reversing every odd string and adding them together - java

i want to reverse every odd pair of strings and them add them together with the even pair.
for example the string 123456789 would turn into 213465789 and then adding them together would give 21+34+65+78+9 which = 207.
my current code is
public static void main(String[] args) {
String Num = "123456789";
System.out.println(reverse(Num) + ".");
}
public static int reverse(String a) {
String newa = "";
String revString = "";
char ch;
for (int i = 0; i < a.length(); i=i+4) {
newa = (a.substring(i, i + 2));
ch = newa.charAt(i);
revString = ch + revString;
}
}
I do have an general idea which is to reverse every second pair of strings and place them back into a new string that would be "213465789". Then split the string into pairs and add them up and whatever other operation like /, * and % but i cant seem to write my code
Thanks in advance

try this -
int pairCout=0;
int sum =0;
for (int i = 0; i < a.length();i+=2) {
String newa = a.substring(i, (i + 2)<a.length()?(i+2):a.length());
pairCout++;
if(pairCout%2 ==0){ // EVEN/ODD separation
String reverse = new StringBuilder(newa ).reverse().toString();
sum+=Integer.parseInt(reverse); // SUMMATION
}else{
sum+=Integer.parseInt(newa ); // SUMMATION
}
}
Just an approach - OUTPUT - 207

Simply algo would be something like
String Num = "123456789";
Loop for(int i= 0 to n-3;i=i+2) - to reverse the string
swap i with i+1 - this give alternate rev string
again for(int i= 0 to n-3;i=i+2) - to add the sum
sum = sum + ((chatAt(i)-'0')*10+(charAt(i+1)-'0')) - typecast from char to int using [char]-'0' logic, for String "21", logic would be to have (2*10+1)

Related

Algorithm to create all permutations and lengths

I am looking to create an algorithm preferably in Java. I would like to go through following char array and create every possible permutations and lengths out of it.
For example, loop and print the following:
a
aa
aaaa
aaaaa
.... keep going ....
aaaaaaaaaaaaaaaaa ....
ab
aba
abaa .............
Till I hit all possible lengths and permutations from my array.
private void method(){
char[] data = "abcdefghiABCDEFGHI0123456789".toCharArray();
// loop and print each time
}
I think it would be silly to come up with 10s of for loops for this. I am guessing some form of recursion would help here but can't get my head around to even start with. Could I get some help with this please? Even if pointing me to a start or a blog or something. Been Googling and looking around and many permutations examples exists but keeps to fixed max length. None seems to have examples on multiple length + permutations. Please advice. Thanks.
Another way to do it is this:
public class HelloWorld{
public static String[] method(char[] arr, int length) {
if(length == arr.length - 1) {
String[] strArr = new String[arr.length];
for(int i = 0; i < arr.length; i ++) {
strArr[i] = String.valueOf(arr[i]);
}
return strArr;
}
String[] before = method(arr, length + 1);
String[] newArr = new String[arr.length * before.length];
for(int i = 0; i < arr.length; i ++) {
for(int j = 0; j < before.length; j ++) {
if(i == 0)
System.out.println(before[j]);
newArr[i * before.length + j] = (arr[i] + before[j]);
}
}
return newArr;
}
public static void main(String []args){
String[] all = method("abcde".toCharArray(), 0);
for(int i = 0; i < all.length; i ++) {
System.out.println(all[i]);
}
}
}
However be careful you'll probably run out of memory or the program will take a looooong time to compile/run if it does at all. You are trying to print 3.437313508041091e+40 strings, that's 3 followed by 40 zeroes.
Here's the solution also in javascript because it starts running but it needs 4 seconds to get to 4 character permutations, for it to reach 5 character permutations it will need about 28 times that time, for 6 characters it's 4 * 28 * 28 and so on.
const method = (arr, length) => {
if(length === arr.length - 1)
return arr;
const hm = [];
const before = method(arr, length + 1);
for(let i = 0; i < arr.length; i ++) {
for(let j = 0; j < before.length; j ++) {
if(i === 0)
console.log(before[j]);
hm.push(arr[i] + before[j]);
}
}
return hm;
};
method('abcdefghiABCDEFGHI0123456789'.split(''), 0).forEach(a => console.log(a));
private void method(){
char[] data = "abcdefghiABCDEFGHI0123456789".toCharArray();
// loop and print each time
}
With your given input there are 3.43731350804×10E40 combinations. (Spelled result in words is eighteen quadrillion fourteen trillion three hundred ninety-eight billion five hundred nine million four hundred eighty-one thousand nine hundred eighty-four. ) If I remember it correctly the maths is some how
1 + x + x^2 + x^3 + x^4 + ... + x^n = (1 - x^n+1) / (1 - x)
in your case
28 + 28^2 + 28^3 + .... 28^28
cause you will have
28 combinations for strings with length one
28*28 combinations for strings with length two
28*28*28 combinations for strings with length three
...
28^28 combinations for strings with length 28
It will take a while to print them all.
One way I can think of is to use the Generex library, a Java library for generating String that match a given regular expression.
Generex github. Look at their page for more info.
Generex maven repo. Download the jar or add dependency.
Using generex is straight forward if you are somehow familiar with regex.
Example using only the first 5 chars which will have 3905 possible combinations
public static void main(String[] args) {
Generex generex = new Generex("[a-e]{1,5}");
System.out.println(generex.getAllMatchedStrings().size());
Iterator iterator = generex.iterator();
while (iterator.hasNext()) {
System.out.println(iterator.next());
}
}
Meaning of [a-e]{1,5} any combination of the chars a,b,c,d,e wit a min length of 1 and max length of 5
output
a
aa
aaa
aaaa
aaaaa
aaaab
aaaac
aaaad
aaaae
aaab
aaaba
aaabb
aaabc
aaabd
aaabe
aaac
....
eeee
eeeea
eeeeb
eeeec
eeeed
eeeee
You can have a for loop that starts from 1 and ends at array.length and in each iteration call a function that prints all the permutations for that length.
public void printPermutations(char[] array, int length) {
/*
* Create all permutations with length = length and print them
*/
}
public void method() {
char data = "abcdefghiABCDEFGHI0123456789".toCharArray();
for(int i = 1; i <= data.length; i ++) {
printPermutations(data, i);
}
}
I think the following recursion could solve your problem:
public static void main(String[] args) {
final String[] data = {"a", "b", "c"};
sampleWithReplacement(data, "", 1, 5);
}
private static void sampleWithReplacement(
final String[] letters,
final String prefix,
final int currentLength,
final int maxLength
) {
if (currentLength <= maxLength) {
for (String letter : letters) {
final String newPrefix = prefix + letter;
System.out.println(newPrefix);
sampleWithReplacement(letters, newPrefix, currentLength + 1, maxLength);
}
}
}
where data specifies your possible characters to sample from.
Is this what you're talking about?
public class PrintPermutations
{
public static String stream = "";
public static void printPermutations (char[] set, int count, int length)
{
if (count < length)
for (int i = 0; i < set.length; ++i)
{
stream += set[i];
System.out.println (stream);
printPermutations (set, count + 1, length);
stream = stream.substring (0, stream.length() - 1);
}
}
public static void main (String[] args)
{
char[] set = "abcdefghiABCDEFGHI0123456789".toCharArray();
printPermutations (set, 0, set.length);
}
}
Test it using a smaller string first.
On an input string 28 characters long this method is never going to end, but for smaller inputs it will generate all permutations up to length n, where n is the number of characters. It first prints all permutations of length 1, then all of length 2 etc, which is different from your example, but hopefully order doesn't matter.
static void permutations(char[] arr)
{
int[] idx = new int[arr.length];
char[] perm = new char[arr.length];
Arrays.fill(perm, arr[0]);
for (int i = 1; i < arr.length; i++)
{
while (true)
{
System.out.println(new String(perm, 0, i));
int k = i - 1;
for (; k >= 0; k--)
{
idx[k] += 1;
if (idx[k] < arr.length)
{
perm[k] = arr[idx[k]];
break;
}
idx[k] = 0;
perm[k] = arr[idx[k]];
}
if (k < 0)
break;
}
}
}
Test:
permutations("abc".toCharArray());
Output:
a
b
c
aa
ab
ac
ba
bb
bc
ca
cb
cc

Credit card validator , calling method doesn't work

I'm relatively new to java and am trying to break my code down as much as possible. This question is really on how to organize methods to work together
My credit card validator works if checkSum() code is written in the validateCreditCard() method. I think it's weird 'cause it works when called by the checkDigitControl() method
I used these sources for the program's logic:
To Check ~ https://www.creditcardvalidator.org/articles/luhn-algorithm
To Generate ~ https://en.wikipedia.org/wiki/Luhn_mod_N_algorithm
Here's my code(I apologize in advance if it's rather clumsy)
public class CreditCards {
public static void main(String[] args) {
long num;
num = genCreditCard();
boolean bool = validateCreditCard(num);
}
// Validity Check
public static boolean validateCreditCard(long card) {
String number = card+"";
String string=null;
int i;
for(i=0; i<number.length()-1; i++) {//Populate new string, leaving out last digit.
string += number.charAt(i)+"";
}
String checkDigit = number.charAt(i)+"";// Stores check digit.
long sum = checkSum(string);// Program works if this line is swapped for the code below(from checkSum)
//**********************************************************************
// int[] digits = new int[number.length()];
// int lastIndex = digits.length-1;
// int position=2; int mod=10;
// int sum=0;
//
// for(int j=lastIndex; j>=0; j--) {// Populate array in REVERSE
// digits[j] = Integer.parseInt(number.charAt(j)+"");
// digits[j] *= ( (position%2 == 0) ? 2: 1 );// x2 every other digit FROM BEHIND
// position++;
//
// digits[j] = ( (digits[j] > 9) ? (digits[j] / mod)+(digits[j] % mod) : digits[j] );//Sums integers of double-digits
// sum += digits[j];
// }
//**********************************************************************
sum *= 9;
string = sum+"";
string = string.charAt(string.length()-1)+"";// Last digit of result.
return (string.equals(checkDigit));
}
public static long genCreditCard() {
String number = "34";// American Express(15 digits) starts with 34 or 37
for(int i=0; i<12; i++)
number += (int)(Math.random() * 10) + "";// Add 12 random digits 4 base.
number += checkDigitControl(number);// Concat the check digit.
System.out.println(number);
return Long.parseLong(number);
}
// Algorithm to calculate the last/checkSum digit.
public static int checkDigitControl(String number) {
int i;
for(i=0; i<5; i++)
++i;
int sum = checkSum(number);
return 10 - sum%10;// Returns number that makes checkSum a multiple of 10.
}
public static int checkSum(String number) {
int[] digits = new int[number.length()];
int lastIndex = digits.length-1;
int position=2; int mod=10;
int sum=0;
for(int j=lastIndex; j>=0; j--) {// Populate array in REVERSE
digits[j] = Integer.parseInt(number.charAt(j)+"");
digits[j] *= ( (position%2 == 0) ? 2: 1 );// x2 every other digit FROM BEHIND
position++;
digits[j] = ( (digits[j] > 9) ? (digits[j] / mod)+(digits[j] % mod) : digits[j] );//Sums integers of double-digits
sum += digits[j];
}
return sum;
}
}
Thx in advance, sorry if this isn't the right format; it's also my 1st Stackoverflow post ¯\_(ツ)_/¯
You are initializing the variable string with null value:
String string=null;
And in the following for you are adding every char of the card number to this string.
for(i=0; i<number.length()-1; i++) {
string += number.charAt(i)+"";
}
But this will result in the variable string to be null + cardnumbers, because you didn't initialize the String string, and the value null is converted to the string "null" (Concatenating null strings in Java)
This will fix you code:
String string = new String();
Note, this code:
for(i=0; i<number.length()-1; i++) {
string += number.charAt(i)+"";
}
can be easily replace by this line that does the same thing:
number = number.substring(0, number.length() -1);
If you switch to this code just pass number to checkSum method

Getting a list of binary numbers composing a number

In Java, having a number like 0b1010, I would like to get a list of numbers "composing" this one: 0b1000 and 0b0010 in this example: one number for each bit set.
I'm not sure about the best solution to get it. Do you have any clue ?
Use a BitSet!
long x = 0b101011;
BitSet bs = BitSet.valueOf(new long[]{x});
for (int i = bs.nextSetBit(0); i >=0 ; i = bs.nextSetBit(i+1)) {
System.out.println(1 << i);
}
Output:
1
2
8
32
If you really want them printed out as binary strings, here's a little hack on the above method:
long x = 0b101011;
char[] cs = new char[bs.length()];
Arrays.fill(cs, '0');
BitSet bs = BitSet.valueOf(new long[]{x});
for (int i = bs.nextSetBit(0); i >=0 ; i = bs.nextSetBit(i+1)) {
cs[bs.length()-i-1] = '1';
System.out.println(new String(cs)); // or whatever you want to do with this String
cs[bs.length()-i-1] = '0';
}
Output:
000001
000010
001000
100000
Scan through the bits one by one using an AND operation. This will tell you if a bit at one position is set or not. (https://en.wikipedia.org/wiki/Bitwise_operation#AND). Once you have determined that some ith-Bit is set, make up a string and print it. PSEUDOCODE:
public static void PrintAllSubbitstrings(int number)
{
for(int i=0; i < 32; i++) //32 bits maximum for an int
{
if( number & (1 << i) != 0) //the i'th bit is set.
{
//Make up a bitstring with (i-1) zeroes to the right, then one 1 on the left
String bitString = "1";
for(int j=0; j < (i-1); j++) bitString += "0";
System.out.println(bitString);
}
}
}
Here is a little test that works for me
public static void main(String[] args) {
int num = 0b1010;
int testNum = 0b1;
while(testNum < num) {
if((testNum & num) >0) {
System.out.println(testNum + " Passes");
}
testNum *= 2;
}
}

Find all substrings that are palindromes

If the input is 'abba' then the possible palindromes are a, b, b, a, bb, abba.
I understand that determining if string is palindrome is easy. It would be like:
public static boolean isPalindrome(String str) {
int len = str.length();
for(int i=0; i<len/2; i++) {
if(str.charAt(i)!=str.charAt(len-i-1) {
return false;
}
return true;
}
But what is the efficient way of finding palindrome substrings?
This can be done in O(n), using Manacher's algorithm.
The main idea is a combination of dynamic programming and (as others have said already) computing maximum length of palindrome with center in a given letter.
What we really want to calculate is radius of the longest palindrome, not the length.
The radius is simply length/2 or (length - 1)/2 (for odd-length palindromes).
After computing palindrome radius pr at given position i we use already computed radiuses to find palindromes in range [i - pr ; i]. This lets us (because palindromes are, well, palindromes) skip further computation of radiuses for range [i ; i + pr].
While we search in range [i - pr ; i], there are four basic cases for each position i - k (where k is in 1,2,... pr):
no palindrome (radius = 0) at i - k
(this means radius = 0 at i + k, too)
inner palindrome, which means it fits in range
(this means radius at i + k is the same as at i - k)
outer palindrome, which means it doesn't fit in range
(this means radius at i + k is cut down to fit in range, i.e because i + k + radius > i + pr we reduce radius to pr - k)
sticky palindrome, which means i + k + radius = i + pr
(in that case we need to search for potentially bigger radius at i + k)
Full, detailed explanation would be rather long. What about some code samples? :)
I've found C++ implementation of this algorithm by Polish teacher, mgr Jerzy Wałaszek.
I've translated comments to english, added some other comments and simplified it a bit to be easier to catch the main part.
Take a look here.
Note: in case of problems understanding why this is O(n), try to look this way:
after finding radius (let's call it r) at some position, we need to iterate over r elements back, but as a result we can skip computation for r elements forward. Therefore, total number of iterated elements stays the same.
Perhaps you could iterate across potential middle character (odd length palindromes) and middle points between characters (even length palindromes) and extend each until you cannot get any further (next left and right characters don't match).
That would save a lot of computation when there are no many palidromes in the string. In such case the cost would be O(n) for sparse palidrome strings.
For palindrome dense inputs it would be O(n^2) as each position cannot be extended more than the length of the array / 2. Obviously this is even less towards the ends of the array.
public Set<String> palindromes(final String input) {
final Set<String> result = new HashSet<>();
for (int i = 0; i < input.length(); i++) {
// expanding even length palindromes:
expandPalindromes(result,input,i,i+1);
// expanding odd length palindromes:
expandPalindromes(result,input,i,i);
}
return result;
}
public void expandPalindromes(final Set<String> result, final String s, int i, int j) {
while (i >= 0 && j < s.length() && s.charAt(i) == s.charAt(j)) {
result.add(s.substring(i,j+1));
i--; j++;
}
}
So, each distinct letter is already a palindrome - so you already have N + 1 palindromes, where N is the number of distinct letters (plus empty string). You can do that in single run - O(N).
Now, for non-trivial palindromes, you can test each point of your string to be a center of potential palindrome - grow in both directions - something that Valentin Ruano suggested.
This solution will take O(N^2) since each test is O(N) and number of possible "centers" is also O(N) - the center is either a letter or space between two letters, again as in Valentin's solution.
Note, there is also O(N) solution to your problem, based on Manacher's algoritm (article describes "longest palindrome", but algorithm could be used to count all of them)
I just came up with my own logic which helps to solve this problem.
Happy coding.. :-)
System.out.println("Finding all palindromes in a given string : ");
subPal("abcacbbbca");
private static void subPal(String str) {
String s1 = "";
int N = str.length(), count = 0;
Set<String> palindromeArray = new HashSet<String>();
System.out.println("Given string : " + str);
System.out.println("******** Ignoring single character as substring palindrome");
for (int i = 2; i <= N; i++) {
for (int j = 0; j <= N; j++) {
int k = i + j - 1;
if (k >= N)
continue;
s1 = str.substring(j, i + j);
if (s1.equals(new StringBuilder(s1).reverse().toString())) {
palindromeArray.add(s1);
}
}
}
System.out.println(palindromeArray);
for (String s : palindromeArray)
System.out.println(s + " - is a palindrome string.");
System.out.println("The no.of substring that are palindrome : "
+ palindromeArray.size());
}
Output:-
Finding all palindromes in a given string :
Given string : abcacbbbca
******** Ignoring single character as substring palindrome ********
[cac, acbbbca, cbbbc, bb, bcacb, bbb]
cac - is a palindrome string.
acbbbca - is a palindrome string.
cbbbc - is a palindrome string.
bb - is a palindrome string.
bcacb - is a palindrome string.
bbb - is a palindrome string.
The no.of substring that are palindrome : 6
I suggest building up from a base case and expanding until you have all of the palindomes.
There are two types of palindromes: even numbered and odd-numbered. I haven't figured out how to handle both in the same way so I'll break it up.
1) Add all single letters
2) With this list you have all of the starting points for your palindromes. Run each both of these for each index in the string (or 1 -> length-1 because you need at least 2 length):
findAllEvenFrom(int index){
int i=0;
while(true) {
//check if index-i and index+i+1 is within string bounds
if(str.charAt(index-i) != str.charAt(index+i+1))
return; // Here we found out that this index isn't a center for palindromes of >=i size, so we can give up
outputList.add(str.substring(index-i, index+i+1));
i++;
}
}
//Odd looks about the same, but with a change in the bounds.
findAllOddFrom(int index){
int i=0;
while(true) {
//check if index-i and index+i+1 is within string bounds
if(str.charAt(index-i-1) != str.charAt(index+i+1))
return;
outputList.add(str.substring(index-i-1, index+i+1));
i++;
}
}
I'm not sure if this helps the Big-O for your runtime, but it should be much more efficient than trying each substring. Worst case would be a string of all the same letter which may be worse than the "find every substring" plan, but with most inputs it will cut out most substrings because you can stop looking at one once you realize it's not the center of a palindrome.
I tried the following code and its working well for the cases
Also it handles individual characters too
Few of the cases which passed:
abaaa --> [aba, aaa, b, a, aa]
geek --> [g, e, ee, k]
abbaca --> [b, c, a, abba, bb, aca]
abaaba -->[aba, b, abaaba, a, baab, aa]
abababa -->[aba, babab, b, a, ababa, abababa, bab]
forgeeksskeegfor --> [f, g, e, ee, s, r, eksske, geeksskeeg,
o, eeksskee, ss, k, kssk]
Code
static Set<String> set = new HashSet<String>();
static String DIV = "|";
public static void main(String[] args) {
String str = "abababa";
String ext = getExtendedString(str);
// will check for even length palindromes
for(int i=2; i<ext.length()-1; i+=2) {
addPalindromes(i, 1, ext);
}
// will check for odd length palindromes including individual characters
for(int i=1; i<=ext.length()-2; i+=2) {
addPalindromes(i, 0, ext);
}
System.out.println(set);
}
/*
* Generates extended string, with dividors applied
* eg: input = abca
* output = |a|b|c|a|
*/
static String getExtendedString(String str) {
StringBuilder builder = new StringBuilder();
builder.append(DIV);
for(int i=0; i< str.length(); i++) {
builder.append(str.charAt(i));
builder.append(DIV);
}
String ext = builder.toString();
return ext;
}
/*
* Recursive matcher
* If match is found for palindrome ie char[mid-offset] = char[mid+ offset]
* Calculate further with offset+=2
*
*
*/
static void addPalindromes(int mid, int offset, String ext) {
// boundary checks
if(mid - offset <0 || mid + offset > ext.length()-1) {
return;
}
if (ext.charAt(mid-offset) == ext.charAt(mid+offset)) {
set.add(ext.substring(mid-offset, mid+offset+1).replace(DIV, ""));
addPalindromes(mid, offset+2, ext);
}
}
Hope its fine
public class PolindromeMyLogic {
static int polindromeCount = 0;
private static HashMap<Character, List<Integer>> findCharAndOccurance(
char[] charArray) {
HashMap<Character, List<Integer>> map = new HashMap<Character, List<Integer>>();
for (int i = 0; i < charArray.length; i++) {
char c = charArray[i];
if (map.containsKey(c)) {
List list = map.get(c);
list.add(i);
} else {
List list = new ArrayList<Integer>();
list.add(i);
map.put(c, list);
}
}
return map;
}
private static void countPolindromeByPositions(char[] charArray,
HashMap<Character, List<Integer>> map) {
map.forEach((character, list) -> {
int n = list.size();
if (n > 1) {
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
if (list.get(i) + 1 == list.get(j)
|| list.get(i) + 2 == list.get(j)) {
polindromeCount++;
} else {
char[] temp = new char[(list.get(j) - list.get(i))
+ 1];
int jj = 0;
for (int ii = list.get(i); ii <= list
.get(j); ii++) {
temp[jj] = charArray[ii];
jj++;
}
if (isPolindrome(temp))
polindromeCount++;
}
}
}
}
});
}
private static boolean isPolindrome(char[] charArray) {
int n = charArray.length;
char[] temp = new char[n];
int j = 0;
for (int i = (n - 1); i >= 0; i--) {
temp[j] = charArray[i];
j++;
}
if (Arrays.equals(charArray, temp))
return true;
else
return false;
}
public static void main(String[] args) {
String str = "MADAM";
char[] charArray = str.toCharArray();
countPolindromeByPositions(charArray, findCharAndOccurance(charArray));
System.out.println(polindromeCount);
}
}
Try out this. Its my own solution.
// Maintain an Set of palindromes so that we get distinct elements at the end
// Add each char to set. Also treat that char as middle point and traverse through string to check equality of left and right char
static int palindrome(String str) {
Set<String> distinctPln = new HashSet<String>();
for (int i=0; i<str.length();i++) {
distinctPln.add(String.valueOf(str.charAt(i)));
for (int j=i-1, k=i+1; j>=0 && k<str.length(); j--, k++) {
// String of lenght 2 as palindrome
if ( (new Character(str.charAt(i))).equals(new Character(str.charAt(j)))) {
distinctPln.add(str.substring(j,i+1));
}
// String of lenght 2 as palindrome
if ( (new Character(str.charAt(i))).equals(new Character(str.charAt(k)))) {
distinctPln.add(str.substring(i,k+1));
}
if ( (new Character(str.charAt(j))).equals(new Character(str.charAt(k)))) {
distinctPln.add(str.substring(j,k+1));
} else {
continue;
}
}
}
Iterator<String> distinctPlnItr = distinctPln.iterator();
while ( distinctPlnItr.hasNext()) {
System.out.print(distinctPlnItr.next()+ ",");
}
return distinctPln.size();
}
Code is to find all distinct substrings which are palindrome.
Here is the code I tried. It is working fine.
import java.util.HashSet;
import java.util.Set;
public class SubstringPalindrome {
public static void main(String[] args) {
String s = "abba";
checkPalindrome(s);
}
public static int checkPalindrome(String s) {
int L = s.length();
int counter =0;
long startTime = System.currentTimeMillis();
Set<String> hs = new HashSet<String>();
// add elements to the hash set
System.out.println("Possible substrings: ");
for (int i = 0; i < L; ++i) {
for (int j = 0; j < (L - i); ++j) {
String subs = s.substring(j, i + j + 1);
counter++;
System.out.println(subs);
if(isPalindrome(subs))
hs.add(subs);
}
}
System.out.println("Total possible substrings are "+counter);
System.out.println("Total palindromic substrings are "+hs.size());
System.out.println("Possible palindromic substrings: "+hs.toString());
long endTime = System.currentTimeMillis();
System.out.println("It took " + (endTime - startTime) + " milliseconds");
return hs.size();
}
public static boolean isPalindrome(String s) {
if(s.length() == 0 || s.length() ==1)
return true;
if(s.charAt(0) == s.charAt(s.length()-1))
return isPalindrome(s.substring(1, s.length()-1));
return false;
}
}
OUTPUT:
Possible substrings:
a
b
b
a
ab
bb
ba
abb
bba
abba
Total possible substrings are 10
Total palindromic substrings are 4
Possible palindromic substrings: [bb, a, b, abba]
It took 1 milliseconds

Converting alphanumeric to ascii and incrementing

I'm stumped on how to convert 3 letters and 3 numbers to ascii and increment them by one...it's the old next-license-plate problem. Can anyone give me a nudge in the right direction?
This problem actually have real applications. I wrote an account number generator that works just like this. I modified it to your format. Here you go,
public class LicenseNumber {
int numericSum;
int letterSum;
public LicenseNumber() {
numericSum = letterSum = 0;
}
public LicenseNumber(String number) {
if (!number.matches("^[A-Za-z]{3}[0-9]{3}$"))
throw new IllegalArgumentException("Number doesn't match license format");
numericSum = Integer.valueOf(number.substring(3));
letterSum = value(number, 0) * 26 * 26 + value(number, 1) * 26 +
value(number, 2);
}
public void increment() {
increment(1);
}
public void increment(int inc) {
numericSum += inc;
if (numericSum >= 1000) {
letterSum += numericSum/1000;
numericSum %= 1000;
}
}
public String toString() {
char[] letters = new char[3];
int n = letterSum;
for (int i = 0; i < 3; i++) {
letters[2-i] = (char)('A' + (n%26));
n /= 26;
}
return new String(letters) + String.format("%03d", numericSum);
}
private int value(String s, int index) {
return Character.toUpperCase(s.charAt(index)) - 'A';
}
/**
* Example
*/
public static void main(String[] args) {
LicenseNumber lic = new LicenseNumber("ABC999");
for (int i=0; i < 100; i++) {
lic.increment(500);
System.out.println(lic);
}
}
}
String str = "abc123"
String newstr = "";
for(int i=0; i<str.length(); i++) {
newstr += (char) (str.charAt(i) + 1);
}
// newstr now is "bcd234"
Note that this does not handle the characters 'z','Z' or '9' the way you would want. But it should give you a start.
Also note that using StringBuilder to create newstr would be more efficient.
I guess,
char c='A';
int no=97;
System.out.println( (++c) + " " + (char)++no);
You can do this by converting your String of letters and numbers to a char[]. Once you have done that you can iterate over the array and ++ each.
You're making strings like this: "AAA000", "AAA001", ..., "AAA999", "AAB000", ..., "ZZZ999", right?
Think of it like a number system where the different columns don't use the same number of digits. So where our numbers are 10-10-10-10, your numbers are 26-26-26-10-10-10. Use an underlying integer which you increment, then convert to letters and digits by dividing and taking the modulo successively by 10, 10, 10, 26, 26, 26.
To convert a license plate to its underlying integer, multiply out the letter position (A == 0, B == 1, etc) by the proper power of 26, and the digits by the proper power of 10, and add them all together.
An easy way to generate plate numbers would be to have an integer variable which gets incremented and three integer variables corresponding to the letters, something like this, please modify where appropriate. One trick is to use String.format which seamlessly converts between an integer and its char counterpart (you can also use casts.)
class plateGenerator {
int minLetter = "A".charAt(0);
int maxLetter = "Z".charAt(0);
int curLetter1 = minLetter;
int curLetter2 = minLetter;
int curLetter3 = minLetter;
int number = 0;
public String generatePlate() {
String plate = String.format("%c%c%c-%03d",curLetter1,
curLetter2,curLetter3,number);
increment();
return plate;
}
private void increment() {
number++;
if (number == 1000) {
number = 0;
curLetter1++;
}
if (curLetter1 > maxLetter) {
curLetter1 = minLetter;
curLetter2++;
}
if (curLetter2 > maxLetter) {
curLetter2 = minLetter;
curLetter3++;
}
if (curLetter3 > maxLetter) {
curLetter3 = minLetter;
number++;
}
}
public static void main(String[] args) {
plateGenerator pg = new plateGenerator();
for (int i = 0; i < 50000; i++) {
System.out.println(pg.generatePlate());
}
}
}
I haven't seen any code samples for general solutions for incrementing alphanumeric strings so I though I'd post mine.
This takes a string of any length with any ordering of alpha numeric characters, converts them to upper case and increments it by one (as if it were base 26). It also throws an exception if the numbers wrap. Its really up to you if wrapping makes sense...
private static string IncrementAlphaNumericString(string alphaNumericString)
{
char[] an = alphaNumericString.ToCharArray();
int i = an.Length - 1;
while (true)
{
if (i <= 0)
throw new Exception("Maxed out number!!!");
an[i]++;
if (an[i] - 1 == '9')
{
an[i] = 'A';
}
if (an[i] - 1 == 'Z')
{
an[i] = '0';
i--;
continue;
}
return new string(an);
}
}

Categories