Abstraction in OOPs - java

I have come across few definitions over the years, and have never able to clearly understand what abstraction is.
I have understood the 3 main concepts of Oops but have had difficulties with this particular concept which is engraved within these other concepts.
Till now i have come to 2 conclusions, but not sure.
It is the ability to hide the implementation details of a method(Behavior), and provide the user with just the interface.
It is ability to define a method signatures(ie. only to declare them) without actually implementing them.
Which is the correct definition of abstraction with context to Object oriented programming, and if not one of the above, then what is it?
Would appreciate if supporting code is also provided :)

It is the ability to hide the implementation details of a method(Behavior), and provide the user with just the interface.
Sort of, but that's "encapsulation". They're related in the sense that "encapsulation" is a key concept of object oriented design whereas "abstraction" is a potential result of that concept.
It is ability to define a method signatures(ie. only to declare them) without actually implementing them.
That's an implementation detail, not the conceptual notion of abstraction itself.
In a simple inheritance model, "abstraction" can be thought of as referring to an object by one of its ancestor (or more abstract) types. For example, consider a hierarchy:
Lifeform
Animal
Canine
Golden Retriever
If you're performing an operation specific only to a Golden Retriever, then you can't perform that operation on any Animal. It has to be a specific Animal. So you need that specific implementation.
However, if you're performing an operation that's generic to all Lifeforms then it doesn't matter what specific implementation you receive. That operation is abstracted so that it can accept any Lifeform object, regardless of the more specific implementation.
Interfaces provide another implementation mechanism which can achieve abstractions. Object composition is still another mechanism. For example, consider this non-inheritance scenario:
public class MyObject {
private ThirdPartyObject dependency;
public MyObject() {
// initialize the dependency
}
public boolean getValue() {
return this.dependency.getValue();
}
public void setValue(boolean value) {
this.dependency.setValue(value);
}
}
This doesn't use inheritance or interfaces for anything, but it does create an abstraction. Consuming code doesn't know anything about the ThirdPartyObject or the details of its implementation. Following the Law Of Demeter the details of that implementation have been abstracted behind a custom object which you control. This can be very useful for de-coupling your code from implementation details you don't control.

Abstraction is a process where you show only “relevant” data and “hide” unnecessary details of an object from the user.
For example, when you login to your Amazon account online, you enter
your user_id and password and press login, what happens when you press
login, how the input data sent to amazon server, how it gets verified
is all abstracted away from the you.
Another example of abstraction: A car in itself is a well-defined
object, which is composed of several other smaller objects like a
gearing system, steering mechanism, engine, which are again have their
own subsystems. But for humans car is a one single object, which can be managed by the help of its subsystems, even if their inner details
are unknown.
Also to be noted that abstraction hides the implementation details but implementation can be shown even i.e. member functions with definitions can also be present, unlike Interface which provides total Abstraction.
Source: BeginnersBook.com

My summary is "hiding the details"; in the case of programming, abstraction is more like your first definition.
For supporting code, you don't really need to look too far. Abstraction is all around. Consider the common data structure string.
A string within a computer is actually bytes converted to a specific character set strung together. (no pun intended)
Therefore, when you put "hello, world" to you, it's a phrase in quotes. When the computer run it, it creates a data structure string which itself contains the bytes and various state to represent the given string. You don't (usually) care how the string object is working. It does and you move on with your goal. That is as basic of an example of abstraction as I can get.

Abstraction is the process by which data and programs are defined with a representation similar in form to its meaning, while hiding away the implementation details.Abstraction involves the facility to define objects that represent abstract “actors” that can perform work, report on and change their state, and “communicate” with other objects in the system.
Abstraction can be seen in two ways:
Data Abstraction - Data abstraction is the way to create complex data types and exposing only meaningful operations to interact with data type, where as hiding all the implementation details from outside works.
Control Abstraction - Abstraction of behavior. Provides an easier, higher level API to hide client from unnecessary execution details.

Abstraction is a way to promise that a class implementing a given abstraction will have a given behaviour. Thus, abstract classes cannot be directly instantiated, they first need to implement the abstraction.
Abstract classes are thus meant to be implemented by a concrete class that declares and defines a method matching the abstract contract. An abstraction can however provide some concrete behaviours along with abstract ones.
Abstraction is done in Java through abstract classes and through interface. In C++, abstraction is achieved through the usage of virtual methods inside a class. Note that Java interfaces were only created as (unlike C++) multiple inheritance is not allowed in this language.

In simple terms
Abstraction: Showing what is necessary and hiding unnecessary details. Ex if your class has 10 functions but only 2 should be useful by the consumer of the class that you make those functions as public and other are private, so what is visible to the consumer is what is needed, instead of showing it all.
Encapsulation: Hiding the complexity to the consumer of the class. Ex. if your class needs two variables to store min and max, you encapsulate them under getter and setter and implement all the validations and checks in the getter and setter. this way you hide the complexities.

Well I will explain abstraction with a real world example. Say in your house you do have an electric plug and many devices can connect to the same plug but plug will never have an idea which device it is connected to, in other words the details of the devices is abstracted (hidden) to the plug.
Think what if we connect a device directly to electric wire without a plug? Say connect a bulb directly to a wire, then wire knows which device it is connected to and when ever we need to replace the bulb then we have to remove the wire connection from the bulb, which means bulb is tightly coupled with the wire. In other words bulb and wire knows the details where it is connected to, means not abstracted.
In object oriented world abstraction works exactly same. The class which consume other classes function/property doesn't need to know which classes function/property it is consuming and everything should be abstracted with an interface / abstract class.
Let me code the same example. Here I have a class "ElectricPlug", which is running a device. But the class "ElectricPlug" doesn't have any idea which device it is running. It can be any class implementing the interface "IDevice", which means the implementation of "RunDevice" is abstracted from "ElectricPlug". Here is the full sample code,
class Program
{
static void Main(string[] args)
{
ElectricPlug electricPlug = new ElectricPlug(new Bulb());
}
}
public class ElectricPlug
{
private readonly IDevice _device;
public ElectricPlug(IDevice device)
{
_device = device;
}
public void Run()
{
_device.Rundevice();
}
}
public interface IDevice
{
void Rundevice();
}
public class Bulb : IDevice
{
public void Rundevice()
{
Console.WriteLine("Switched on bulb");
}
}
public class ElectricPlug
{
private readonly IDevice _device;
public ElectricPlug(IDevice device)
{
_device = device;
}
public void Run()
{
_device.Rundevice();
}
}

There are two parts of object in oops
state ( properties )
behavior ( methods )
so to hiding the implementation of behavior of any object is known as abstraction
let's take a example -->
there is a cook at my home which makes delicious food . some body comes at my home and take dinner . after dinner they asked me that who made this food . i answered
i have a cook whose name is tttt , his address is tttt and his number is 0000 ( these all are the properties of cook object )
they again asked how he made this then i answered
i don't know how he made . i only know that he can make food
so abstraction means we are telling that what task our object can do instead of how my object can do a task .

Related

Difference between initializing with List vs. LinkedList on left side of equals sign? [duplicate]

I have seen this mentioned a few times and I am not clear on what it means. When and why would you do this?
I know what interfaces do, but the fact I am not clear on this makes me think I am missing out on using them correctly.
Is it just so if you were to do:
IInterface classRef = new ObjectWhatever()
You could use any class that implements IInterface? When would you need to do that? The only thing I can think of is if you have a method and you are unsure of what object will be passed except for it implementing IInterface. I cannot think how often you would need to do that.
Also, how could you write a method that takes in an object that implements an interface? Is that possible?
There are some wonderful answers on here to this questions that get into all sorts of great detail about interfaces and loosely coupling code, inversion of control and so on. There are some fairly heady discussions, so I'd like to take the opportunity to break things down a bit for understanding why an interface is useful.
When I first started getting exposed to interfaces, I too was confused about their relevance. I didn't understand why you needed them. If we're using a language like Java or C#, we already have inheritance and I viewed interfaces as a weaker form of inheritance and thought, "why bother?" In a sense I was right, you can think of interfaces as sort of a weak form of inheritance, but beyond that I finally understood their use as a language construct by thinking of them as a means of classifying common traits or behaviors that were exhibited by potentially many non-related classes of objects.
For example -- say you have a SIM game and have the following classes:
class HouseFly inherits Insect {
void FlyAroundYourHead(){}
void LandOnThings(){}
}
class Telemarketer inherits Person {
void CallDuringDinner(){}
void ContinueTalkingWhenYouSayNo(){}
}
Clearly, these two objects have nothing in common in terms of direct inheritance. But, you could say they are both annoying.
Let's say our game needs to have some sort of random thing that annoys the game player when they eat dinner. This could be a HouseFly or a Telemarketer or both -- but how do you allow for both with a single function? And how do you ask each different type of object to "do their annoying thing" in the same way?
The key to realize is that both a Telemarketer and HouseFly share a common loosely interpreted behavior even though they are nothing alike in terms of modeling them. So, let's make an interface that both can implement:
interface IPest {
void BeAnnoying();
}
class HouseFly inherits Insect implements IPest {
void FlyAroundYourHead(){}
void LandOnThings(){}
void BeAnnoying() {
FlyAroundYourHead();
LandOnThings();
}
}
class Telemarketer inherits Person implements IPest {
void CallDuringDinner(){}
void ContinueTalkingWhenYouSayNo(){}
void BeAnnoying() {
CallDuringDinner();
ContinueTalkingWhenYouSayNo();
}
}
We now have two classes that can each be annoying in their own way. And they do not need to derive from the same base class and share common inherent characteristics -- they simply need to satisfy the contract of IPest -- that contract is simple. You just have to BeAnnoying. In this regard, we can model the following:
class DiningRoom {
DiningRoom(Person[] diningPeople, IPest[] pests) { ... }
void ServeDinner() {
when diningPeople are eating,
foreach pest in pests
pest.BeAnnoying();
}
}
Here we have a dining room that accepts a number of diners and a number of pests -- note the use of the interface. This means that in our little world, a member of the pests array could actually be a Telemarketer object or a HouseFly object.
The ServeDinner method is called when dinner is served and our people in the dining room are supposed to eat. In our little game, that's when our pests do their work -- each pest is instructed to be annoying by way of the IPest interface. In this way, we can easily have both Telemarketers and HouseFlys be annoying in each of their own ways -- we care only that we have something in the DiningRoom object that is a pest, we don't really care what it is and they could have nothing in common with other.
This very contrived pseudo-code example (that dragged on a lot longer than I anticipated) is simply meant to illustrate the kind of thing that finally turned the light on for me in terms of when we might use an interface. I apologize in advance for the silliness of the example, but hope that it helps in your understanding. And, to be sure, the other posted answers you've received here really cover the gamut of the use of interfaces today in design patterns and development methodologies.
The specific example I used to give to students is that they should write
List myList = new ArrayList(); // programming to the List interface
instead of
ArrayList myList = new ArrayList(); // this is bad
These look exactly the same in a short program, but if you go on to use myList 100 times in your program you can start to see a difference. The first declaration ensures that you only call methods on myList that are defined by the List interface (so no ArrayList specific methods). If you've programmed to the interface this way, later on you can decide that you really need
List myList = new TreeList();
and you only have to change your code in that one spot. You already know that the rest of your code doesn't do anything that will be broken by changing the implementation because you programmed to the interface.
The benefits are even more obvious (I think) when you're talking about method parameters and return values. Take this for example:
public ArrayList doSomething(HashMap map);
That method declaration ties you to two concrete implementations (ArrayList and HashMap). As soon as that method is called from other code, any changes to those types probably mean you're going to have to change the calling code as well. It would be better to program to the interfaces.
public List doSomething(Map map);
Now it doesn't matter what kind of List you return, or what kind of Map is passed in as a parameter. Changes that you make inside the doSomething method won't force you to change the calling code.
Programming to an interface is saying, "I need this functionality and I don't care where it comes from."
Consider (in Java), the List interface versus the ArrayList and LinkedList concrete classes. If all I care about is that I have a data structure containing multiple data items that I should access via iteration, I'd pick a List (and that's 99% of the time). If I know that I need constant-time insert/delete from either end of the list, I might pick the LinkedList concrete implementation (or more likely, use the Queue interface). If I know I need random access by index, I'd pick the ArrayList concrete class.
Programming to an interface has absolutely nothing to do with abstract interfaces like we see in Java or .NET. It isn't even an OOP concept.
What it means is don't go messing around with the internals of an object or data structure. Use the Abstract Program Interface, or API, to interact with your data. In Java or C# that means using public properties and methods instead of raw field access. For C that means using functions instead of raw pointers.
EDIT: And with databases it means using views and stored procedures instead of direct table access.
Using interfaces is a key factor in making your code easily testable in addition to removing unnecessary couplings between your classes. By creating an interface that defines the operations on your class, you allow classes that want to use that functionality the ability to use it without depending on your implementing class directly. If later on you decide to change and use a different implementation, you need only change the part of the code where the implementation is instantiated. The rest of the code need not change because it depends on the interface, not the implementing class.
This is very useful in creating unit tests. In the class under test you have it depend on the interface and inject an instance of the interface into the class (or a factory that allows it to build instances of the interface as needed) via the constructor or a property settor. The class uses the provided (or created) interface in its methods. When you go to write your tests, you can mock or fake the interface and provide an interface that responds with data configured in your unit test. You can do this because your class under test deals only with the interface, not your concrete implementation. Any class implementing the interface, including your mock or fake class, will do.
EDIT: Below is a link to an article where Erich Gamma discusses his quote, "Program to an interface, not an implementation."
http://www.artima.com/lejava/articles/designprinciples.html
You should look into Inversion of Control:
Martin Fowler: Inversion of Control Containers and the Dependency Injection pattern
Wikipedia: Inversion of Control
In such a scenario, you wouldn't write this:
IInterface classRef = new ObjectWhatever();
You would write something like this:
IInterface classRef = container.Resolve<IInterface>();
This would go into a rule-based setup in the container object, and construct the actual object for you, which could be ObjectWhatever. The important thing is that you could replace this rule with something that used another type of object altogether, and your code would still work.
If we leave IoC off the table, you can write code that knows that it can talk to an object that does something specific, but not which type of object or how it does it.
This would come in handy when passing parameters.
As for your parenthesized question "Also, how could you write a method that takes in an object that implements an Interface? Is that possible?", in C# you would simply use the interface type for the parameter type, like this:
public void DoSomethingToAnObject(IInterface whatever) { ... }
This plugs right into the "talk to an object that does something specific." The method defined above knows what to expect from the object, that it implements everything in IInterface, but it doesn't care which type of object it is, only that it adheres to the contract, which is what an interface is.
For instance, you're probably familiar with calculators and have probably used quite a few in your days, but most of the time they're all different. You, on the other hand, knows how a standard calculator should work, so you're able to use them all, even if you can't use the specific features that each calculator has that none of the other has.
This is the beauty of interfaces. You can write a piece of code, that knows that it will get objects passed to it that it can expect certain behavior from. It doesn't care one hoot what kind of object it is, only that it supports the behavior needed.
Let me give you a concrete example.
We have a custom-built translation system for windows forms. This system loops through controls on a form and translate text in each. The system knows how to handle basic controls, like the-type-of-control-that-has-a-Text-property, and similar basic stuff, but for anything basic, it falls short.
Now, since controls inherit from pre-defined classes that we have no control over, we could do one of three things:
Build support for our translation system to detect specifically which type of control it is working with, and translate the correct bits (maintenance nightmare)
Build support into base classes (impossible, since all the controls inherit from different pre-defined classes)
Add interface support
So we did nr. 3. All our controls implement ILocalizable, which is an interface that gives us one method, the ability to translate "itself" into a container of translation text/rules. As such, the form doesn't need to know which kind of control it has found, only that it implements the specific interface, and knows that there is a method where it can call to localize the control.
Code to the Interface Not the Implementation has NOTHING to do with Java, nor its Interface construct.
This concept was brought to prominence in the Patterns / Gang of Four books but was most probably around well before that. The concept certainly existed well before Java ever existed.
The Java Interface construct was created to aid in this idea (among other things), and people have become too focused on the construct as the centre of the meaning rather than the original intent. However, it is the reason we have public and private methods and attributes in Java, C++, C#, etc.
It means just interact with an object or system's public interface. Don't worry or even anticipate how it does what it does internally. Don't worry about how it is implemented. In object-oriented code, it is why we have public vs. private methods/attributes. We are intended to use the public methods because the private methods are there only for use internally, within the class. They make up the implementation of the class and can be changed as required without changing the public interface. Assume that regarding functionality, a method on a class will perform the same operation with the same expected result every time you call it with the same parameters. It allows the author to change how the class works, its implementation, without breaking how people interact with it.
And you can program to the interface, not the implementation without ever using an Interface construct. You can program to the interface not the implementation in C++, which does not have an Interface construct. You can integrate two massive enterprise systems much more robustly as long as they interact through public interfaces (contracts) rather than calling methods on objects internal to the systems. The interfaces are expected to always react the same expected way given the same input parameters; if implemented to the interface and not the implementation. The concept works in many places.
Shake the thought that Java Interfaces have anything what-so-ever to do with the concept of 'Program to the Interface, Not the Implementation'. They can help apply the concept, but they are not the concept.
It sounds like you understand how interfaces work but are unsure of when to use them and what advantages they offer. Here are a few examples of when an interface would make sense:
// if I want to add search capabilities to my application and support multiple search
// engines such as Google, Yahoo, Live, etc.
interface ISearchProvider
{
string Search(string keywords);
}
then I could create GoogleSearchProvider, YahooSearchProvider, LiveSearchProvider, etc.
// if I want to support multiple downloads using different protocols
// HTTP, HTTPS, FTP, FTPS, etc.
interface IUrlDownload
{
void Download(string url)
}
// how about an image loader for different kinds of images JPG, GIF, PNG, etc.
interface IImageLoader
{
Bitmap LoadImage(string filename)
}
then create JpegImageLoader, GifImageLoader, PngImageLoader, etc.
Most add-ins and plugin systems work off interfaces.
Another popular use is for the Repository pattern. Say I want to load a list of zip codes from different sources
interface IZipCodeRepository
{
IList<ZipCode> GetZipCodes(string state);
}
then I could create an XMLZipCodeRepository, SQLZipCodeRepository, CSVZipCodeRepository, etc. For my web applications, I often create XML repositories early on so I can get something up and running before the SQL Database is ready. Once the database is ready I write an SQLRepository to replace the XML version. The rest of my code remains unchanged since it runs solely off of interfaces.
Methods can accept interfaces such as:
PrintZipCodes(IZipCodeRepository zipCodeRepository, string state)
{
foreach (ZipCode zipCode in zipCodeRepository.GetZipCodes(state))
{
Console.WriteLine(zipCode.ToString());
}
}
It makes your code a lot more extensible and easier to maintain when you have sets of similar classes. I am a junior programmer, so I am no expert, but I just finished a project that required something similar.
I work on client side software that talks to a server running a medical device. We are developing a new version of this device that has some new components that the customer must configure at times. There are two types of new components, and they are different, but they are also very similar. Basically, I had to create two config forms, two lists classes, two of everything.
I decided that it would be best to create an abstract base class for each control type that would hold almost all of the real logic, and then derived types to take care of the differences between the two components. However, the base classes would not have been able to perform operations on these components if I had to worry about types all of the time (well, they could have, but there would have been an "if" statement or switch in every method).
I defined a simple interface for these components and all of the base classes talk to this interface. Now when I change something, it pretty much 'just works' everywhere and I have no code duplication.
A lot of explanation out there, but to make it even more simpler. Take for instance a List. One can implement a list with as:
An internal array
A linked list
Other implementations
By building to an interface, say a List. You only code as to definition of List or what List means in reality.
You could use any type of implementation internally say an array implementation. But suppose you wish to change the implementation for some reason say a bug or performance. Then you just have to change the declaration List<String> ls = new ArrayList<String>() to List<String> ls = new LinkedList<String>().
Nowhere else in code, will you have to change anything else; Because everything else was built on the definition of List.
If you program in Java, JDBC is a good example. JDBC defines a set of interfaces but says nothing about the implementation. Your applications can be written against this set of interfaces. In theory, you pick some JDBC driver and your application would just work. If you discover there's a faster or "better" or cheaper JDBC driver or for whatever reason, you can again in theory re-configure your property file, and without having to make any change in your application, your application would still work.
I am a late comer to this question, but I want to mention here that the line "Program to an interface, not an implementation" had some good discussion in the GoF (Gang of Four) Design Patterns book.
It stated, on p. 18:
Program to an interface, not an implementation
Don't declare variables to be instances of particular concrete classes. Instead, commit only to an interface defined by an abstract class. You will find this to be a common theme of the design patterns in this book.
and above that, it began with:
There are two benefits to manipulating objects solely in terms of the interface defined by abstract classes:
Clients remain unaware of the specific types of objects they use, as long as the objects adhere to the interface that clients expect.
Clients remain unaware of the classes that implement these objects. Clients only know about the abstract class(es) defining the interface.
So in other words, don't write it your classes so that it has a quack() method for ducks, and then a bark() method for dogs, because they are too specific for a particular implementation of a class (or subclass). Instead, write the method using names that are general enough to be used in the base class, such as giveSound() or move(), so that they can be used for ducks, dogs, or even cars, and then the client of your classes can just say .giveSound() rather than thinking about whether to use quack() or bark() or even determine the type before issuing the correct message to be sent to the object.
Programming to Interfaces is awesome, it promotes loose coupling. As #lassevk mentioned, Inversion of Control is a great use of this.
In addition, look into SOLID principals. here is a video series
It goes through a hard coded (strongly coupled example) then looks at interfaces, finally progressing to a IoC/DI tool (NInject)
To add to the existing posts, sometimes coding to interfaces helps on large projects when developers work on separate components simultaneously. All you need is to define interfaces upfront and write code to them while other developers write code to the interface you are implementing.
It can be advantageous to program to interfaces, even when we are not depending on abstractions.
Programming to interfaces forces us to use a contextually appropriate subset of an object. That helps because it:
prevents us from doing contextually inappropriate things, and
lets us safely change the implementation in the future.
For example, consider a Person class that implements the Friend and the Employee interface.
class Person implements AbstractEmployee, AbstractFriend {
}
In the context of the person's birthday, we program to the Friend interface, to prevent treating the person like an Employee.
function party() {
const friend: Friend = new Person("Kathryn");
friend.HaveFun();
}
In the context of the person's work, we program to the Employee interface, to prevent blurring workplace boundaries.
function workplace() {
const employee: Employee = new Person("Kathryn");
employee.DoWork();
}
Great. We have behaved appropriately in different contexts, and our software is working well.
Far into the future, if our business changes to work with dogs, we can change the software fairly easily. First, we create a Dog class that implements both Friend and Employee. Then, we safely change new Person() to new Dog(). Even if both functions have thousands of lines of code, that simple edit will work because we know the following are true:
Function party uses only the Friend subset of Person.
Function workplace uses only the Employee subset of Person.
Class Dog implements both the Friend and Employee interfaces.
On the other hand, if either party or workplace were to have programmed against Person, there would be a risk of both having Person-specific code. Changing from Person to Dog would require us to comb through the code to extirpate any Person-specific code that Dog does not support.
The moral: programming to interfaces helps our code to behave appropriately and to be ready for change. It also prepares our code to depend on abstractions, which brings even more advantages.
If I'm writing a new class Swimmer to add the functionality swim() and need to use an object of class say Dog, and this Dog class implements interface Animal which declares swim().
At the top of the hierarchy (Animal), it's very abstract while at the bottom (Dog) it's very concrete. The way I think about "programming to interfaces" is that, as I write Swimmer class, I want to write my code against the interface that's as far up that hierarchy which in this case is an Animal object. An interface is free from implementation details and thus makes your code loosely-coupled.
The implementation details can be changed with time, however, it would not affect the remaining code since all you are interacting with is with the interface and not the implementation. You don't care what the implementation is like... all you know is that there will be a class that would implement the interface.
It is also good for Unit Testing, you can inject your own classes (that meet the requirements of the interface) into a class that depends on it
Short story: A postman is asked to go home after home and receive the covers contains (letters, documents, cheques, gift cards, application, love letter) with the address written on it to deliver.
Suppose there is no cover and ask the postman to go home after home and receive all the things and deliver to other people, the postman can get confused.
So better wrap it with cover (in our story it is the interface) then he will do his job fine.
Now the postman's job is to receive and deliver the covers only (he wouldn't bothered what is inside in the cover).
Create a type of interface not actual type, but implement it with actual type.
To create to interface means your components get Fit into the rest of code easily
I give you an example.
you have the AirPlane interface as below.
interface Airplane{
parkPlane();
servicePlane();
}
Suppose you have methods in your Controller class of Planes like
parkPlane(Airplane plane)
and
servicePlane(Airplane plane)
implemented in your program. It will not BREAK your code.
I mean, it need not to change as long as it accepts arguments as AirPlane.
Because it will accept any Airplane despite actual type, flyer, highflyr, fighter, etc.
Also, in a collection:
List<Airplane> plane; // Will take all your planes.
The following example will clear your understanding.
You have a fighter plane that implements it, so
public class Fighter implements Airplane {
public void parkPlane(){
// Specific implementations for fighter plane to park
}
public void servicePlane(){
// Specific implementatoins for fighter plane to service.
}
}
The same thing for HighFlyer and other clasess:
public class HighFlyer implements Airplane {
public void parkPlane(){
// Specific implementations for HighFlyer plane to park
}
public void servicePlane(){
// specific implementatoins for HighFlyer plane to service.
}
}
Now think your controller classes using AirPlane several times,
Suppose your Controller class is ControlPlane like below,
public Class ControlPlane{
AirPlane plane;
// so much method with AirPlane reference are used here...
}
Here magic comes as you may make your new AirPlane type instances as many as you want and you are not changing the code of ControlPlane class.
You can add an instance...
JumboJetPlane // implementing AirPlane interface.
AirBus // implementing AirPlane interface.
You may remove instances of previously created types too.
So, just to get this right, the advantage of a interface is that I can separate the calling of a method from any particular class. Instead creating a instance of the interface, where the implementation is given from whichever class I choose that implements that interface. Thus allowing me to have many classes, which have similar but slightly different functionality and in some cases (the cases related to the intention of the interface) not care which object it is.
For example, I could have a movement interface. A method which makes something 'move' and any object (Person, Car, Cat) that implements the movement interface could be passed in and told to move. Without the method every knowing the type of class it is.
Imagine you have a product called 'Zebra' that can be extended by plugins. It finds the plugins by searching for DLLs in some directory. It loads all those DLLs and uses reflection to find any classes that implement IZebraPlugin, and then calls the methods of that interface to communicate with the plugins.
This makes it completely independent of any specific plugin class - it doesn't care what the classes are. It only cares that they fulfill the interface specification.
Interfaces are a way of defining points of extensibility like this. Code that talks to an interface is more loosely coupled - in fact it is not coupled at all to any other specific code. It can inter-operate with plugins written years later by people who have never met the original developer.
You could instead use a base class with virtual functions - all plugins would be derived from the base class. But this is much more limiting because a class can only have one base class, whereas it can implement any number of interfaces.
C++ explanation.
Think of an interface as your classes public methods.
You then could create a template that 'depends' on these public methods in order to carry out it's own function (it makes function calls defined in the classes public interface). Lets say this template is a container, like a Vector class, and the interface it depends on is a search algorithm.
Any algorithm class that defines the functions/interface Vector makes calls to will satisfy the 'contract' (as someone explained in the original reply). The algorithms don't even need to be of the same base class; the only requirement is that the functions/methods that the Vector depends on (interface) is defined in your algorithm.
The point of all of this is that you could supply any different search algorithm/class just as long as it supplied the interface that Vector depends on (bubble search, sequential search, quick search).
You might also want to design other containers (lists, queues) that would harness the same search algorithm as Vector by having them fulfill the interface/contract that your search algorithms depends on.
This saves time (OOP principle 'code reuse') as you are able to write an algorithm once instead of again and again and again specific to every new object you create without over-complicating the issue with an overgrown inheritance tree.
As for 'missing out' on how things operate; big-time (at least in C++), as this is how most of the Standard TEMPLATE Library's framework operates.
Of course when using inheritance and abstract classes the methodology of programming to an interface changes; but the principle is the same, your public functions/methods are your classes interface.
This is a huge topic and one of the the cornerstone principles of Design Patterns.
In Java these concrete classes all implement the CharSequence interface:
CharBuffer, String, StringBuffer, StringBuilder
These concrete classes do not have a common parent class other than Object, so there is nothing that relates them, other than the fact they each have something to do with arrays of characters, representing such, or manipulating such. For instance, the characters of String cannot be changed once a String object is instantiated, whereas the characters of StringBuffer or StringBuilder can be edited.
Yet each one of these classes is capable of suitably implementing the CharSequence interface methods:
char charAt(int index)
int length()
CharSequence subSequence(int start, int end)
String toString()
In some cases, Java class library classes that used to accept String have been revised to now accept the CharSequence interface. So if you have an instance of StringBuilder, instead of extracting a String object (which means instantiating a new object instance), it can instead just pass the StringBuilder itself as it implements the CharSequence interface.
The Appendable interface that some classes implement has much the same kind of benefit for any situation where characters can be appended to an instance of the underlying concrete class object instance. All of these concrete classes implement the Appendable interface:
BufferedWriter, CharArrayWriter, CharBuffer, FileWriter, FilterWriter, LogStream, OutputStreamWriter, PipedWriter, PrintStream, PrintWriter, StringBuffer, StringBuilder, StringWriter, Writer
Previous answers focus on programming to an abstraction for the sake of extensibility and loose coupling. While these are very important points,
readability is equally important. Readability allows others (and your future self) to understand the code with minimal effort. This is why readability leverages abstractions.
An abstraction is, by definition, simpler than its implementation. An abstraction omits detail in order to convey the essence or purpose of a thing, but nothing more.
Because abstractions are simpler, I can fit a lot more of them in my head at one time, compared to implementations.
As a programmer (in any language) I walk around with a general idea of a List in my head at all times. In particular, a List allows random access, duplicate elements, and maintains order. When I see a declaration like this: List myList = new ArrayList() I think, cool, this is a List that's being used in the (basic) way that I understand; and I don't have to think any more about it.
On the other hand, I do not carry around the specific implementation details of ArrayList in my head. So when I see, ArrayList myList = new ArrayList(). I think, uh-oh, this ArrayList must be used in a way that isn't covered by the List interface. Now I have to track down all the usages of this ArrayList to understand why, because otherwise I won't be able to fully understand this code. It gets even more confusing when I discover that 100% of the usages of this ArrayList do conform to the List interface. Then I'm left wondering... was there some code relying on ArrayList implementation details that got deleted? Was the programmer who instantiated it just incompetent? Is this application locked into that specific implementation in some way at runtime? A way that I don't understand?
I'm now confused and uncertain about this application, and all we're talking about is a simple List. What if this was a complex business object ignoring its interface? Then my knowledge of the business domain is insufficient to understand the purpose of the code.
So even when I need a List strictly within a private method (nothing that would break other applications if it changed, and I could easily find/replace every usage in my IDE) it still benefits readability to program to an abstraction. Because abstractions are simpler than implementation details. You could say that programming to abstractions is one way of adhering to the KISS principle.
An interface is like a contract, where you want your implementation class to implement methods written in the contract (interface). Since Java does not provide multiple inheritance, "programming to interface" is a good way to achieve multiple inheritance.
If you have a class A that is already extending some other class B, but you want that class A to also follow certain guidelines or implement a certain contract, then you can do so by the "programming to interface" strategy.
Q: - ... "Could you use any class that implements an interface?"
A: - Yes.
Q: - ... "When would you need to do that?"
A: - Each time you need a class(es) that implements interface(s).
Note: We couldn't instantiate an interface not implemented by a class - True.
Why?
Because the interface has only method prototypes, not definitions (just functions names, not their logic)
AnIntf anInst = new Aclass();
// we could do this only if Aclass implements AnIntf.
// anInst will have Aclass reference.
Note: Now we could understand what happened if Bclass and Cclass implemented same Dintf.
Dintf bInst = new Bclass();
// now we could call all Dintf functions implemented (defined) in Bclass.
Dintf cInst = new Cclass();
// now we could call all Dintf functions implemented (defined) in Cclass.
What we have: Same interface prototypes (functions names in interface), and call different implementations.
Bibliography:
Prototypes - wikipedia
program to an interface is a term from the GOF book. i would not directly say it has to do with java interface but rather real interfaces. to achieve clean layer separation, you need to create some separation between systems for example: Let's say you had a concrete database you want to use, you would never "program to the database" , instead you would "program to the storage interface". Likewise you would never "program to a Web Service" but rather you would program to a "client interface". this is so you can easily swap things out.
i find these rules help me:
1. we use a java interface when we have multiple types of an object. if i just have single object, i dont see the point. if there are at least two concrete implementations of some idea, then i would use a java interface.
2. if as i stated above, you want to bring decoupling from an external system (storage system) to your own system (local DB) then also use a interface.
notice how there are two ways to consider when to use them.
Coding to an interface is a philosophy, rather than specific language constructs or design patterns - it instructs you what is the correct order of steps to follow in order to create better software systems (e.g. more resilient, more testable, more scalable, more extendible, and other nice traits).
What it actually means is:
===
Before jumping to implementations and coding (the HOW) - think of the WHAT:
What black boxes should make up your system,
What is each box' responsibility,
What are the ways each "client" (that is, one of those other boxes, 3rd party "boxes", or even humans) should communicate with it (the API of each box).
After you figure the above, go ahead and implement those boxes (the HOW).
Thinking first of what a box' is and what its API, leads the developer to distil the box' responsibility, and to mark for himself and future developers the difference between what is its exposed details ("API") and it's hidden details ("implementation details"), which is a very important differentiation to have.
One immediate and easily noticeable gain is the team can then change and improve implementations without affecting the general architecture. It also makes the system MUCH more testable (it goes well with the TDD approach).
===
Beyond the traits I've mentioned above, you also save A LOT OF TIME going this direction.
Micro Services and DDD, when done right, are great examples of "Coding to an interface", however the concept wins in every pattern from monoliths to "serverless", from BE to FE, from OOP to functional, etc....
I strongly recommend this approach for Software Engineering (and I basically believe it makes total sense in other fields as well).
Program to an interface allows to change implementation of contract defined by interface seamlessly. It allows loose coupling between contract and specific implementations.
IInterface classRef = new ObjectWhatever()
You could use any class that implements IInterface? When would you need to do that?
Have a look at this SE question for good example.
Why should the interface for a Java class be preferred?
does using an Interface hit performance?
if so how much?
Yes. It will have slight performance overhead in sub-seconds. But if your application has requirement to change the implementation of interface dynamically, don't worry about performance impact.
how can you avoid it without having to maintain two bits of code?
Don't try to avoid multiple implementations of interface if your application need them. In absence of tight coupling of interface with one specific implementation, you may have to deploy the patch to change one implementation to other implementation.
One good use case: Implementation of Strategy pattern:
Real World Example of the Strategy Pattern
"Program to interface" means don't provide hard code right the way, meaning your code should be extended without breaking the previous functionality. Just extensions, not editing the previous code.
Also I see a lot of good and explanatory answers here, so I want to give my point of view here, including some extra information what I noticed when using this method.
Unit testing
For the last two years, I have written a hobby project and I did not write unit tests for it. After writing about 50K lines I found out it would be really necessary to write unit tests.
I did not use interfaces (or very sparingly) ... and when I made my first unit test, I found out it was complicated. Why?
Because I had to make a lot of class instances, used for input as class variables and/or parameters. So the tests look more like integration tests (having to make a complete 'framework' of classes since all was tied together).
Fear of interfaces
So I decided to use interfaces. My fear was that I had to implement all functionality everywhere (in all used classes) multiple times. In some way this is true, however, by using inheritance it can be reduced a lot.
Combination of interfaces and inheritance
I found out the combination is very good to be used. I give a very simple example.
public interface IPricable
{
int Price { get; }
}
public interface ICar : IPricable
public abstract class Article
{
public int Price { get { return ... } }
}
public class Car : Article, ICar
{
// Price does not need to be defined here
}
This way copying code is not necessary, while still having the benefit of using a car as interface (ICar).

not being able to use methods of subclass using a reference variable that is of type superclass [duplicate]

I have seen this mentioned a few times and I am not clear on what it means. When and why would you do this?
I know what interfaces do, but the fact I am not clear on this makes me think I am missing out on using them correctly.
Is it just so if you were to do:
IInterface classRef = new ObjectWhatever()
You could use any class that implements IInterface? When would you need to do that? The only thing I can think of is if you have a method and you are unsure of what object will be passed except for it implementing IInterface. I cannot think how often you would need to do that.
Also, how could you write a method that takes in an object that implements an interface? Is that possible?
There are some wonderful answers on here to this questions that get into all sorts of great detail about interfaces and loosely coupling code, inversion of control and so on. There are some fairly heady discussions, so I'd like to take the opportunity to break things down a bit for understanding why an interface is useful.
When I first started getting exposed to interfaces, I too was confused about their relevance. I didn't understand why you needed them. If we're using a language like Java or C#, we already have inheritance and I viewed interfaces as a weaker form of inheritance and thought, "why bother?" In a sense I was right, you can think of interfaces as sort of a weak form of inheritance, but beyond that I finally understood their use as a language construct by thinking of them as a means of classifying common traits or behaviors that were exhibited by potentially many non-related classes of objects.
For example -- say you have a SIM game and have the following classes:
class HouseFly inherits Insect {
void FlyAroundYourHead(){}
void LandOnThings(){}
}
class Telemarketer inherits Person {
void CallDuringDinner(){}
void ContinueTalkingWhenYouSayNo(){}
}
Clearly, these two objects have nothing in common in terms of direct inheritance. But, you could say they are both annoying.
Let's say our game needs to have some sort of random thing that annoys the game player when they eat dinner. This could be a HouseFly or a Telemarketer or both -- but how do you allow for both with a single function? And how do you ask each different type of object to "do their annoying thing" in the same way?
The key to realize is that both a Telemarketer and HouseFly share a common loosely interpreted behavior even though they are nothing alike in terms of modeling them. So, let's make an interface that both can implement:
interface IPest {
void BeAnnoying();
}
class HouseFly inherits Insect implements IPest {
void FlyAroundYourHead(){}
void LandOnThings(){}
void BeAnnoying() {
FlyAroundYourHead();
LandOnThings();
}
}
class Telemarketer inherits Person implements IPest {
void CallDuringDinner(){}
void ContinueTalkingWhenYouSayNo(){}
void BeAnnoying() {
CallDuringDinner();
ContinueTalkingWhenYouSayNo();
}
}
We now have two classes that can each be annoying in their own way. And they do not need to derive from the same base class and share common inherent characteristics -- they simply need to satisfy the contract of IPest -- that contract is simple. You just have to BeAnnoying. In this regard, we can model the following:
class DiningRoom {
DiningRoom(Person[] diningPeople, IPest[] pests) { ... }
void ServeDinner() {
when diningPeople are eating,
foreach pest in pests
pest.BeAnnoying();
}
}
Here we have a dining room that accepts a number of diners and a number of pests -- note the use of the interface. This means that in our little world, a member of the pests array could actually be a Telemarketer object or a HouseFly object.
The ServeDinner method is called when dinner is served and our people in the dining room are supposed to eat. In our little game, that's when our pests do their work -- each pest is instructed to be annoying by way of the IPest interface. In this way, we can easily have both Telemarketers and HouseFlys be annoying in each of their own ways -- we care only that we have something in the DiningRoom object that is a pest, we don't really care what it is and they could have nothing in common with other.
This very contrived pseudo-code example (that dragged on a lot longer than I anticipated) is simply meant to illustrate the kind of thing that finally turned the light on for me in terms of when we might use an interface. I apologize in advance for the silliness of the example, but hope that it helps in your understanding. And, to be sure, the other posted answers you've received here really cover the gamut of the use of interfaces today in design patterns and development methodologies.
The specific example I used to give to students is that they should write
List myList = new ArrayList(); // programming to the List interface
instead of
ArrayList myList = new ArrayList(); // this is bad
These look exactly the same in a short program, but if you go on to use myList 100 times in your program you can start to see a difference. The first declaration ensures that you only call methods on myList that are defined by the List interface (so no ArrayList specific methods). If you've programmed to the interface this way, later on you can decide that you really need
List myList = new TreeList();
and you only have to change your code in that one spot. You already know that the rest of your code doesn't do anything that will be broken by changing the implementation because you programmed to the interface.
The benefits are even more obvious (I think) when you're talking about method parameters and return values. Take this for example:
public ArrayList doSomething(HashMap map);
That method declaration ties you to two concrete implementations (ArrayList and HashMap). As soon as that method is called from other code, any changes to those types probably mean you're going to have to change the calling code as well. It would be better to program to the interfaces.
public List doSomething(Map map);
Now it doesn't matter what kind of List you return, or what kind of Map is passed in as a parameter. Changes that you make inside the doSomething method won't force you to change the calling code.
Programming to an interface is saying, "I need this functionality and I don't care where it comes from."
Consider (in Java), the List interface versus the ArrayList and LinkedList concrete classes. If all I care about is that I have a data structure containing multiple data items that I should access via iteration, I'd pick a List (and that's 99% of the time). If I know that I need constant-time insert/delete from either end of the list, I might pick the LinkedList concrete implementation (or more likely, use the Queue interface). If I know I need random access by index, I'd pick the ArrayList concrete class.
Programming to an interface has absolutely nothing to do with abstract interfaces like we see in Java or .NET. It isn't even an OOP concept.
What it means is don't go messing around with the internals of an object or data structure. Use the Abstract Program Interface, or API, to interact with your data. In Java or C# that means using public properties and methods instead of raw field access. For C that means using functions instead of raw pointers.
EDIT: And with databases it means using views and stored procedures instead of direct table access.
Using interfaces is a key factor in making your code easily testable in addition to removing unnecessary couplings between your classes. By creating an interface that defines the operations on your class, you allow classes that want to use that functionality the ability to use it without depending on your implementing class directly. If later on you decide to change and use a different implementation, you need only change the part of the code where the implementation is instantiated. The rest of the code need not change because it depends on the interface, not the implementing class.
This is very useful in creating unit tests. In the class under test you have it depend on the interface and inject an instance of the interface into the class (or a factory that allows it to build instances of the interface as needed) via the constructor or a property settor. The class uses the provided (or created) interface in its methods. When you go to write your tests, you can mock or fake the interface and provide an interface that responds with data configured in your unit test. You can do this because your class under test deals only with the interface, not your concrete implementation. Any class implementing the interface, including your mock or fake class, will do.
EDIT: Below is a link to an article where Erich Gamma discusses his quote, "Program to an interface, not an implementation."
http://www.artima.com/lejava/articles/designprinciples.html
You should look into Inversion of Control:
Martin Fowler: Inversion of Control Containers and the Dependency Injection pattern
Wikipedia: Inversion of Control
In such a scenario, you wouldn't write this:
IInterface classRef = new ObjectWhatever();
You would write something like this:
IInterface classRef = container.Resolve<IInterface>();
This would go into a rule-based setup in the container object, and construct the actual object for you, which could be ObjectWhatever. The important thing is that you could replace this rule with something that used another type of object altogether, and your code would still work.
If we leave IoC off the table, you can write code that knows that it can talk to an object that does something specific, but not which type of object or how it does it.
This would come in handy when passing parameters.
As for your parenthesized question "Also, how could you write a method that takes in an object that implements an Interface? Is that possible?", in C# you would simply use the interface type for the parameter type, like this:
public void DoSomethingToAnObject(IInterface whatever) { ... }
This plugs right into the "talk to an object that does something specific." The method defined above knows what to expect from the object, that it implements everything in IInterface, but it doesn't care which type of object it is, only that it adheres to the contract, which is what an interface is.
For instance, you're probably familiar with calculators and have probably used quite a few in your days, but most of the time they're all different. You, on the other hand, knows how a standard calculator should work, so you're able to use them all, even if you can't use the specific features that each calculator has that none of the other has.
This is the beauty of interfaces. You can write a piece of code, that knows that it will get objects passed to it that it can expect certain behavior from. It doesn't care one hoot what kind of object it is, only that it supports the behavior needed.
Let me give you a concrete example.
We have a custom-built translation system for windows forms. This system loops through controls on a form and translate text in each. The system knows how to handle basic controls, like the-type-of-control-that-has-a-Text-property, and similar basic stuff, but for anything basic, it falls short.
Now, since controls inherit from pre-defined classes that we have no control over, we could do one of three things:
Build support for our translation system to detect specifically which type of control it is working with, and translate the correct bits (maintenance nightmare)
Build support into base classes (impossible, since all the controls inherit from different pre-defined classes)
Add interface support
So we did nr. 3. All our controls implement ILocalizable, which is an interface that gives us one method, the ability to translate "itself" into a container of translation text/rules. As such, the form doesn't need to know which kind of control it has found, only that it implements the specific interface, and knows that there is a method where it can call to localize the control.
Code to the Interface Not the Implementation has NOTHING to do with Java, nor its Interface construct.
This concept was brought to prominence in the Patterns / Gang of Four books but was most probably around well before that. The concept certainly existed well before Java ever existed.
The Java Interface construct was created to aid in this idea (among other things), and people have become too focused on the construct as the centre of the meaning rather than the original intent. However, it is the reason we have public and private methods and attributes in Java, C++, C#, etc.
It means just interact with an object or system's public interface. Don't worry or even anticipate how it does what it does internally. Don't worry about how it is implemented. In object-oriented code, it is why we have public vs. private methods/attributes. We are intended to use the public methods because the private methods are there only for use internally, within the class. They make up the implementation of the class and can be changed as required without changing the public interface. Assume that regarding functionality, a method on a class will perform the same operation with the same expected result every time you call it with the same parameters. It allows the author to change how the class works, its implementation, without breaking how people interact with it.
And you can program to the interface, not the implementation without ever using an Interface construct. You can program to the interface not the implementation in C++, which does not have an Interface construct. You can integrate two massive enterprise systems much more robustly as long as they interact through public interfaces (contracts) rather than calling methods on objects internal to the systems. The interfaces are expected to always react the same expected way given the same input parameters; if implemented to the interface and not the implementation. The concept works in many places.
Shake the thought that Java Interfaces have anything what-so-ever to do with the concept of 'Program to the Interface, Not the Implementation'. They can help apply the concept, but they are not the concept.
It sounds like you understand how interfaces work but are unsure of when to use them and what advantages they offer. Here are a few examples of when an interface would make sense:
// if I want to add search capabilities to my application and support multiple search
// engines such as Google, Yahoo, Live, etc.
interface ISearchProvider
{
string Search(string keywords);
}
then I could create GoogleSearchProvider, YahooSearchProvider, LiveSearchProvider, etc.
// if I want to support multiple downloads using different protocols
// HTTP, HTTPS, FTP, FTPS, etc.
interface IUrlDownload
{
void Download(string url)
}
// how about an image loader for different kinds of images JPG, GIF, PNG, etc.
interface IImageLoader
{
Bitmap LoadImage(string filename)
}
then create JpegImageLoader, GifImageLoader, PngImageLoader, etc.
Most add-ins and plugin systems work off interfaces.
Another popular use is for the Repository pattern. Say I want to load a list of zip codes from different sources
interface IZipCodeRepository
{
IList<ZipCode> GetZipCodes(string state);
}
then I could create an XMLZipCodeRepository, SQLZipCodeRepository, CSVZipCodeRepository, etc. For my web applications, I often create XML repositories early on so I can get something up and running before the SQL Database is ready. Once the database is ready I write an SQLRepository to replace the XML version. The rest of my code remains unchanged since it runs solely off of interfaces.
Methods can accept interfaces such as:
PrintZipCodes(IZipCodeRepository zipCodeRepository, string state)
{
foreach (ZipCode zipCode in zipCodeRepository.GetZipCodes(state))
{
Console.WriteLine(zipCode.ToString());
}
}
It makes your code a lot more extensible and easier to maintain when you have sets of similar classes. I am a junior programmer, so I am no expert, but I just finished a project that required something similar.
I work on client side software that talks to a server running a medical device. We are developing a new version of this device that has some new components that the customer must configure at times. There are two types of new components, and they are different, but they are also very similar. Basically, I had to create two config forms, two lists classes, two of everything.
I decided that it would be best to create an abstract base class for each control type that would hold almost all of the real logic, and then derived types to take care of the differences between the two components. However, the base classes would not have been able to perform operations on these components if I had to worry about types all of the time (well, they could have, but there would have been an "if" statement or switch in every method).
I defined a simple interface for these components and all of the base classes talk to this interface. Now when I change something, it pretty much 'just works' everywhere and I have no code duplication.
A lot of explanation out there, but to make it even more simpler. Take for instance a List. One can implement a list with as:
An internal array
A linked list
Other implementations
By building to an interface, say a List. You only code as to definition of List or what List means in reality.
You could use any type of implementation internally say an array implementation. But suppose you wish to change the implementation for some reason say a bug or performance. Then you just have to change the declaration List<String> ls = new ArrayList<String>() to List<String> ls = new LinkedList<String>().
Nowhere else in code, will you have to change anything else; Because everything else was built on the definition of List.
If you program in Java, JDBC is a good example. JDBC defines a set of interfaces but says nothing about the implementation. Your applications can be written against this set of interfaces. In theory, you pick some JDBC driver and your application would just work. If you discover there's a faster or "better" or cheaper JDBC driver or for whatever reason, you can again in theory re-configure your property file, and without having to make any change in your application, your application would still work.
I am a late comer to this question, but I want to mention here that the line "Program to an interface, not an implementation" had some good discussion in the GoF (Gang of Four) Design Patterns book.
It stated, on p. 18:
Program to an interface, not an implementation
Don't declare variables to be instances of particular concrete classes. Instead, commit only to an interface defined by an abstract class. You will find this to be a common theme of the design patterns in this book.
and above that, it began with:
There are two benefits to manipulating objects solely in terms of the interface defined by abstract classes:
Clients remain unaware of the specific types of objects they use, as long as the objects adhere to the interface that clients expect.
Clients remain unaware of the classes that implement these objects. Clients only know about the abstract class(es) defining the interface.
So in other words, don't write it your classes so that it has a quack() method for ducks, and then a bark() method for dogs, because they are too specific for a particular implementation of a class (or subclass). Instead, write the method using names that are general enough to be used in the base class, such as giveSound() or move(), so that they can be used for ducks, dogs, or even cars, and then the client of your classes can just say .giveSound() rather than thinking about whether to use quack() or bark() or even determine the type before issuing the correct message to be sent to the object.
Programming to Interfaces is awesome, it promotes loose coupling. As #lassevk mentioned, Inversion of Control is a great use of this.
In addition, look into SOLID principals. here is a video series
It goes through a hard coded (strongly coupled example) then looks at interfaces, finally progressing to a IoC/DI tool (NInject)
To add to the existing posts, sometimes coding to interfaces helps on large projects when developers work on separate components simultaneously. All you need is to define interfaces upfront and write code to them while other developers write code to the interface you are implementing.
It can be advantageous to program to interfaces, even when we are not depending on abstractions.
Programming to interfaces forces us to use a contextually appropriate subset of an object. That helps because it:
prevents us from doing contextually inappropriate things, and
lets us safely change the implementation in the future.
For example, consider a Person class that implements the Friend and the Employee interface.
class Person implements AbstractEmployee, AbstractFriend {
}
In the context of the person's birthday, we program to the Friend interface, to prevent treating the person like an Employee.
function party() {
const friend: Friend = new Person("Kathryn");
friend.HaveFun();
}
In the context of the person's work, we program to the Employee interface, to prevent blurring workplace boundaries.
function workplace() {
const employee: Employee = new Person("Kathryn");
employee.DoWork();
}
Great. We have behaved appropriately in different contexts, and our software is working well.
Far into the future, if our business changes to work with dogs, we can change the software fairly easily. First, we create a Dog class that implements both Friend and Employee. Then, we safely change new Person() to new Dog(). Even if both functions have thousands of lines of code, that simple edit will work because we know the following are true:
Function party uses only the Friend subset of Person.
Function workplace uses only the Employee subset of Person.
Class Dog implements both the Friend and Employee interfaces.
On the other hand, if either party or workplace were to have programmed against Person, there would be a risk of both having Person-specific code. Changing from Person to Dog would require us to comb through the code to extirpate any Person-specific code that Dog does not support.
The moral: programming to interfaces helps our code to behave appropriately and to be ready for change. It also prepares our code to depend on abstractions, which brings even more advantages.
If I'm writing a new class Swimmer to add the functionality swim() and need to use an object of class say Dog, and this Dog class implements interface Animal which declares swim().
At the top of the hierarchy (Animal), it's very abstract while at the bottom (Dog) it's very concrete. The way I think about "programming to interfaces" is that, as I write Swimmer class, I want to write my code against the interface that's as far up that hierarchy which in this case is an Animal object. An interface is free from implementation details and thus makes your code loosely-coupled.
The implementation details can be changed with time, however, it would not affect the remaining code since all you are interacting with is with the interface and not the implementation. You don't care what the implementation is like... all you know is that there will be a class that would implement the interface.
It is also good for Unit Testing, you can inject your own classes (that meet the requirements of the interface) into a class that depends on it
Short story: A postman is asked to go home after home and receive the covers contains (letters, documents, cheques, gift cards, application, love letter) with the address written on it to deliver.
Suppose there is no cover and ask the postman to go home after home and receive all the things and deliver to other people, the postman can get confused.
So better wrap it with cover (in our story it is the interface) then he will do his job fine.
Now the postman's job is to receive and deliver the covers only (he wouldn't bothered what is inside in the cover).
Create a type of interface not actual type, but implement it with actual type.
To create to interface means your components get Fit into the rest of code easily
I give you an example.
you have the AirPlane interface as below.
interface Airplane{
parkPlane();
servicePlane();
}
Suppose you have methods in your Controller class of Planes like
parkPlane(Airplane plane)
and
servicePlane(Airplane plane)
implemented in your program. It will not BREAK your code.
I mean, it need not to change as long as it accepts arguments as AirPlane.
Because it will accept any Airplane despite actual type, flyer, highflyr, fighter, etc.
Also, in a collection:
List<Airplane> plane; // Will take all your planes.
The following example will clear your understanding.
You have a fighter plane that implements it, so
public class Fighter implements Airplane {
public void parkPlane(){
// Specific implementations for fighter plane to park
}
public void servicePlane(){
// Specific implementatoins for fighter plane to service.
}
}
The same thing for HighFlyer and other clasess:
public class HighFlyer implements Airplane {
public void parkPlane(){
// Specific implementations for HighFlyer plane to park
}
public void servicePlane(){
// specific implementatoins for HighFlyer plane to service.
}
}
Now think your controller classes using AirPlane several times,
Suppose your Controller class is ControlPlane like below,
public Class ControlPlane{
AirPlane plane;
// so much method with AirPlane reference are used here...
}
Here magic comes as you may make your new AirPlane type instances as many as you want and you are not changing the code of ControlPlane class.
You can add an instance...
JumboJetPlane // implementing AirPlane interface.
AirBus // implementing AirPlane interface.
You may remove instances of previously created types too.
So, just to get this right, the advantage of a interface is that I can separate the calling of a method from any particular class. Instead creating a instance of the interface, where the implementation is given from whichever class I choose that implements that interface. Thus allowing me to have many classes, which have similar but slightly different functionality and in some cases (the cases related to the intention of the interface) not care which object it is.
For example, I could have a movement interface. A method which makes something 'move' and any object (Person, Car, Cat) that implements the movement interface could be passed in and told to move. Without the method every knowing the type of class it is.
Imagine you have a product called 'Zebra' that can be extended by plugins. It finds the plugins by searching for DLLs in some directory. It loads all those DLLs and uses reflection to find any classes that implement IZebraPlugin, and then calls the methods of that interface to communicate with the plugins.
This makes it completely independent of any specific plugin class - it doesn't care what the classes are. It only cares that they fulfill the interface specification.
Interfaces are a way of defining points of extensibility like this. Code that talks to an interface is more loosely coupled - in fact it is not coupled at all to any other specific code. It can inter-operate with plugins written years later by people who have never met the original developer.
You could instead use a base class with virtual functions - all plugins would be derived from the base class. But this is much more limiting because a class can only have one base class, whereas it can implement any number of interfaces.
C++ explanation.
Think of an interface as your classes public methods.
You then could create a template that 'depends' on these public methods in order to carry out it's own function (it makes function calls defined in the classes public interface). Lets say this template is a container, like a Vector class, and the interface it depends on is a search algorithm.
Any algorithm class that defines the functions/interface Vector makes calls to will satisfy the 'contract' (as someone explained in the original reply). The algorithms don't even need to be of the same base class; the only requirement is that the functions/methods that the Vector depends on (interface) is defined in your algorithm.
The point of all of this is that you could supply any different search algorithm/class just as long as it supplied the interface that Vector depends on (bubble search, sequential search, quick search).
You might also want to design other containers (lists, queues) that would harness the same search algorithm as Vector by having them fulfill the interface/contract that your search algorithms depends on.
This saves time (OOP principle 'code reuse') as you are able to write an algorithm once instead of again and again and again specific to every new object you create without over-complicating the issue with an overgrown inheritance tree.
As for 'missing out' on how things operate; big-time (at least in C++), as this is how most of the Standard TEMPLATE Library's framework operates.
Of course when using inheritance and abstract classes the methodology of programming to an interface changes; but the principle is the same, your public functions/methods are your classes interface.
This is a huge topic and one of the the cornerstone principles of Design Patterns.
In Java these concrete classes all implement the CharSequence interface:
CharBuffer, String, StringBuffer, StringBuilder
These concrete classes do not have a common parent class other than Object, so there is nothing that relates them, other than the fact they each have something to do with arrays of characters, representing such, or manipulating such. For instance, the characters of String cannot be changed once a String object is instantiated, whereas the characters of StringBuffer or StringBuilder can be edited.
Yet each one of these classes is capable of suitably implementing the CharSequence interface methods:
char charAt(int index)
int length()
CharSequence subSequence(int start, int end)
String toString()
In some cases, Java class library classes that used to accept String have been revised to now accept the CharSequence interface. So if you have an instance of StringBuilder, instead of extracting a String object (which means instantiating a new object instance), it can instead just pass the StringBuilder itself as it implements the CharSequence interface.
The Appendable interface that some classes implement has much the same kind of benefit for any situation where characters can be appended to an instance of the underlying concrete class object instance. All of these concrete classes implement the Appendable interface:
BufferedWriter, CharArrayWriter, CharBuffer, FileWriter, FilterWriter, LogStream, OutputStreamWriter, PipedWriter, PrintStream, PrintWriter, StringBuffer, StringBuilder, StringWriter, Writer
Previous answers focus on programming to an abstraction for the sake of extensibility and loose coupling. While these are very important points,
readability is equally important. Readability allows others (and your future self) to understand the code with minimal effort. This is why readability leverages abstractions.
An abstraction is, by definition, simpler than its implementation. An abstraction omits detail in order to convey the essence or purpose of a thing, but nothing more.
Because abstractions are simpler, I can fit a lot more of them in my head at one time, compared to implementations.
As a programmer (in any language) I walk around with a general idea of a List in my head at all times. In particular, a List allows random access, duplicate elements, and maintains order. When I see a declaration like this: List myList = new ArrayList() I think, cool, this is a List that's being used in the (basic) way that I understand; and I don't have to think any more about it.
On the other hand, I do not carry around the specific implementation details of ArrayList in my head. So when I see, ArrayList myList = new ArrayList(). I think, uh-oh, this ArrayList must be used in a way that isn't covered by the List interface. Now I have to track down all the usages of this ArrayList to understand why, because otherwise I won't be able to fully understand this code. It gets even more confusing when I discover that 100% of the usages of this ArrayList do conform to the List interface. Then I'm left wondering... was there some code relying on ArrayList implementation details that got deleted? Was the programmer who instantiated it just incompetent? Is this application locked into that specific implementation in some way at runtime? A way that I don't understand?
I'm now confused and uncertain about this application, and all we're talking about is a simple List. What if this was a complex business object ignoring its interface? Then my knowledge of the business domain is insufficient to understand the purpose of the code.
So even when I need a List strictly within a private method (nothing that would break other applications if it changed, and I could easily find/replace every usage in my IDE) it still benefits readability to program to an abstraction. Because abstractions are simpler than implementation details. You could say that programming to abstractions is one way of adhering to the KISS principle.
An interface is like a contract, where you want your implementation class to implement methods written in the contract (interface). Since Java does not provide multiple inheritance, "programming to interface" is a good way to achieve multiple inheritance.
If you have a class A that is already extending some other class B, but you want that class A to also follow certain guidelines or implement a certain contract, then you can do so by the "programming to interface" strategy.
Q: - ... "Could you use any class that implements an interface?"
A: - Yes.
Q: - ... "When would you need to do that?"
A: - Each time you need a class(es) that implements interface(s).
Note: We couldn't instantiate an interface not implemented by a class - True.
Why?
Because the interface has only method prototypes, not definitions (just functions names, not their logic)
AnIntf anInst = new Aclass();
// we could do this only if Aclass implements AnIntf.
// anInst will have Aclass reference.
Note: Now we could understand what happened if Bclass and Cclass implemented same Dintf.
Dintf bInst = new Bclass();
// now we could call all Dintf functions implemented (defined) in Bclass.
Dintf cInst = new Cclass();
// now we could call all Dintf functions implemented (defined) in Cclass.
What we have: Same interface prototypes (functions names in interface), and call different implementations.
Bibliography:
Prototypes - wikipedia
program to an interface is a term from the GOF book. i would not directly say it has to do with java interface but rather real interfaces. to achieve clean layer separation, you need to create some separation between systems for example: Let's say you had a concrete database you want to use, you would never "program to the database" , instead you would "program to the storage interface". Likewise you would never "program to a Web Service" but rather you would program to a "client interface". this is so you can easily swap things out.
i find these rules help me:
1. we use a java interface when we have multiple types of an object. if i just have single object, i dont see the point. if there are at least two concrete implementations of some idea, then i would use a java interface.
2. if as i stated above, you want to bring decoupling from an external system (storage system) to your own system (local DB) then also use a interface.
notice how there are two ways to consider when to use them.
Coding to an interface is a philosophy, rather than specific language constructs or design patterns - it instructs you what is the correct order of steps to follow in order to create better software systems (e.g. more resilient, more testable, more scalable, more extendible, and other nice traits).
What it actually means is:
===
Before jumping to implementations and coding (the HOW) - think of the WHAT:
What black boxes should make up your system,
What is each box' responsibility,
What are the ways each "client" (that is, one of those other boxes, 3rd party "boxes", or even humans) should communicate with it (the API of each box).
After you figure the above, go ahead and implement those boxes (the HOW).
Thinking first of what a box' is and what its API, leads the developer to distil the box' responsibility, and to mark for himself and future developers the difference between what is its exposed details ("API") and it's hidden details ("implementation details"), which is a very important differentiation to have.
One immediate and easily noticeable gain is the team can then change and improve implementations without affecting the general architecture. It also makes the system MUCH more testable (it goes well with the TDD approach).
===
Beyond the traits I've mentioned above, you also save A LOT OF TIME going this direction.
Micro Services and DDD, when done right, are great examples of "Coding to an interface", however the concept wins in every pattern from monoliths to "serverless", from BE to FE, from OOP to functional, etc....
I strongly recommend this approach for Software Engineering (and I basically believe it makes total sense in other fields as well).
Program to an interface allows to change implementation of contract defined by interface seamlessly. It allows loose coupling between contract and specific implementations.
IInterface classRef = new ObjectWhatever()
You could use any class that implements IInterface? When would you need to do that?
Have a look at this SE question for good example.
Why should the interface for a Java class be preferred?
does using an Interface hit performance?
if so how much?
Yes. It will have slight performance overhead in sub-seconds. But if your application has requirement to change the implementation of interface dynamically, don't worry about performance impact.
how can you avoid it without having to maintain two bits of code?
Don't try to avoid multiple implementations of interface if your application need them. In absence of tight coupling of interface with one specific implementation, you may have to deploy the patch to change one implementation to other implementation.
One good use case: Implementation of Strategy pattern:
Real World Example of the Strategy Pattern
"Program to interface" means don't provide hard code right the way, meaning your code should be extended without breaking the previous functionality. Just extensions, not editing the previous code.
Also I see a lot of good and explanatory answers here, so I want to give my point of view here, including some extra information what I noticed when using this method.
Unit testing
For the last two years, I have written a hobby project and I did not write unit tests for it. After writing about 50K lines I found out it would be really necessary to write unit tests.
I did not use interfaces (or very sparingly) ... and when I made my first unit test, I found out it was complicated. Why?
Because I had to make a lot of class instances, used for input as class variables and/or parameters. So the tests look more like integration tests (having to make a complete 'framework' of classes since all was tied together).
Fear of interfaces
So I decided to use interfaces. My fear was that I had to implement all functionality everywhere (in all used classes) multiple times. In some way this is true, however, by using inheritance it can be reduced a lot.
Combination of interfaces and inheritance
I found out the combination is very good to be used. I give a very simple example.
public interface IPricable
{
int Price { get; }
}
public interface ICar : IPricable
public abstract class Article
{
public int Price { get { return ... } }
}
public class Car : Article, ICar
{
// Price does not need to be defined here
}
This way copying code is not necessary, while still having the benefit of using a car as interface (ICar).

The importance of interfaces in Java [closed]

It's difficult to tell what is being asked here. This question is ambiguous, vague, incomplete, overly broad, or rhetorical and cannot be reasonably answered in its current form. For help clarifying this question so that it can be reopened, visit the help center.
Closed 9 years ago.
Let's say we have two classes, Tiger and Aeroplane.
One thing in common for these two types is the Speed. I know that it would be illogical to create a superclass ClassWithSpeed and then derive subclasses Aeroplane and Tiger from it.
Instead, it is better to create an interface that contains the method speed() and then implement it in Aeroplane and Tiger. I get that. But, we can do the same thing without interfaces. We could define method speed() in Aeroplane and method speed() in Tiger.
The only (maybe very big) flaw it would be that we couldn't "reach" the objects of Tiger and Aeroplane through an interface reference.
I am beginner in Java and OOP, and I would be very grateful if someone explained to me the role of interfaces.
Cheers!
It's:
public int howFast(Airplane airplane) {
return airplane.speed();
}
public int howFast(Tiger tiger) {
return tiger.speed();
}
public int howFast(Rocket rocket) {
return rocket.speed();
}
public int howFast(ThingThatHasntBeenInventedYet thingx) {
// wait... what? HOW IS THIS POSSIBLE?!
return thingx.speed();
}
...
vs
public int howFast(Mover mover) {
return mover.speed();
}
Now, imagine having to go back and change all those howFast functions in the future.
Interface or no, each class will have to implement or inherit the speed() method. An interface lets you use those disparate classes more easily, because they've each promised to behave in a certain way. You'll call speed(), and they'll return an int, so you don't have to write separate methods for every possible class.
When you find you need to handle speed differently because of a breakthrough in relativistic physics, you only need to update the methods that call speed(). When your great-granddaughter writes a class for HyperIntelligentMonkeyFish, she doesn't have to disassemble your ancient binary and make changes so that your code can monitor and control her mutant army. She needs only declare that HyperIntelligentMonkeyFish implements Mover.
Interfaces allow Java, since it is statically typed, to work around multiple inheritance limitations to the degree felt worthwhile by the language designers.
In a dynamic language (like Python, Ruby, etc.) you can just call the speed method on any arbitrary object and discover at runtime if it is there or not.
Java, on the other hand, is statically typed, which means the compiler has to agree that the method will be there ahead of time. The only way to do that on classes that don't share common ancestry, and may only have Object in common, is an interface.
Since objects can implement an arbitrary number of interfaces, this means you get the goodness of multiple inheritance (a single object that can pose as multiple different objects for different methods) without the downside (of conflicting implementations in the two super classes).
With Java 8, the designers of the language concluded that interfaces without any implementation was overly restrictive (they didn't like my solution I guess ;-)), so they allow for a default implementation, thus expanding the multi-inheritance options of interfaces, while still trying to avoid the conflicting implementation problem via a complex set of precedence rules so that there is an unambiguous default implementation to execute.
I am trying to explain the advantage of interface with the following example-
suppose you have another class where you need to use the tiger or AeroPlane as parameter. So by using interface you can call using
someObject.someMethod(ClassWithSpeed)
but if you dont use interface you can use
someObject.someMethod(Tiger)
someObject.someMethod(AeroPlane)
Now what should you do? Your probable answer will be like, "I will use two overloaded method".
This is okay so far, But
Say you need to add more options (say car, cycle, rabbit, tortoise.... 100 others). So what will you do to make the change of your existing code?? you will need to change a lots of things..
The overall example above has only one purpose. That is to say
"we need interface to create a better, reusable and properly object oriented
design"
N.B.
if you are sure the program is too small and you will never need to change them then I think it is okay to implement without interface
Defining an interface allows you to define methods that work not only on Aeroplane and Tiger, but also other classes that share the same interface.
For example, say your interface is IObjectWithSpeed. Then you can define a method like this -- in a single class that operates on IObjectWithSpeed objects.
public double calculateSecondsToTravel( IObjectWithSpeed obj, double distance ) {
return distance / obj.getSpeed();
}
Interfaces allow us to satisfy the open/closed principle - open for extension, but closed for modification. The single implementation of the method above doesn't need to be modified as new classes are defined that implement IObjectWithSpeed.
I want go into much theoretical details but will try to explain using this example.
Consider JDBC API. It is API used to deal with database related options in the Java. Now, there are so many databases in the industry. How would one write drivers for that? Well, the quick and dirty approach may be write own implementation using our own classes and API.
But think from the programmer's perspective. Will they start learning DATABASE DRIVER's API while using different database? The answer is NO.
So what is the solution to the problem ? Just have a well defined API which anyone can extend for his own implementation.
In JDBC API, there are some Interfaces which are Connection, ResultSet, PreparedStatement, Statement etc. Now each database vendor will implement the interface and will write his own implementation for that. Result ? : Reduced effort from the developer and easy understandability.
Now, what this custom implementation might consisting of ? It's simple. They do what, take ResultSet interface for example and implement it and in whatever method the ResultSet is gettting returned, return THE CLASS THAT IMPLEMENTS ResultSet interface like this
ResultSet rs=new ResultSetImpl(); //this is what they are doing internally.
So interface are like contracts. They define what your class is able to do and they give your application flexibility. You can create your own APIs using interfaces properly.
Hope this helps you.
An interface is not simply a method signature.
It is a type that represents a contract. The contract is the thing, not the method signatures. When a class implements an interface, it is because there is a contract for a shared behavior that the class has an interest in implementing as a type. That contract is implemented via the specified members which are usually method bodies but may also include static final fields.
It may be true that a tiger and an aeroplane both could be expressed as a type with a common behavior implemented through speed() ... and if so, then the interface represents the contract for expressing that behavior.
Aside from being descriptive for those classes' functionality, methods of an interface could be used without any knowledge about the classes implementing it, even for classes that were not yet defined.
So for example, if you'd need a class Transport that computes say efficient routes, it could be given a class that implements ClassWithSpeed as a parameter and use its method speed() for computing what it needs. This way you could use it with our class Aeroplane, but also with any class we define later, say Boat. Java will take care that if you want to use a class as a parameter to Transport it will implement ClassWithSpeed, and that any class implementing ClassWithSpeed implements the method speed() so that it can be used.
The interface (as a language construct) is used by the compiler to prove that the method call is valid and allows you to have dependent classes interact with the implementing class while having the least possible knowledge about the implementing class.
This is a very wide question to give a simple answer. I can recommend a book Interface Oriented Design: With Patterns. It explains all power of interfaces. And why we should not avoid them.
Have you tried using composition instead?, if I want 2 dissimilar classes to inherit the same abilities I use a class which takes an object of the type its working with by using abstract classes and checking the instances. Interfaces are useful for forcing methods to be including in the class but don't require any implementation or for 2 teams of coders to work on different coding areas.
Class Tiger {
public MovingEntity mover;
public Tiger(){
mover.speed=30;
mover.directionX=-1;
mover.move(mover);
}
}
Class Plane {
public MovingEntity mover;
public Plane(){
mover.speed=500;
mover.directionX=-1;
mover.move(mover);
}
Abstract Class Moverable(){
private int xPos;
private int yPos;
private int directionX;
private int directionY;
private int speed;
Class MovingEntity extends Moverable {
public void move(Moverable m){
if(m instanceof Tiger){
xPos+=directionX*speed;
yPos+=directionY*speed;
}else if(m instanceof Plane){
xPos+=directionX*speed;
yPos+=directionY*speed;
}
}
On language level, the only use of interfaces is, like you mentioned, to be able to refer to different classes in a common way. On people level, however, the picture looks different: IMO Java is strong when used in big projects where the design and the implementation are done by separate people, often from separate companies. Now, instead of writing a specification on a Word document, the system architects can create a bunch of classes that implementers can then directly insert in their IDEs and start working on them.
In other words it is more convenient instead of declaring that "Class X implements methods Y and Z in order for it to be used for purpose A, just to say that "Class X implements interface A"
Because creating interface gives you Polymorphism, across all those classes i.e. Tiger and Aeroplane.
You can extend from an (abstract or concrete) class when the base class's functionality is going to be the core of your child class's functionality as well.
You use interfaces when you want to add an augmented functionality to your class in addition to its core functionality. So using interfaces would give you Polymorphism even when its not your class's core functionality (because you've entered a contract by implementing the interface). This is a huge advantage over creating a speed() method with each class.

Any good examples of inheriting from a concrete class? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
Background:
As a Java programmer, I extensively inherit (rather: implement) from interfaces, and sometimes I design abstract base classes. However, I have never really felt the need to subclass a concrete (non-abstract) class (in the cases where I did it, it later turned out that another solution, such as delegation would have been better).
So now I'm beginning to feel that there is almost no situation where inheriting from a concrete class is appropriate. For one thing, the Liskov substitution principle (LSP) seems almost impossible to satisfy for non-trivial classes; also many other questions here seem to echo a similar opinion.
So my question:
In which situation (if any) does it actually make sense to inherit from a concrete class?
Can you give a concrete, real-world example of a class that inherits from another concrete class, where you feel this is the best design given the constraints? I'b be particularly interested in examples that satisfy the LSP (or examples where satisfying LSP seems unimportant).
I mainly have a Java background, but I'm interested in examples from any language.
You often have a skeletal implementations for an interface I. If you can offer extensibility without abstract methods (e.g. via hooks), it is preferable to have a non-abstract skeletal class because you can instantiate it.
An example would be a forwarding wrapper classes, to be able to forward to another object of a concrete class C implementing I, e.g. enabling decoration or simple code-reuse of C without having to inherit from C. You can find such an example in Effective Java item 16, favor composition over inheritance. (I do not want to post it here because of copyrights, but it is really simply forwarding all method calls of I to the wrapped implementation).
I think the following is a good example when it can be appropriate:
public class LinkedHashMap<K,V>
extends HashMap<K,V>
Another good example is inheritance of exceptions:
public class IllegalFormatPrecisionException extends IllegalFormatException
public class IllegalFormatException extends IllegalArgumentException
public class IllegalArgumentException extends RuntimeException
public class RuntimeException extends Exception
public class Exception extends Throwable
One very common case I can think of is to derive from basic UI controls, such as forms, textboxes, comboboxes, etc. They are complete, concrete, and well able to stand on their own; however, most of them are also very basic, and sometimes their default behavior isn't what you want. Virtually nobody, for instance, would use an instance of an unadulterated Form, unless possibly they were creating an entirely dynamic UI layer.
For example, in a piece of software I wrote that recently reached relative maturity (meaning I ran out of time to focus primarily on developing it :) ), I found I needed to add "lazy loading" capability to ComboBoxes, so it wouldn't take 50 years (in computer years) for the first window to load. I also needed the ability to automatically filter the available options in one ComboBox based on what was shown in another, and lastly I needed a way to "mirror" one ComboBox's value in another editable control, and make a change in one control happen to the other as well. So, I extended the basic ComboBox to give it these extra features, and created two new types: LazyComboBox, and then further, MirroringComboBox. Both are based on the totally serviceable, concrete ComboBox control, just overriding some behaviors and adding a couple others. They're not very loosely-coupled and therefore not too SOLID, but the added functionality is generic enough that if I had to, I could rewrite either of these classes from scratch to do the same job, possibly better.
Generally speaking, the only time I derive from concrete classes is when they're in the framework. Deriving from Applet or JApplet being the trivial example.
This is an example of a current implementation that I'm undertaking.
In OAuth 2 environment, since the documentation is still in draft stage, the specification keeps changing (as of time of writing, we're in version 21).
Thus, I had to extend my concrete AccessToken class to accommodate the different access tokens.
In earlier draft, there was no token_type field set, so the actual access token is as follows:
public class AccessToken extends OAuthToken {
/**
*
*/
private static final long serialVersionUID = -4419729971477912556L;
private String accessToken;
private String refreshToken;
private Map<String, String> additionalParameters;
//Getters and setters are here
}
Now, with Access tokens that returns token_type, I have
public class TokenTypedAccessToken extends AccessToken {
private String tokenType;
//Getter and setter are here...
}
So, I can return both and the end user is none the wiser. :-)
In Summary: If you want a customized class that has the same functionality of your concrete class without changing the structure of the concrete class, I suggest extending the concrete class.
I mainly have a Java background, but I'm interested in examples from any language.
Like many frameworks, ASP.NET makes heavy use of inheritance to share behaviour between classes. For example, HtmlInputPassword has this inheritance hierarchy:
System.Object
System.Web.UI.Control
System.Web.UI.HtmlControls.HtmlControl // abstract
System.Web.UI.HtmlControls.HtmlInputControl // abstract
System.Web.UI.HtmlControls.HtmlInputText
System.Web.UI.HtmlControls.HtmlInputPassword
in which can be seen examples of concrete classes being derived from.
If you're building a framework - and you're sure you want to do that - you may well finding yourself wanting a nice big inheritance hierarchy.
Other use case would be the to override the default behavior:
Lets say there is a class which uses standard Jaxb parser for parsing
public class Util{
public void mainOperaiton(){..}
protected MyDataStructure parse(){
//standard Jaxb code
}
}
Now say I want to use some different binding (Say XMLBean) for the parsing operation,
public class MyUtil extends Util{
protected MyDataStructure parse(){
//XmlBean code code
}
}
Now I can use the new binding with code reuse of super class.
The decorator pattern, a handy way of adding additional behaviour to a class without making it too general, makes heavy use of inheritance of concrete classes. It was mentioned here already, but under somewhat a scientific name of "forwarding wrapper class".
Lot of answers but I though I'd add my own $0.02.
I override concreate classes infrequently but under some specific circumstances. At least 1 has already been mentioned when framework classes are designed to be extended. 2 additional ones come to mind with some examples:
1) If I want to tweak the behavior of a concrete class. Sometimes I want to change how the concrete class works or I want to know when a certain method is called so I can trigger something. Often concrete classes will define a hook method whose sole usage is for subclasses to override the method.
Example: We overrode MBeanExporter because we need to be able to unregister a JMX bean:
public class MBeanRegistrationSupport {
// the concrete class has a hook defined
protected void onRegister(ObjectName objectName) {
}
Our class:
public class UnregisterableMBeanExporter extends MBeanExporter {
#Override
protected void onUnregister(ObjectName name) {
// always a good idea
super.onRegister(name);
objectMap.remove(name);
}
Here's another good example. LinkedHashMap is designed to have its removeEldestEntry method overridden.
private static class LimitedLinkedHashMap<K, V> extends LinkedHashMap<K, V> {
#Override
protected boolean removeEldestEntry(Entry<K, V> eldest) {
return size() > 1000;
}
2) If a class shares a significant amount of overlap with the concrete class except for some tweaks to functionality.
Example: My ORMLite project handles persisting Long object fields and long primitive fields. Both have almost the identical definition. LongObjectType provides all of the methods that describe how the database deals with long fields.
public class LongObjectType {
// a whole bunch of methods
while LongType overrides LongObjectType and only tweaks a single method to say that handles primitives.
public class LongType extends LongObjectType {
...
#Override
public boolean isPrimitive() {
return true;
}
}
Hope this helps.
Inheriting concrete class is only option if you want to extend side-library functionality.
For example of real life usage you can look at hierarchy of DataInputStream, that implements DataInput interface for FilterInputStream.
I'm beginning to feel that there is almost no situation where inheriting from a concrete class is appropriate.
This is one 'almost'. Try writing an applet without extending Applet or JApplet.
Here is an e.g. from the applet info. page.
/* <!-- Defines the applet element used by the appletviewer. -->
<applet code='HelloWorld' width='200' height='100'></applet> */
import javax.swing.*;
/** An 'Hello World' Swing based applet.
To compile and launch:
prompt> javac HelloWorld.java
prompt> appletviewer HelloWorld.java */
public class HelloWorld extends JApplet {
public void init() {
// Swing operations need to be performed on the EDT.
// The Runnable/invokeLater() ensures that happens.
Runnable r = new Runnable() {
public void run() {
// the crux of this simple applet
getContentPane().add( new JLabel("Hello World!") );
}
};
SwingUtilities.invokeLater(r);
}
}
Another good example would be data storage types. To give a precise example: a red-black tree is a more specific binary tree, but retrieving data and other information like size can be handled identical. Of course, a good library should have that already implemented but sometimes you have to add specific data types for your problem.
I am currently developing an application which calculates matrices for the users. The user can provide settings to influence the calculation. There are several types of matrices that can be calculated, but there is a clear similarity, especially in the configurability: matrix A can use all the settings of matrix B but has additional parameters which can be used. In that case, I inherited from the ConfigObjectB for my ConfigObjectA and it works pretty good.
In general, it is better to inherit from an abstract class than from a concrete class. A concrete class must provide a definition for its data representation, and some subclasses will need a different representation. Since an abstract class does not have to provide a data representation, future subclasses can use any representation without fear of conflicting with the one that they inherited.
Even i never found a situation where i felt concrete inheritence is neccessary. But there could be some situations for concrete inheritence specially when you are providing backward compatibility to your software. In that case u might have specialized a class A but you want it to be concrete as your older application might be using it.
Your concerns are also echoed in the classic principle "favor composition over inheritance", for the reasons you stated. I can't remember the last time I inherited from a concrete class. Any common code that needs to be reused by child classes almost always needs to declare abstract interfaces for those classes. In this order I try to prefer the following strategies:
Composition (no inheritance)
Interface
Abstract Class
Inheriting from a concrete class really isn't ever a good idea.
[EDIT] I'll qualify this statement by saying I don't see a good use case for it when you have control over the architecture. Of course when using an API that expects it, whaddaya gonna do? But I don't understand the design choices made by those APIs. The calling class should always be able to declare and use an abstraction according to the Dependency Inversion Principle. If a child class has additional interfaces to be consumed you'd either have to violate DIP or do some ugly casting to get at those interfaces.
from the gdata project:
com.google.gdata.client.Service is designed to act as a base class that can be customized for specific types of GData services.
Service javadoc:
The Service class represents a client connection to a GData service. It encapsulates all protocol-level interactions with the GData server and acts as a helper class for higher level entities (feeds, entries, etc) that invoke operations on the server and process their results.
This class provides the base level common functionality required to access any GData service. It is also designed to act as a base class that can be customized for specific types of GData services. Examples of supported customizations include:
Authentication - implementing a custom authentication mechanism for services that require authentication and use something other than HTTP basic or digest authentication.
Extensions - define expected extensions for feed, entry, and other types associated with a the service.
Formats - define additional custom resource representations that might be consumed or produced by the service and client side parsers and generators to handle them.
I find the java collection classes as a very good example.
So you have an AbstractCollection with childs like AbstractList, AbstractSet, AbstractQueue...
I think this hierarchy has been well designed.. and just to ensure there's no explosion there's the Collections class with all its inner static classes.
You do that for instance in GUI libraries. It makes not much sense to inherit from a mere Component and delegate to a Panel. It is likely much easyer to inherit from the Panel directly.
Just a general thought. Abstract classes are missing something. It makes sense if this, what is missing, is different in each derived class. But you may have a case where you don't want to modify a class but just want to add something. To avoid duplication of code you would inherit. And if you need both classes it would be inheritance from a concrete class.
So my answer would be: In all cases where you really only want to add something. Maybe this just doesn't happen very often.

Explaining Interfaces to Students [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 9 years ago.
Improve this question
For a few years I was a teaching assistant for an introduction to programming module - Java for first year undergraduates.
Mostly it went well and we managed to get object-oriented programming across to the students quite well, but one thing that students rarely saw the point of was interfaces.
Pretty much any explanation we gave either came across as too contrived to be useful for learning, or too far removed from their position as beginners. The reaction we tended to get was "I... see," translated as "I don't understand and they don't sound useful".
Anyone here have a way of successfully teaching students about interfaces? I'm not a teaching assistant any more, but it's always nagged at me.
If you are trying to explain it to beginners I would stick with the idea that interfaces can promote code reuse and modularity within the code:
For example lets say we are going to paint some objects:
public class Painter {
private List<Paintable> paintableObjects;
public Painter(){
paintableObjects = new ArrayList<Paintable>();
}
public void paintAllObjects(){
for(Paintable paintable : paintableObjects){
paintable.paint();
}
}
}
public interface Paintable {
public void paint();
}
Now you could explain to the students that without Paintable interface the Painter object would need to have methods to paint certain types of objects, like a method called paintFences() and paintRocks() and we would need to have a new Collection for each type of objects we want the painter to be able to paint.
But thankfully we have interfaces which make painting objects a breeze and how objects are painted is left entirely up to classes that implement the Paintable interface.
EDIT
Another benefit that I forgot to mention is that if you ever need to add new object to paint to your code base, all you need to do is create a new class that implements Paintable and the Painter class never has to change. In this sense the Painter class is never dependent upon the objects it is going to paint, it only needs to be able to paint them.
EDIT 2
James Raybould reminded me of a key use of interfaces I forgot to mention: Having an interface between your components, like the Paintable objects and Painter objects, allows you to more easily develop with other people. One developer can work on the Painter objects and another can work on the Paintable objects and all they have to do to function properly together is define a common interface beforehand that they will both use. I know when I've worked on projects with other people in college level projects its really helpful when you are trying to have everyone work on different parts of the project and still have all components come together nicely in the end.
In explaining interfaces and object oriented concepts in general to non-programmers, I always use the home entertainment system analogy.
The DVD player, TV, Cable Box, Remote Control are all objects that encapsulate complicated and sophisticated functionality. However, they have interfaces to each other and to the Humans that operate them that largely hide the lion share of that complexity.
The video in jack of a TV is an interface that is implemented by the DVD player and the cable box and a number of other types of devices.
I suspect it would be possible and perhaps an educational exercise for a student to describe their own home entertainment system entirely using Java code.
"Where classes ARE something, typically interfaces DO something. So I might have a car, but I would never go "carring" but I might go driving... so my Car might implement "drivable" interface."
EDIT:
Mark brings up a good point. Interfaces don't do anything at all, but instead define what behaviors happen. And, he also brings up a good point about not wanting to confuse the audience. Not that it's okay to confuse seasoned developers, but it's definitely not a good idea to confuse a brand new student. In light of this, I'm revising my one-liner into a many-liner.
"Where classes define existence, interfaces define behavior. Classes define what something is, while interfaces define what something does. So I might have a car, and it has things like an Engine, how much gas it has, what it's historic MPG is, and the like, but I would never go "carring". I might, on the other hand, go Driving... can my Car drive? It can if I give it a Drive method. I can also have "Driveable" interface with a drive method, and leave it up to the car to determine what driving really means. Now, if I only have cars it's not a big deal to have an interface. But what about trucks? If they both are Drivable, I can simply have a List<Drivable for both of them. Of course, the observant student says "Why can't Car and Truck both simply extend Vehicle, with an abstract Drive method?" Which, actually is a very valid notion. But, what about the Space Shuttle? Very few of the components between Car and Truck apply to the Space Shuttle, so it doesn't seem well suited to extend the Vehicle class. Or what about future cars? We have no idea what they might be like, they might not have chassises, they might just be bubbles of energy that move us around, but we might still call their behavior drive()."
breathes
Now that paragraph/essay is a little verbose, but I could see, with some slides or a chalkboard, being effective for first year students to get their head around (assuming they understand abstract classes first anyway).
Well I just explained interfaces to a work partner, she was learning java from progress and she really did not get all the OOP stuff at the beginning so I just explained everything from a non-software engineering point of view, my explanation for interfaces where something like this:
Suppose you want to hire a plumber to fix some things on your house, you don't know (and you don't care much) who you may end up hiring but you know what the plumber must be able to do. So, you define a set of tasks that anyone that claims to be a plumber must know how to do. Of course everybody might have its own way of carrying out each task, but in the end, the person you are hiring is a plumber because they know how to do each task. So, if you were to write this in java, the first thing to do would be to define an interface plumber like this:
public interface Plumber
{ //silly code here }
OK then, let's say that I know how to do each task you are requesting for and so I'm fully compliant with your requirements and so according to you I'm a plumber. So, today I decide to be your plumber and you decide to hire me (yay!), based on the last example, you can say that I'm a person that knows how to develop software and plumbing in a specific way, if I were to write code for me as a class I could write something like this:
public class Rick extends Person implements SoftwareDeveloper, Plumber
and later you could fix things in your house using me as your plumber:
Plumber thePlumber = rick;
thePlumber.fixLeak(myHouse.bathroom.leak) // =(
from this point on, the remaining OOP concepts were easy to explain.
Well, recently, I happened to explain this to someone close. The way I explained the question "why Interfaces?", is by taking example of of the USB Port and the USB drives.
The USB port can be considered as a specification, and any USB drive can fit into it, provided they implement the specification. So in this case, the port becomes the Interface and the numerous types of USB sticks available, become the class.
Carrying this example ahead, if I were to supply someone an USB drive (class), I would not need to tell them (the calling method) as to what am I passing across. Had the calling method taken a USB drive (class type) as a reference, I would not have been able to pass any but only the USB drive that the port is meant for.
To sum it up, Intefaces, help the caller be comptabile with the calling method (in a use-case when the calling method expects an instance of a particular type), no matter what instance you pass across, the caller as well as the callee are sure that it (instance) would fit into the Interface reference (the USB port for analogy).
Class, we spent the last few sessions implementing quicksort. It was difficult to sort that list of Persons by name. What would you now do, if you had to sort this list by grade? And what would you do if you had to sort a list of dinousaurs by age? The only way you know so far is to copy the code of the quicksort, and change the comparison and the types it operates on. That would work - until you find that elusive bug that always plagued your quicksort, and had to fix it in several dozen copies of that quicksort scattered all over the place.
Today, we are going to learn a better way.
We can write a quicksort without defining the order we want to sort the list into, and define that order (and only that order) separately when we invoke that quicksort.
[ insert explanation of the mechanics of interfaces and polymorphism, using the Comparator interface as example, here ]
Now, there is only a single copy of quicksort, and bugs only have to be fixed once. Also, people can use quicksort without understanding it (or if they have understood it, without thinking about its mechanics whenever you want to sort something). Also, the people writing the quicksort did not need to know the order you need your list sorted. So the interface isolated the two groups of programmers, allowing them to develop their parts of the software in isolation. This is why, in many programming languages, you will find well implemented and tested sort methods in the api, even though the programmers of these methods could not know all the types of objects and orders people want to sort into later.
I usually use "contract" but "promises solemnly to provide" might also help understanding.
I recommend the first chapter of Head First Design Patterns for this. The Duck simulation explains the problem with using inheritance, and the rest of the chapter goes on explaining how to do it.
This explains best : (referenced from this tutorial)
There are a number of situations in software engineering when it is important for disparate groups of programmers to agree to a "contract" that spells out how their software interacts. Each group should be able to write their code without any knowledge of how the other group's code is written. Generally speaking, interfaces are such contracts.
For example, imagine a futuristic society where computer-controlled robotic cars transport passengers through city streets without a human operator. Automobile manufacturers write software (Java, of course) that operates the automobile—stop, start, accelerate, turn left, and so forth. Another industrial group, electronic guidance instrument manufacturers, make computer systems that receive GPS (Global Positioning System) position data and wireless transmission of traffic conditions and use that information to drive the car.
The auto manufacturers must publish an industry-standard interface that spells out in detail what methods can be invoked to make the car move (any car, from any manufacturer). The guidance manufacturers can then write software that invokes the methods described in the interface to command the car. Neither industrial group needs to know how the other group's software is implemented. In fact, each group considers its software highly proprietary and reserves the right to modify it at any time, as long as it continues to adhere to the published interface.
More Link: http://download-llnw.oracle.com/javase/tutorial/java/concepts/interface.html
Understanding interfaces is not very different to understanding polymorphism and IS-A relationships. All classes implementing the same interface can be manipulated uniformly by the program as the "base" type because of the relationship established by implementing an interface or inheriting a base class.
The choice between an interface and a base class is a design decision. I'd keep this simple.
Define a class when your implementation can assume the complete or partial behavior of a class.
Make that class abstract to indicate the base class is not a complete implementation and cannot be used as is.
Provide an interface instead of a base class if it does not make sense to provide a partial implementation.
The benefits of interfaces and inheritance are pretty much the same. An interface is simply a more abstract definition of a type than a base class is.
Update
Here's a simple program you could use to demonstrate how similar inheritance and interfaces are. Modify the program to make Base an interface instead of a class. In ClassA, replace "extends" for "implements". The program's result will be the same.
The purpose of ClassB is to illustrate further illustrate the importance of the relationship between a class and its interface/base class. An instance of ClassB may not be passed to processBase in spite of its similarities with Base, unless we establish an explicit relationship.
abstract class Base {
public void behavior() {};
};
class ClassA extends Base {
public void behavior() {
System.out.println("ClassA implementation of Base behavior");
}
};
class ClassB {
public void behavior() {
System.out.println("ClassB's version of behavior");
}
}
public class InterfaceExample {
public void processBase (Base i) {
i.behavior();
}
public static void main (String args[]) {
InterfaceExample example = new InterfaceExample();
example.processBase(new ClassA());
}
}
Interface Oriented Design describes this better than I ever could http://pragprog.com/titles/kpiod/interface-oriented-design. The author uses some excellent examples of interfaces versus inheritance for things like the taxonomy of the animal kingdom. It has some of the best arguments against excessive inheritance and judicious use of interfaces I have read to date.
A bunch of websites with incompatible ways of bringing them up:
Listing of Facebook.java:
public class Facebook {
public void showFacebook() {
// ...
}
}
Listing of YouTube.java:
public class YouTube {
public void showYouTube() {
// ...
}
}
Listing of StackOverflow.java:
public class StackOverflow {
public void showStackOverflow() {
// ...
}
}
A client manually handling the different methods the websites use to bring
themselves up:
Listing of ClientWithoutInterface.java:
public class ClientWithoutInterface {
public static void main(String... args) {
String websiteRequested = args[0];
if ("facebook".equals(websiteRequested)) {
new Facebook().showFacebook();
} else if ("youtube".equals(websiteRequested)) {
new YouTube().showYouTube();
} else if ("stackoverflow".equals(websiteRequested)) {
new StackOverflow().showStackOverflow();
}
}
}
Introduce a Website interface to make the client's job easier:
Listing of Website.java:
public interface Website {
void showWebsite();
}
Listing of Facebook.java:
public class Facebook implements Website {
public void showWebsite() {
// ...
}
}
Listing of YouTube.java:
public class YouTube implements Website {
public void showWebsite() {
// ...
}
}
Listing of StackOverflow.java:
public class StackOverflow implements Website {
public void showWebsite() {
// ...
}
}
Listing of ClientWithInterface.java:
public class ClientWithInterface {
public static void main(String... args) {
String websiteRequested = args[0];
Website website;
if ("facebook".equals(websiteRequested)) {
website = new Facebook();
} else if ("youtube".equals(websiteRequested)) {
website = new YouTube();
} else if ("stackoverflow".equals(websiteRequested)) {
website = new StackOverflow();
}
website.showWebsite();
}
}
Whoop-de-doo, more code for nothing? Actually we can go a little further and
have the client rope a couple of friends into helping it find and render a
requested website:
Listing of ClientWithALittleHelpFromFriends.java:
public class ClientWithALittleHelpFromFriends {
public static void main(String... args) {
WebsiteFinder finder = new WebsiteFinder();
WebsiteRenderer renderer = new WebsiteRenderer();
renderer.render(finder.findWebsite(args[0]));
}
}
Listing of WebsiteFinder.java:
public class WebsiteFinder {
public Website findWebsite(String websiteRequested) {
if ("facebook".equals(websiteRequested)) {
return new Facebook();
} else if ("youtube".equals(websiteRequested)) {
return new YouTube();
} else if ("stackoverflow".equals(websiteRequested)) {
return new StackOverflow();
}
}
}
Listing of WebsiteRenderer.java:
public class WebsiteRenderer {
public void render(Website website) {
website.showWebsite();
}
}
Looking back at ClientWithoutInterface, it is totally coupled to both specific lookup and rendering based. It would be very difficult to manage when you get to hundreds or thousands of sites. With the Website interface in place the WebsiteFinder could easily be converted to be backed on a Map, a database or even a web based lookup to satisfy increasing scale.
Interfaces make it possible to separate a role from the component that achieves it. They make it possible to swap in alternative solutions to the same problem based on pretty much anything:
Current load on machine
Size of the data set (sorting algorithms can be picked)
User requesting the action being performed
I was typing this as a comment to Harima555s answer, but it expanded. I wondered if it makes more sense to start at the other end - give them a feel for how interfaces are useful, before going into how you write one.
Presuming they have a good grasp of inheritance, polymorphism and abstract classes. I would probably start with a recap on abstract classes, by asking one of the students to explain them.
Next, introduce an example of classes with interfaces to get over the concept of roles / contracts. To simplify things, start with a single superclass.
public class Rick extends Person implements SoftwareDeveloper, Plumber
public class Zoe extends Person implements SoftwareDeveloper, Chef
public class Paul extends Person implements Plumber, Chef
public class Lisa extends Person implements Plumber
Don't explain it too much, but try and get the student to work through what the syntax might mean - perhaps showing some code that references a Plumber or SoftwareDeveloper.
Ask them how they would achieve the same thing using inheritance from Person. They should get stuck quite quickly, or come up with multiple inheritance. To avoid discussing the diamond problem until later, say there are no overlapping methods in the roles.
Next I'd try to get over the idea that the same interface can be used on different types of Class.
public class Plane extends Vehicle implements Fly, PassengerTransport, Serviceable
public class Train extends Vehicle implements PassengerTransport, Serviceable
public class Bird extends Animal implements Fly
Again, try to get them to consider how they could implement the same thing using a common superclass and overrides.
Then illustrate how you would write polymorphic code using the interface rather than class - say a TravelAgent who sells tickets for a PassengerTransport. Dwell on the strength of this - that you can write polymorphic code that works on Classes from different hierarchies.
At this point, they should probably be under the illusion that an interface is a pretty much like being able to add another superclass to a class, and will have grasped the advantages of multiple inheritance.
So now we have to explain why that complicates things, and interfaces have no default implementation, via understanding the diamond problem.
Go back to the first example, get them to work through what happens if SoftwareDeveloper and Plumber both have a 'MakeDrink' method (one makes Cola, the other makes Coffee) and we execute MakeDrink on Rick.
Try and nudge someone towards considering the idea that if MakeDrink is kept abstract in both 'superclasses' the problem goes away. At this point, having got the conceptual side, we should be ready to cover the syntax for defining an interface.
(I did consider introducing the second reason - the difficulty of writing generic code that could be applied to different class hierarchies, but found that you end up with 'well why can't you inherit an altitude attribute from the interface' or discussing generic programming too early).
I think by now we should have covered the concepts via the mickey mouse examples - and you could then go back through explaining the correct technical terminology, and use real-world examples from the Java API.
I wouldn't want to confuse people while they are trying to learn Java/Interfaces, but once they've got it, it may be worth pointing out that other OO languages take different approaches to the same problem, from multiple inheritance to duck-typing - and if they are interested they should research them.
Do you teach JDBC as well? Take it as an example. It's an excellent real world example of how powerful interfaces are. In JDBC you're writing code against an API which exist of almost only interfaces. The JDBC driver is the concrete implementation. You can easily reuse the JDBC code on many DB's without rewriting the code. You just have to switch the JDBC driver implementation JAR file and driver class name to get it to work on another DB.
At least, using interfaces offers you the possibility to change from the concrete implementation (the code logic which is responsible for the behaviour) at some way/point without rewriting the whole code. Try to use real world examples when explaining things. It would make more sense.
Well, I found lately a very useful method of using interface.
We have many objects...
public class Settings { String[] keys; int values; }
public class Car { Engine engine; int value; }
public class Surface { int power; int elseInt; }
// and maaany more (dozens...)
Now, someone is creating (i.e.) table and want to show some of objects from the list of all objects, but to show objects in the list he must write method that returns String[].
String[] toArrayString()
So he just implements this method in all classes that he need to in table
public class Settings { String[] keys; int values; public String[] toArrayString {...} }
public class Car { Engine engine; int value; } // THIS NOT
public class Surface { int power; int elseInt; public String[] toArrayString {...} }
// and maaany more (dozens...)
Now, when he creates table he is writing smth like this
public void createTable() {
for(Object obj : allObjects) {
if(obj instanceof Settings) {
Settings settings = (Settings)obj;
table.add(settings.toArrayString());
}
if(obj instanceof Surface) {
// cast...
}
// etc multiple times...
}
}
With interface this code can be much shorter and easier to read and maintain:
public interface ISimpleInterface { String[] toArrayString; }
public class Settings implements ISimpleInterface { String[] keys; int values; public String[] toArrayString {...} }
public class Car { Engine engine; int value; } // THIS NOT
public class Surface implements ISimpleInterface { int power; int elseInt; public String[] toArrayString {...} }
public void createTable() {
for(Object obj : allObjects) {
if(obj instanceof ISimpleInterface) {
ISimpleInterface simple = (ISimpleInterface)obj;
table.add(simple.toArrayString());
}
}
}
Moreover, we can implement multiple interfaces in a very clean and effective way without any derivation (derivation is sometimes impossible and not only in case, when class is using some kind of other derivation already).
Interfaces provide a look at what a class needs to do for instance you can have an Animal interface and lets say that has a method called speak(), well each animal can speak but they all do it differently but this allows you to cast anything that implements animal to animal so you can have a List of animals and make them all speak but use their own implementation. Interfaces are simply wrappers for these kinds of things.
In this previous question there are some good scenarios that explain the whys behind the use of interfaces.
Stack Overflow Question
The real value of interfaces comes with being able to override components in 3rd party APIs or frameworks. I would construct an assignment where the students need to override functionality in a pre-built library that they cannot change (and do not have the source for).
To be more concrete, let's say you have a "framework" that generates an HTML page implemented as a Page class. And page.render(stream) generates the html. Let's say that Page takes an instance of the sealed ButtonTemplate class. The ButtonTemplate object has its own render method so that in page.render(stream) buttonTemplate.render(label,stream) gets called anywhere there is a button and it produces the html for a submit button. As an example to the students, let's say that we want to replace those submit buttons with links.
I wouldn't give them much direction other than describing the final output. They will have to pound their heads trying various solutions. "Should we try to parse out the button tags and replace with anchor tags? Can we subclass ButtonTemplate to do what we want? Oh, wait. It's sealed! What were they thinking when they sealed this class!?!" Then after that assignment show a second framework with the ILabeledTemplate interface with the render(label,stream) method.
In addition to the other answers, you could try explaining it from a different perspective. The students I'm sure already know about inheritance because it is jammed down the throats of every Java student from probably lecture one. Have they heard about multiple inheritance? Method resolution was seen as a design issue in C++ (and also in Perl and other multiple-inheritance languages) because conceptually it's ambiguous as to exactly what should happen when a method is called in a subclass that is defined in two of its base classes. Are both executed? Which one goes first? Can one be referenced specifically? See also the diamond problem. It's my understanding that this confusion was resolved simply by introducing interfaces, which have no implementation, so there's no ambiguity as to which implementation to use during method resolution.
If a class needed to handle exactly one piece of abstract functionality, and didn't need to inherit any other class, one could use an abstract class to expose the functionality and then derive the real class from that. Notice the two items in italics, however. Interfaces make it possible for a class to behave as several independent types of abstract things, even if the class is derived from another class that does not behave as those types of things. Thus, interfaces satisfy one of the main usage cases for multiple inheritance, without the ickiness that goes along with multiple inheritance.
A simple real-world example of a very practical interface: iEnumerable. If a class holds some arbitrary number of some type of item, is is very useful for another class to act upon all of those item without having to worry about the particulars of the object that holds them. If "enumerableThing" were an abstract class, it would be impossible for an object of any class which derived from something that wasn't an "enumerableThing" to be passed to code that expected an enumerableThing. Since any class, including derived classes, can implement enumerableThing without regard for whether the base classes do so, it's possible to add enumeration ability to any class.
A long time ago, I read a book (can't remember the name of it though) and it had a pretty good analogy for interfaces. If you (or your students) ever went to a Cold Stone Creamery ice cream store, this will sound kind of familiar. Cold Stone has ice cream and with the ice cream you can add several different things to the ice cream (called mix-ins at Cold Stone). These mix-ins would be analogous to interfaces. Your class (or ice cream) can have as many interfaces (or mix-ins) as you want. Adding an interface (or mix-in) will add the contents (or flavor) of that interface (or mix-in) to your class (or ice cream). Hope this helps!
Contracts are first things that are taught about interfaces but they are built in the language to provide the skills of multiple inheritance and avoid the complexity of multiple inheritance.. So you can teach them that interfaces add runtime behaviour to programs, or you can tell the students that interfaces can be used to change runtime behaviour of objects..
First, the students must grasp the concept of abstractions.
When you (you == the students) see a teacher, you can describe him as a teacher...
You can also describe him as an employe (of the school).
And you can describe him as a person.
You will be right the three times. Thoses are "titles" you can give him.
He is a teacher, a computer science teacher, in the same way a math teacher is a teacher.
They are on the same level of abstraction.
Now a teacher is an employee, in the same way a janitor is an employee.
They are on the same level of abstraction.
An employe is a person, in the same way an unemployed person is a person.
They are on the same level of abstraction.
(Draw the whole thing on the board in a UML kinda way).
And that's the architecture that will describe (roughly) the position of a science teacher in society.
Now the levels of abstraction define what a common group of objects have in common : All the teachers teach to their students and create impossible exam questions to make sure they fail. All the school's employes work for the school.
In programming, an interface is a level of abstraction. It describes the actions that a group of objects can accomplish.
Each object has a unique way of doing the action, but the type of action is the same.
Take a few music instruments for example : A piano, a guitar and a flute.
What do they have in common ? A musician can play them.
You can't ask a musician to blow in the 3 instruments but you can ask him to play them.
The architecture of the whole concept will be the following:
The Interface (what they have in common) is Instrument. Because they're all instruments : it's an abstraction they all have in common.
What can they do in common ? Play. So you define an abstract method called Play.
Now you can't define how the "Instrument" will play because it depends on the type of instrument.
Flute is a type of Instrument. So the class Flute implements Instrument.
Now you must define what the musician will do when he plays that type of instrument.
So you define the play method. This definition will override the definition of the Instrument.
Do the same with the 2 others instruments.
Now if you have a list of instruments but don't know what type they are, you can still "ask" them to play.
Each flute will be blown.
Each guitar will be scratched.
Each pianio will be ... huh... pianoted ? whatever !
But each object will know what to do to execute the action "Play". You don't know what kind of instrument they are, but since you know they are instruments, you ask them to play and they know how to do that.
You may also want to compare and contrast interfaces in Java with C++ (where you end up using multiple inheritance and/or "friend" classes).
(At least, to me, that showed me how much simpler/easier interfaces were in Java :-)
I would tell them "Interfaces define what behaviors are provided" and "Implementations provide those behaviors". A piece of code that uses an interface doesn't need the details of how things are happening, it only needs to know what things can happen.
A good example is the DAO pattern. It defines behavior like "save", "load", "delete". You could have an implementation that works with a DB, and an implementation that goes to the file system.
I think a lot of the other answers so far are too complicated for students who don't get it right away...
I think in general, hands-on learning always helps reinforce concepts after lectures and examples. So in the same vein as meriton suggests, I would present two versions of the same program. (quicksort is a good example)
Have the students modify each program several times, unveil subtle bugs in the program for them to fix. Your students will soon find, I think, that interfaces provide many advantages when designing a program when they're the ones who have to modify it later!
I always think of it as a mean to (verbally) communicate as little as possible because that (good communication) is the most difficult thing in software engineering. Same for Web Services and SOA. If you give somebody an interface and say "Please provide me this service." it is a very convenient way because you don't have to explain a lot, and the compiler will check if they did a proper job, instead of you! (I mean, not really but at least it'll ensure the methods are there).

Categories