int count(Node node) {
if (node == null)
return 0;
int r = count (node.right);
int l = count (node.left);
return 1 + r + l;
}
This function returns number of nodes in Binary Tree rooted at node. A few articles say this is a pre-order traversal, but to me this looks like a post-order traversal, because we are visiting the left and the right parts before we visit the root. Am I wrong here ? Or is my notion of "visited" at fault ?
In this code, no actual processing is being done at each node, so there would be no difference between a pre-order and post-order traversal. If there were processing, the difference would be:
pre-order
int count(Node node) {
if (node == null)
return 0;
process(node);
int r = count (node.right);
int l = count (node.left);
return 1 + r + l;
}
post-order
int count(Node node) {
if (node == null)
return 0;
int r = count (node.right);
int l = count (node.left);
process(node);
return 1 + r + l;
}
(Actually, in these cases—unlike with your code—you'd probably want to recurse on node.left before node.right to preserve the conventional left-to-right ordering of processing children.)
Counting nodes is case in which it is hard to say if algorithm is pre-order or is post-order because we don't know "when" we "count" 1 for current node.
But if we change case to printing it becomes clear:
pre-order:
int visit(Node node) {
...
node.print(); // pre-order : root cames first
visit(node.left);
visit(node.right);
...
}
post-order
int visit(Node node) {
...
visit(node.left);
visit(node.right);
node.print(); // post-order : root cames last
...
}
As you can see we can say which print() comes first.
With counting we cannot say if root is counted (+1) prior to subtrees or not.
This is question of convention.
We could say this is pre-order traversal as the count function is applied to a node before than to its children.
But the question is rather tricky as you are using direct recursion, doing both the traversal and the "action" in the same function.
Yes. Your notion of visited is wrong! Here visited means that you are at current node and then trying to traverse the tree. Counting is done at 'root' first then ur counting rights and then lefts so yes it is preorder.
Related
I am trying to solve this LeetCode question:
Given the root of a binary tree, find the maximum value V for which there exists different nodes A and B where V = |A.val - B.val| and A is an ancestor of B. (A node A is an ancestor of B if either: any child of A is equal to B, or any child of A is an ancestor of B.)
One of the highly upvoted answers is as below:
public int maxAncestorDiff(TreeNode root) {
return dfs(root, root.val, root.val);
}
public int dfs(TreeNode root, int mn, int mx) {
if (root == null) return mx - mn;
mx = Math.max(mx, root.val);
mn = Math.min(mn, root.val);
return Math.max(dfs(root.left, mn, mx), dfs(root.right, mn, mx));
}
This is basically just a preorder traversal of the tree. I am unable to digest how it ensures that node A is an ancestor of node B (and not a sibling)?
Let's break this down.
You are correct that this is just a pre-order transversal. What's important is that for each node we have a minimum value and a maximum value. These values get smaller and larger respectively as we iterate down the tree. At any one given node, we only update mn and mx with the value of that node. As a result when we pass mn and mx to the children, those values are only reflective of nodes in the tree up to the current node.
Perhaps these comments will illustrate this better:
public int dfs(TreeNode root, int mn, int mx) {
// this is the base case, at some point mn was encountered and mx was encountered
// on the path to this node, this is the maximum possible difference along that path
if (root == null) return mx - mn;
// on our current path through the tree, update the max / min value we have encountered
mx = Math.max(mx, root.val);
mn = Math.min(mn, root.val);
// the mn and mx at this point are only reflective of this node and it's ancestors
// integers are immutable so a function call down the line won't change the
// mx and mn here, but rather create a new mx and mn at that node
// we pass the updated mx and mn to the node's children, exploring paths
// down the tree
return Math.max(dfs(root.left, mn, mx), dfs(root.right, mn, mx));
}
Given a binary tree with TreeNode like:
class TreeNode {
int data;
TreeNode left;
TreeNode right;
int size;
}
Where size is the number of nodes in the (left subtree + right subtree + 1).
Print a random element from the tree in O(logn) running time.
Note: This post is different from this one, as it is clearly mentioned that we have a size associated with each node in this problem.
PS: Wrote this post inspired from this.
There is an easy approach which gives O(n) complexity.
Generate a random number in the range of 1 to root.size
Do a BFS or DFS traversal
Stop iterating at random numbered element and print it.
For improving the complexity, we need to create an ordering of our own where we branch at each iteration instead of going sequentially as in BFS and DFS. We can use the size property of each node to decide whether to traverse through the left sub-tree or right sub-tree. Following is the approach:
Generate a random number in the range of 1 to root.size (Say r)
Start traversing from the root node and decide whether to go to left sub-tree, right-subtree or print root:
if r <= root.left.size, traverse through the left sub-tree
if r == root.left.size + 1, print the root (we have found the random node to print)
if r > root.left.size + 1, traverse through the right sub-tree
Essentially, we have defined an order where current node is ordered at (size of left subtree of current) + 1.
Since we eliminate traversing through left or right sub-tree at each iteration, its running time is O(logn).
The pseudo-code would look something like this:
traverse(root, random)
if r == root.left.size + 1
print root
else if r > root.left.size + 1
traverse(root.right, random - root.left.size - 1)
else
traverse(root.left, random)
Following is an implementation in java:
public static void printRandom(TreeNode n, int randomNum) {
int leftSize = n.left == null ? 0 : n.left.size;
if (randomNum == leftSize + 1)
System.out.println(n.data);
else if (randomNum > leftSize + 1)
printRandom(n.right, randomNum - (leftSize + 1));
else
printRandom(n.left, randomNum);
}
Use size!
Pick a random number q between 0 and n.
Start from the root. If left->size == q return current node value. If the left->size < q the go right else you go left. If you go right subtract q -= left->size + 1. Repeat until you output a node.
This give you o(height of tree). If the tree is balanced you get O(LogN).
If the tree is not balanced but you still want to keep O(logN) you can do the same thing but cap the maximum number of iterations. Note that in this case not all nodes have the same probability of being returned.
Yes, use size!
As Sorin said, pick a random number i between 0 and n - 1 (not n)
Then perform the following instruction:
Treenode rand_node = select(root, i);
Where select could be as follows:
TreeNode select_rec(TreeNode r, int i) noexcept
{
if (i == r.left.size)
return r;
if (i < r.left.size)
return select_rec(r.left, i);
return select_rec(r.right, i - r.left.size - 1);
}
Now a very important trick: the null node must be a sentinel node with size set to 0, what has sense because the empty tree has zero nodes. You can avoid the use of sentinel, but then the select() operation is lightly more complex.
If the trees is balanced, then select() is O(log n)
In an interview, i was given a function:
f(n)= square(f(n-1)) - square(f(n-2)); for n>2
f(1) = 1;
f(2) = 2;
Here n is the level of an n-array tree. f(n)=1,2,3,5,16...
For every level n of a given N-Array I have to print the f(n) node at every level. For example:
At level 1 print node number 1 (i.e. root)
At level 2 print node number 2 (from left)
At level 3 print node number 3 (from left)
At level 4 print node number 5... and so on
If the number of nodes(say nl) at any level n is less than f(n), then have to print node number nl%f(n) counting from the left.
I did a basic level order traversal using a queue, but I was stuck at how to count nodes at every level and handle the condition when number of nodes at any level n is less than f(n).
Suggest a way to proceed for remaining part of problem.
You need to perform Level Order Traversal.
In the code below I am assuming two methods:
One is getFn(int level) which takes in an int and returns the f(n) value;
Another is printNth(int i, Node n) that takes in an int and Node and beautifully prints that "{n} is the desired one for level {i}".
The code is simple to implement now. Comments explain it like a story...
public void printNth throws IllegalArgumentException (Node root) {
if (root == null) throw new IllegalArgumentException("Null root provided");
//Beginning at level 1 - adding the root. Assumed that levels start from 1
LinkedList<Node> parent = new LinkedList<>();
parent.add(root)
int level = 1;
printNth(getFn(level), root);
//Now beginning from the first set of parents, i.e. the root itself,
//we dump all the children from left to right in another list.
while (parent.size() > 0) { //Last level will have no children. Loop will break there.
//Starting with a list to store the children
LinkedList<Node> children = new LinkedList<>();
//For each parent node add both children, left to right
for (Node n: parent) {
if (n.left != null) children.add(n.left);
if (n.right != null) children.add(n.right);
}
//Now get the value of f(n) for this level
level++;
int f_n = getFn(level);
//Now, if there are not sufficient elements in the list, print the list size
//because children.size()%f(n) will be children.size() only!
if (children.size() < f_n) System.out.println(children.size());
else printNth(level, children.get(f_n - 1)); //f_n - 1 because index starts from 0
//Finally, the children list of this level will serve as the new parent list
//for the level below.
parent = children;
}
}
Added solution here
I have used queue to read all nodes at a particular level, before reading the nodes checking if given level(n) is equal to current level then checking size of the queue is greater than f(n) then just read f(n) nodes from queue and mark it as deleted otherwise perform mod operation and delete the node nl%f(n).
i have implemented a function to find the depth of a node in a binary search tree but my implementation does not take care of duplicates. I have my code below and would like some suggestions on how to consider duplicates case in this function. WOuld really appreciate your help.
public int depth(Node n) {
int result=0;
if(n == null || n == getRoot())
return 0;
return (result = depth(getRoot(), n, result));
}
public int depth(Node temp, Node n, int result) {
int cmp = n.getData().compareTo(temp.getData());
if(cmp == 0) {
int x = result;
return x;
}
else if(cmp < 0) {
return depth(temp.getLeftChild(), n, ++result);
}
else {
return depth(temp.getRightChild(), n, ++result);
}
}
In the code you show, there is no way to prefer one node with same value over another. You need to have some criteria for differentiation.
You can retrieve the list of all duplicate nodes depths using the following approach, for example:
Find the depth of your node.
Find depth of the same node for the left subtree emerging from the found node - stop if not found.
Add depth of the previously found node (in 1) to the depth of the duplicate
Find depth of the same node for the right subtree emerging from the found node (in 1) - stop if not found.
Add depth of the previously found node (in 1) to the depth of the duplicate
Repeat for left and right subtrees.
Also see here: What's the case for duplications in BST?
Well, if there's duplicates, then the depth of a node with a given value doesn't make any sense on its own, because there may be multiple nodes with that value, hence multiple depths.
You have to decide what it means, which could be (not necessarily an exhaustive list):
the depth of the deepest node with that value.
the depth of the shallowest node with that value.
the depth of the first node found with that value.
the average depth of all nodes with that value.
the range (min/max) of depths of all nodes with that value.
a list of depths of all nodes with that value.
an error code indicating your query made little sense.
Any of those could make sense in specific circumstances.
Of course, if n is an actual pointer to a node, you shouldn't be comparing values of nodes at all, you should be comparing pointers. That way, you will only ever find one match and the depth of it makes sense.
Something like the following pseudo-code should do:
def getDepth (Node needle, Node haystack, int value):
// Gone beyond leaf, it's not in tree
if haystack == NULL: return -1
// Pointers equal, you've found it.
if needle == haystack: return value
// Data not equal search either left or right subtree.
if needle.data < haystack.data:
return getDepth (needle, haystack.left, value + 1)
if needle.data > haystack.data:
return getDepth (needle, haystack.right, value + 1)
// Data equal, need to search BOTH subtrees.
tryDepth = getDepth (needle, haystack.left, value + 1)
if trydepth == -1:
tryDepth = getDepth (needle, haystack.right, value + 1)
return trydepth
The reason why you have to search both subtrees when the values are equal is because the desired node may be in either subtree. Where the values are unequal, you know which subtree it's in. So, for the case where they're equal, you check one subtree and, if not found, you check the other.
If you are provided the head of a linked list, and are asked to reverse every k sequence of nodes, how might this be done in Java? e.g., a->b->c->d->e->f->g->h with k = 3 would be c->b->a->f->e->d->h->g->f
Any general help or even pseudocode would be greatly appreciated! Thanks!
If k is expected to be reasonably small, I would just go for the simplest thing: ignore the fact that it's a linked list at all, and treat each subsequence as just an array-type thing of things to be reversed.
So, if your linked list's node class is a Node<T>, create a Node<?>[] of size k. For each segment, load k Nodes into the array list, then just reverse their elements with a simple for loop. In pseudocode:
// reverse the elements within the k nodes
for i from 0 to k/2:
nodeI = segment[i]
nodeE = segment[segment.length-i-1]
tmp = nodeI.elem
nodeI.elem = nodeE.elem
nodeE.elem = tmp
Pros: very simple, O(N) performance, takes advantage of an easily recognizable reversing algorithm.
Cons: requires a k-sized array (just once, since you can reuse it per segment)
Also note that this means that each Node doesn't move in the list, only the objects the Node holds. This means that each Node will end up holding a different item than it held before. This could be fine or not, depending on your needs.
This is pretty high-level, but I think it'll give some guidance.
I'd have a helper method like void swap3(Node first, Node last) that take three elements at an arbitrary position of the list and reverses them. This shouldn't be hard, and could could be done recursively (swap the outer elements, recurse on the inner elements until the size of the list is 0 or 1). Now that I think of it, you could generalize this into swapK() easily if you're using recursion.
Once that is done, then you can just walk along your linked list and call swapK() every k nodes. If the size of the list isn't divisble by k, you could either just not swap that last bit, or reverse the last length%k nodes using your swapping technique.
TIME O(n); SPACE O(1)
A usual requirement of list reversal is that you do it in O(n) time and O(1) space. This eliminates recursion or stack or temporary array (what if K==n?), etc.
Hence the challenge here is to modify an in-place reversal algorithm to account for the K factor. Instead of K I use dist for distance.
Here is a simple in-place reversal algorithm: Use three pointers to walk the list in place: b to point to the head of the new list; c to point to the moving head of the unprocessed list; a to facilitate swapping between b and c.
A->B->C->D->E->F->G->H->I->J->L //original
A<-B<-C<-D E->F->G->H->I->J->L //during processing
^ ^
| |
b c
`a` is the variable that allow us to move `b` and `c` without losing either of
the lists.
Node simpleReverse(Node n){//n is head
if(null == n || null == n.next)
return n;
Node a=n, b=a.next, c=b.next;
a.next=null; b.next=a;
while(null != c){
a=c;
c=c.next;
a.next=b;
b=a;
}
return b;
}
To convert the simpleReverse algorithm to a chunkReverse algorithm, do following:
1] After reversing the first chunk, set head to b; head is the permanent head of the resulting list.
2] for all the other chunks, set tail.next to b; recall that b is the head of the chunk just processed.
some other details:
3] If the list has one or fewer nodes or the dist is 1 or less, then return the list without processing.
4] use a counter cnt to track when dist consecutive nodes have been reversed.
5] use variable tail to track the tail of the chunk just processed and tmp to track the tail of the chunk being processed.
6] notice that before a chunk is processed, it's head, which is bound to become its tail, is the first node you encounter: so, set it to tmp, which is a temporary tail.
public Node reverse(Node n, int dist) {
if(dist<=1 || null == n || null == n.right)
return n;
Node tail=n, head=null, tmp=null;
while(true) {
Node a=n, b=a.right; n=b.right;
a.right=null; b.right=a;
int cnt=2;
while(null != n && cnt < dist) {
a=n; n=n.right; a.right=b; b=a;
cnt++;
}
if(null == head) head = b;
else {
tail.right=b;tail=tmp;
}
tmp=n;
if(null == n) return head;
if(null == n.right) {
tail.right=n;
return head;
}
}//true
}
E.g. by Common Lisp
(defun rev-k (k sq)
(if (<= (length sq) k)
(reverse sq)
(concatenate 'list (reverse (subseq sq 0 k)) (rev-k k (subseq sq k)))))
other way
E.g. by F# use Stack
open System.Collections.Generic
let rev_k k (list:'T list) =
seq {
let stack = new Stack<'T>()
for x in list do
stack.Push(x)
if stack.Count = k then
while stack.Count > 0 do
yield stack.Pop()
while stack.Count > 0 do
yield stack.Pop()
}
|> Seq.toList
Use a stack and recursively remove k items from the list, push them to the stack then pop them and add them in place. Not sure if it's the best solution, but stacks offer a proper way of inverting things. Notice that this also works if instead of a list you had a queue.
Simply dequeue k items, push them to the stack, pop them from the stack and enqueue them :)
This implementation uses ListIterator class:
LinkedList<T> list;
//Inside the method after the method's parameters check
ListIterator<T> it = (ListIterator<T>) list.iterator();
ListIterator<T> reverseIt = (ListIterator<T>) list.listIterator(k);
for(int i = 0; i< (int) k/2; i++ )
{
T element = it.next();
it.set(reverseIt.previous());
reverseIt.set(element);
}