5 || n == 7 || n == 11 || n == 13 || n == 17 || n == 19 || n == 23 || n == 29){
return true;
}
long sqrtN = (long) Math.sqrt(n) + 1;
int[] mods = {1, 7, 11, 13, 17, 19, 23, 29};
for (long i = 30L; i <= sqrtN; i += 30) {
for (int mod : mods) {
if(n % (i + mod) == 0){
return false;
}
}
}
return true;
}