It's difficult to tell what is being asked here. This question is ambiguous, vague, incomplete, overly broad, or rhetorical and cannot be reasonably answered in its current form. For help clarifying this question so that it can be reopened, visit the help center.
Closed 9 years ago.
Let's say we have two classes, Tiger and Aeroplane.
One thing in common for these two types is the Speed. I know that it would be illogical to create a superclass ClassWithSpeed and then derive subclasses Aeroplane and Tiger from it.
Instead, it is better to create an interface that contains the method speed() and then implement it in Aeroplane and Tiger. I get that. But, we can do the same thing without interfaces. We could define method speed() in Aeroplane and method speed() in Tiger.
The only (maybe very big) flaw it would be that we couldn't "reach" the objects of Tiger and Aeroplane through an interface reference.
I am beginner in Java and OOP, and I would be very grateful if someone explained to me the role of interfaces.
Cheers!
It's:
public int howFast(Airplane airplane) {
return airplane.speed();
}
public int howFast(Tiger tiger) {
return tiger.speed();
}
public int howFast(Rocket rocket) {
return rocket.speed();
}
public int howFast(ThingThatHasntBeenInventedYet thingx) {
// wait... what? HOW IS THIS POSSIBLE?!
return thingx.speed();
}
...
vs
public int howFast(Mover mover) {
return mover.speed();
}
Now, imagine having to go back and change all those howFast functions in the future.
Interface or no, each class will have to implement or inherit the speed() method. An interface lets you use those disparate classes more easily, because they've each promised to behave in a certain way. You'll call speed(), and they'll return an int, so you don't have to write separate methods for every possible class.
When you find you need to handle speed differently because of a breakthrough in relativistic physics, you only need to update the methods that call speed(). When your great-granddaughter writes a class for HyperIntelligentMonkeyFish, she doesn't have to disassemble your ancient binary and make changes so that your code can monitor and control her mutant army. She needs only declare that HyperIntelligentMonkeyFish implements Mover.
Interfaces allow Java, since it is statically typed, to work around multiple inheritance limitations to the degree felt worthwhile by the language designers.
In a dynamic language (like Python, Ruby, etc.) you can just call the speed method on any arbitrary object and discover at runtime if it is there or not.
Java, on the other hand, is statically typed, which means the compiler has to agree that the method will be there ahead of time. The only way to do that on classes that don't share common ancestry, and may only have Object in common, is an interface.
Since objects can implement an arbitrary number of interfaces, this means you get the goodness of multiple inheritance (a single object that can pose as multiple different objects for different methods) without the downside (of conflicting implementations in the two super classes).
With Java 8, the designers of the language concluded that interfaces without any implementation was overly restrictive (they didn't like my solution I guess ;-)), so they allow for a default implementation, thus expanding the multi-inheritance options of interfaces, while still trying to avoid the conflicting implementation problem via a complex set of precedence rules so that there is an unambiguous default implementation to execute.
I am trying to explain the advantage of interface with the following example-
suppose you have another class where you need to use the tiger or AeroPlane as parameter. So by using interface you can call using
someObject.someMethod(ClassWithSpeed)
but if you dont use interface you can use
someObject.someMethod(Tiger)
someObject.someMethod(AeroPlane)
Now what should you do? Your probable answer will be like, "I will use two overloaded method".
This is okay so far, But
Say you need to add more options (say car, cycle, rabbit, tortoise.... 100 others). So what will you do to make the change of your existing code?? you will need to change a lots of things..
The overall example above has only one purpose. That is to say
"we need interface to create a better, reusable and properly object oriented
design"
N.B.
if you are sure the program is too small and you will never need to change them then I think it is okay to implement without interface
Defining an interface allows you to define methods that work not only on Aeroplane and Tiger, but also other classes that share the same interface.
For example, say your interface is IObjectWithSpeed. Then you can define a method like this -- in a single class that operates on IObjectWithSpeed objects.
public double calculateSecondsToTravel( IObjectWithSpeed obj, double distance ) {
return distance / obj.getSpeed();
}
Interfaces allow us to satisfy the open/closed principle - open for extension, but closed for modification. The single implementation of the method above doesn't need to be modified as new classes are defined that implement IObjectWithSpeed.
I want go into much theoretical details but will try to explain using this example.
Consider JDBC API. It is API used to deal with database related options in the Java. Now, there are so many databases in the industry. How would one write drivers for that? Well, the quick and dirty approach may be write own implementation using our own classes and API.
But think from the programmer's perspective. Will they start learning DATABASE DRIVER's API while using different database? The answer is NO.
So what is the solution to the problem ? Just have a well defined API which anyone can extend for his own implementation.
In JDBC API, there are some Interfaces which are Connection, ResultSet, PreparedStatement, Statement etc. Now each database vendor will implement the interface and will write his own implementation for that. Result ? : Reduced effort from the developer and easy understandability.
Now, what this custom implementation might consisting of ? It's simple. They do what, take ResultSet interface for example and implement it and in whatever method the ResultSet is gettting returned, return THE CLASS THAT IMPLEMENTS ResultSet interface like this
ResultSet rs=new ResultSetImpl(); //this is what they are doing internally.
So interface are like contracts. They define what your class is able to do and they give your application flexibility. You can create your own APIs using interfaces properly.
Hope this helps you.
An interface is not simply a method signature.
It is a type that represents a contract. The contract is the thing, not the method signatures. When a class implements an interface, it is because there is a contract for a shared behavior that the class has an interest in implementing as a type. That contract is implemented via the specified members which are usually method bodies but may also include static final fields.
It may be true that a tiger and an aeroplane both could be expressed as a type with a common behavior implemented through speed() ... and if so, then the interface represents the contract for expressing that behavior.
Aside from being descriptive for those classes' functionality, methods of an interface could be used without any knowledge about the classes implementing it, even for classes that were not yet defined.
So for example, if you'd need a class Transport that computes say efficient routes, it could be given a class that implements ClassWithSpeed as a parameter and use its method speed() for computing what it needs. This way you could use it with our class Aeroplane, but also with any class we define later, say Boat. Java will take care that if you want to use a class as a parameter to Transport it will implement ClassWithSpeed, and that any class implementing ClassWithSpeed implements the method speed() so that it can be used.
The interface (as a language construct) is used by the compiler to prove that the method call is valid and allows you to have dependent classes interact with the implementing class while having the least possible knowledge about the implementing class.
This is a very wide question to give a simple answer. I can recommend a book Interface Oriented Design: With Patterns. It explains all power of interfaces. And why we should not avoid them.
Have you tried using composition instead?, if I want 2 dissimilar classes to inherit the same abilities I use a class which takes an object of the type its working with by using abstract classes and checking the instances. Interfaces are useful for forcing methods to be including in the class but don't require any implementation or for 2 teams of coders to work on different coding areas.
Class Tiger {
public MovingEntity mover;
public Tiger(){
mover.speed=30;
mover.directionX=-1;
mover.move(mover);
}
}
Class Plane {
public MovingEntity mover;
public Plane(){
mover.speed=500;
mover.directionX=-1;
mover.move(mover);
}
Abstract Class Moverable(){
private int xPos;
private int yPos;
private int directionX;
private int directionY;
private int speed;
Class MovingEntity extends Moverable {
public void move(Moverable m){
if(m instanceof Tiger){
xPos+=directionX*speed;
yPos+=directionY*speed;
}else if(m instanceof Plane){
xPos+=directionX*speed;
yPos+=directionY*speed;
}
}
On language level, the only use of interfaces is, like you mentioned, to be able to refer to different classes in a common way. On people level, however, the picture looks different: IMO Java is strong when used in big projects where the design and the implementation are done by separate people, often from separate companies. Now, instead of writing a specification on a Word document, the system architects can create a bunch of classes that implementers can then directly insert in their IDEs and start working on them.
In other words it is more convenient instead of declaring that "Class X implements methods Y and Z in order for it to be used for purpose A, just to say that "Class X implements interface A"
Because creating interface gives you Polymorphism, across all those classes i.e. Tiger and Aeroplane.
You can extend from an (abstract or concrete) class when the base class's functionality is going to be the core of your child class's functionality as well.
You use interfaces when you want to add an augmented functionality to your class in addition to its core functionality. So using interfaces would give you Polymorphism even when its not your class's core functionality (because you've entered a contract by implementing the interface). This is a huge advantage over creating a speed() method with each class.
Related
This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
What does it mean to “program to an interface”?
I keep coming across this term:
Program to an interface.
What exactly does it mean? A real life design scenario would be highly appreciated.
To put it simply, instead of writing your classes in a way that says
I depend on this specific class to do my work
you write it in a way that says
I depend on any class that does this stuff to do my work.
The first example represents a class that depends on a specific concrete implementation to do its work. Inherently, that's not very flexible.
The second example represents a class written to an interface. It doesn't care what concrete object you use, it just cares that it implements certain behavior. This makes the class much more flexible, as it can be provided with any number of concrete implementations to do its work.
As an example, a particular class may need to perform some logging. If you write the class to depend on a TextFileLogger, the class is forever forced to write out its log records to a text file. If you want to change the behavior of the logging, you must change the class itself. The class is tightly coupled with its logger.
If, however, you write the class to depend on an ILogger interface, and then provide the class with a TextFileLogger, you will have accomplished the same thing, but with the added benefit of being much more flexible. You are able to provide any other type of ILogger at will, without changing the class itself. The class and its logger are now loosely coupled, and your class is much more flexible.
An interface is a collection of related methods, that only contains the signatures of those methods - not the actual implementation.
If a class implements an interface (class Car implements IDrivable) it has to provide code for all signatures defined in the interface.
Basic example:
You have to classes Car and Bike. Both implement the interface IDrivable:
interface IDrivable
{
void accelerate();
void brake();
}
class Car implements IDrivable
{
void accelerate()
{ System.out.println("Vroom"); }
void brake()
{ System.out.println("Queeeeek");}
}
class Bike implements IDrivable
{
void accelerate()
{ System.out.println("Rattle, Rattle, ..."); }
void brake()
{ System.out.println("..."); }
}
Now let's assume you have a collection of objects, that are all "drivable" (their classes all implement IDrivable):
List<IDrivable> vehicleList = new ArrayList<IDrivable>();
list.add(new Car());
list.add(new Car());
list.add(new Bike());
list.add(new Car());
list.add(new Bike());
list.add(new Bike());
If you now want to loop over that collection, you can rely on the fact, that every object in that collection implements accelerate():
for(IDrivable vehicle: vehicleList)
{
vehicle.accelerate(); //this could be a bike or a car, or anything that implements IDrivable
}
By calling that interface method you are not programming to an implementation but to an interface - a contract that ensures that the call target implements a certain functionality.
The same behavior could be achieved using inheritance, but deriving from a common base class results in tight coupling which can be avoided using interfaces.
Polymorphism depends on programming to an interface, not an implementation.
There are two benefits to manipulating objects solely in terms of the interface defined by abstract classes:
Clients remain unaware of the specific types of objects they use, as long as the objects adhere to the interface that clients expect.
Clients remain unaware of the classes that implement these objects. Clients only know about the abstract class(es) defining the interface.
This so greatly reduces implementation dependencies between subsystems that it leads to this principle of programming to an interface.
See the Factory Method pattern for further reasoning of this design.
Source: "Design Patterns: Elements of Reusable Object-Oriented Software" by G.O.F.
Also See: Factory Pattern. When to use factory methods?
Real-world examples are applenty. One of them:
For JDBC, you are using the interface java.sql.Connection. However, each JDBC driver provides its own implementation of Connection. You don't have to know anything about the particular implementation, because it conforms to the Connection interface.
Another one is from the java collections framework. There is a java.util.Collection interface, which defines size, add and remove methods (among many others). So you can use all types of collections interchangeably. Let's say you have the following:
public float calculateCoefficient(Collection collection) {
return collection.size() * something / somethingElse;
}
And two other methods that invoke this one. One of the other methods uses a LinkedList because it's more efficient for it's purposes, and the other uses a TreeSet.
Because both LinkedList and TreeSet implement the Collection interface, you can use only one method to perform the coefficient calculation. No need to duplicate your code.
And here comes the "program to an interface" - you don't care how exactly is the size() method implemented, you know that it should return the size of the collection - i.e. you have programmed to the Collection interface, rather than to LinkedList and TreeSet in particular.
But my advice is to find a reading - perhaps a book ("Thinking in Java" for example) - where the concept is explained in details.
Every object has an exposed interface. A collection has Add, Remove, At, etc. A socket may have Send, Receive, Close and so on.
Every object you can actually get a reference to has a concrete implementation of these interfaces.
Both of these things are obvious, however what is somewhat less obvious...
Your code shouldn't rely on the implementation details of an object, just its published interface.
If you take it to an extreme, you'd only code against Collection<T> and so on (rather than ArrayList<T>). More practically, just make sure you could swap in something conceptually identical without breaking your code.
To hammer out the Collection<T> example: you have a collection of something, you're actually using ArrayList<T> because why not. You should make sure you're code isn't going to break if, say, you end up using LinkedList<T> in the future.
"Programming to an interface" happens when you use libraries, other code you depend upon in your own code. Then, the way that other code represents itself to you, the method names, its parameters, return values etc make up the interface you have to program to. So it's about how you use third-party code.
It also means, you don't have to care about the internals of the code you depend on, as long as the interface stays the same, your code is safe (well, more or less...)
Technically there are finer details, like language concepts called "interfaces" in Java for example.
If you want to find out more, you could ask what "Implementing an Interface" means...
I think this is one of Erich Gamma's mantras. I can't find the first time he described it (before the GOF book), but you can see it discussed in an interview at: http://www.artima.com/lejava/articles/designprinciples.html
It basically means that the only part of the library which you're going to use you should rely upon is it's API (Application programming interface) and that you shouldn't base your application on the concrete implementation of the library.
eg. Supposed you have a library that gives you a stack. The class gives you a couple of methods. Let's say push, pop, isempty and top. You should write your application relying only on these. One way to violate this would be to peek inside and find out that the stack is implemented using an array of some kind so that if you pop from an empty stack, you'd get some kind of Index exception and to then catch this rather than to rely on the isempty method which the class provides. The former approach would fail if the library provider switched from using an array to using some kind of list while the latter would still work assuming that the provider kept his API still working.
This question already has answers here:
Interfaces in Java - what are they for? [duplicate]
(9 answers)
Closed 9 years ago.
Let's say you have an interface
public interface Change {
void updateUser();
void deleteUser();
void helpUser();
}
I've read that interfaces are Java's way to implement multiple inheritance. You implement an interface, then you have access to its methods. What I don't understand is, the methods don't have any body in the interface, so you need to give them a body in your class. So if you an interface is implemented by more than one class, you need to give the method a body in more than one class. Why is this better than just having individual methods in your classes, and not implementing an interface?
My professor in college once gave a great anecdote to describe polymorphism and encapsulation. It went like this.
Does anyone here know how a soda machine works? (Cue confused glances about why we'd even talk about this.) No? Let me tell you.
You drop in your change, and inside the machine is a little monkey who counts all your change to make sure you put in enough money. When you press the button for your soda, a little light comes on telling the monkey which button you pressed, and if you entered the right amount of change, he grabs your choice and throws it into the little hole for you to grab your soda.
This is the concept of encapsulation. We hide the implementation of the soda machine. Unless it's got one of those fancy, clear windows to let you see the inside, you honestly have no idea how it really works. All you know is that you put in some cash, you press a button, and if you put in enough, you get your drink.
To add to that, you know how to use a soda machine's interface, so therefore as long as the machine's interface follows the usual soda machine interface, you can use it. This is called the interface contract. The machine can be bringing the drinks from Antarctica on a conveyor belt for all you care, as long as you get your drink, it's cold, and you get change back.
Polymorphism is the idea that when you use the soda machine interface, it could be doing different things. This is why encapsulation and polymorphism are closely related. In polymorphism, all you know is that you're using a SodaMachine implementation, which can be changed, and as a result, different things can be done behind the scenes. This leads to the driving concept of polymorphism, which is the ability of one object, the SodaMachine, to actually act as both a MonkeySodaMachine and a ConveyorSodaMachine depending on the machine actually behind the interface.
Probably not word-for-word, but close enough. Essentially it boils down to two concepts: polymorphism and encapsulation. Let me know if you want clarification.
Why is this better than just having individual methods in your classes, and not implementing an interface?
Because if a class C implements an interface I, you can use a C whenever an I is expected. If you do not implement the interface, you could not do this (even if you provided all of the appropriate methods as mandated by the interface):
interface I {
void foo();
}
class C1 implements I {
public void foo() {
System.out.println("C1");
}
}
class C2 { // C2 has a 'foo' method, but does not implement I
public void foo() {
System.out.println("C2");
}
}
...
class Test {
public static void main(String[] args) {
I eye1 = new C1(); // works
I eye2 = new C2(); // error!
}
}
It separates what the caller expects from the implementation. You have a pure set of methods you can call without any knowledge of the implementation. In fact some libraries like JMS and JDBC provide interfaces without any implementations.
This separation means you don't need to know the class of any actual implementation.
An interface allows you to guarantee that certain methods exist and return the required types. When the compiler knows this, it can use that assumption to work with unknown classes as if they had certain known behavior. For example, the comparable interface guarantees that an implementing class will be able to compareTo() some similar object and will return an int.
This means that you can compare anything that implements this interface - so you can sort anything that is Comparable instead of writing one method to sort Strings and another to sort Integers and another to sort LabelledBoxesOfBooks
The interface essentially guarentees that all the methods that inherit it will have its methods, so that you can safely call a method in the interface for anything that inherits it.
It makes it easier to define APIs using interfaces, so that all concrete implementations of the interfaces provide the expected methods in each class.
It also provides a way to implement multiple inheritance, which is not possible (in Java) with straight class inheritance.
A new collaborator of mine who was reviewing some code I'd written told me that she wasn't used to seeing interfaces used directly in Java code, e.g.:
public interface GeneralFoo { ... }
public class SpecificFoo implements GeneralFoo { ... }
public class UsesFoo {
GeneralFoo foo = new SpecificFoo();
}
instead, expecting to see
public interface GeneralFoo { ... }
public abstract class AbstractFoo implements GeneralFoo { ... }
public class SpecificFoo extends AbstractFoo { ... }
public class UsesFoo {
AbstractFoo foo = new SpecificFoo();
}
I can see when this pattern makes sense, if all SpecificFoos share functionality through AbstractFoo, but if the various Foos have entirely different internal implementations (or we don't care how a specific Foo does Bar, as long as it does it), is there any harm in using an interface directly in code? I realize this is probably a tomato/tomato thing to some extent, but I'm curious if there's an advantage to the second style, or disadvantage to the first style, that I'm missing.
If you have no need for an abstract class with certain details common to all implementations, then there's no real need for an abstract class. Complexity often gets added to applications because there is some perceived need to support future features that haven't yet been defined. Stick with what works, and refactor later.
No, she's inexperienced, not right. Using interfaces is preferred, and writing redundant abstract super classes for the sake of redundancy is redundant.
UsesFoo should care about the behaviour specified by the interface, not about the super class of its dependencies.
For me "she wasn't used to" is not good enough reason. Ask her to elaborate on that.
Personally I'd use your solution, because:
AbstractFoo is redundant and ads no value in current situation.
Even if AbstractFoo was needed (for some additional functionality), I'd always use lowest needed type: if GeneralFoo was sufficient, then I'd use that, not some class derived from it.
It depends only on your problem.
If you use interfaces only, then if all your classes have a same method, it would have to be implemented redundantly (or moved away to a Util class).
On the other hand, if you do write an intermediary abstract class, you solved that problem, but now your subclass may not be a subclass of another class, because of absence of multiple inheritance in Java. If it was already necessary to extend some class, this is not possible.
So, shortly - it's a trade off. Use whichever is better in your particular case.
There is not harm in directly using an interface in code. If there were, Java would not have interfaces.
The disadvantages of using an interface directly include not being able to reach and class-specific methods which are not implemented in the interface. For poorly written interfaces, or classes which add a lot of "other" functionality, this is undesirable as you lose the ability to get to needed methods. However, in some cases this might be a reflection of a poor design choice in creating the interface. Without details it is too hard to know.
The disadvantages of using the base class directly include eventually ignoring the interface as it is not frequently used. In extreme cases, the interface becomes the code equivalent of a human appendix; "present but providing little to no functionality". Unused interfaces are not likely to be updated, as everyone will just use the base abstract class directly anyway. This allows your design to silently rot from the viewpoint of anyone who actually tries to use the interface. In extreme cases, it is not possible to handle an extending class through the interface to perform some critical functionality.
Personally, I favor returning classes via their interface and internally storing in members them via their lowest sub-class. This provides intimate knowledge of the class within the class's encapsulation, forces people to use the interface (keeping it up-to-date) externally, and the class's encapsulation allows possible future replacement without too much fuss.
I'm curious if there's an advantage to the second style, or disadvantage to the first style, that I'm missing
That reasons for the first interfaces style:
Often, the design is such that the interface is the public interface of the concept while the abstract class is an implementation detail of the concept.
For example, consider List and AbstractList in the collection framework. List is really what clients are usually after; fewer people know about about AbstractList because its an implementation detail to aid suppliers (implementers) of the interface), not clients (users) of the class.
The interface is looser coupling, therefore more flexible to support future changes.
Use the one that more clearer represents the requirement of the class, which is often the interface.
For example, List is often used rather than AbsrtactList or ArrayList. Using the interface, it may be clearer to a future maintainer that this class needs some kind of List, but it does not specifically need an AbstractList or an ArrayList. If this class relied on some AbstractList-specific property, i.e. it needs to use an AbstractList method, then using AbstractList list = ... instead of List list = ... may be a hint that this code relies on something specific to an AbstractList .
It may simplify testing/mocking to use the smaller, more abstract interface rather than to use the abstract class.
It is considered a bad practice by some to declare variables by their AbstractFoo signatures, as the UsesFoo class is coupled to some of the implementation details of foo.
This leads to less flexibility - you can not swap the runtime type of foo with any class that implements the GeneralFoo interface; you can only inject instances that implement the AbstractFoo descendant - leaving you with a smaller subset.
Ideally it should be possible for classes like UsesFoo to only know the interfaces of the collaborators they use, and not any implementation details.
And of course, if there is no need to declare anything abstract in a abstract class AbstractFoo implements GeneralFoo - i.e. no common implementation that all subclasses will re-use - then this is simply a waste of an extra file and levels in your hierarchy.
Firstly I use abstract and interface classes plentifully.
I think you need to see value in using an interface before using it. I think the design approach is, oh we have a class therefore we should have an abstract class and therefore we should have interfaces.
Firstly why do you need an interface, secondly why do you have an abstract class. It seems she may be adding things, for adding things sake. There needs to be clear value in the solution otherwise you are talking about code that has no value.
Emperically there you should see the value in her solution. If there is no value the solution is wrong, if it cant be explained to you she does not understand why she is doing it.
Simple code is the better solution and refactor when you need the complexity, flexibility or whatever perceived value she is getting from the solution.
Show the value or delete the code!
Oh one more thing have a look at the Java library code. Does that use the abstract / interface pattern that she is applying .. NO!
This question already has answers here:
What does it mean to "program to an interface"?
(33 answers)
Closed 9 years ago.
I want to solidify my understanding of the "coding to interface" concept. As I understand it, one creates interfaces to delineate expected functionality, and then implements these "contracts" in concrete classes. To use the interface one can simply call the methods on an instance of the concrete class.
The obvious benefit is knowing of the functionality provided by the concrete class, irrespective of its specific implementation.
Based on the above:
Are there any fallacies in my understanding of "coding to interfaces"?
Are there any benefits of coding to interfaces that I missed?
Thanks.
Just one possible correction:
To use the interface one can simply call the methods on an instance of the concrete class.
One would call the methods on a reference of the type interface, which happens to use the concrete class as implementation:
List<String> l = new ArrayList<String>();
l.add("foo");
l.add("bar");
If you decided to switch to another List implementation, the client code works without change:
List<String> l = new LinkedList<String>();
This is especially useful for hiding implementation details, auto generating proxies, etc.
You'll find that frameworks like spring and guice encourage programming to an interface. It's the basis for ideas like aspect-oriented programming, auto generated proxies for transaction management, etc.
Your understanding seems to be right on. Your co-worker just swung by your desk and has all the latest pics of the christmas party starring your drunk boss loaded onto his thumbdrive. Your co-worker and you do not think twice about how this thumbdrive works, to you its a black box but you know it works because of the USB interface.
It doesn't matter whether it's a SanDisk or a Titanium (not even sure that is a brand), size / color don't matter either. In fact, the only thing that matters is that it is not broken (readable) and that it plugs into USB.
Your USB thumbdrive abides by a contract, it is essentially an interface. One can assume it fulfills some very basic duties:
Plugs into USB
Abides by the contract method CopyDataTo:
public Interface IUSB {
void CopyDataTo(string somePath); //used to copy data from the thumbnail drive to...
}
Abides by the contract method CopyDataFrom:
public Interface IUSB {
void CopyDataFrom(); //used to copy data from your PC to the thumbnail drive
}
Ok maybe not those methods but the IUSB interface is just a contract that the thumbnail drive vendors have to abide by to ensure functionality across various platforms / vendors. So SanDisk makes their thumbdrive by the interface:
public class SanDiskUSB : IUSB
{
//todo: define methods of the interface here
}
Ari, I think you already have a solid understanding (from what it sounds like) about how interfaces work.
The main advantage is that the use of an interface loosely couples a class with it's dependencies. You can then change a class, or implement a new concrete interface implementation without ever having to change the classes which depend on it.
To use the interface one can simply call the methods on an instance of the concrete class.
Typically you would have a variable typed to the interface type, thus allowing only access to the methods defined in the interface.
The obvious benefit is knowing of the functionality provided by the concrete class, irrespective of its specific implementation.
Sort of. Most importantly, it allows you to write APIs that take parameters with interface types. Users of the API can then pass in their own classes (which implement those interfaces) and you code will work on those classes even though they didn't exist yet when it was written (such as java.util.Arrays.sort() being able to sort anything that implements Comparable or comes with a suitable Comparator).
From a design perspective, interfaces allow/enforce a clear separation between API contracts and implementation details.
The aim of coding against interfaces is to decouple your code from the concrete implementation in use. That is, your code will not make assumptions about the concrete type, only the interface. Consequently, the concrete implementation can be exchanged without needing to adjust your code.
You didn't list the part about how you get an implementation of the interface, which is important. If you explicitly instantiate the implementing class with a constructor then your code is tied to that implementation. You can use a factory to get an instance for you but then you're as tied to the factory as you were before to the implementing class. Your third alternative is to use dependency injection, which is having a factory plug the implementing object into the object that uses it, in which case you escape having the class that uses the object being tied to the implementing class or to a factory.
I think you may have hinted at this, but I believe one of the biggest benefits of coding to an interface is that you are breaking dependency on concrete implementation. You can achieve loose coupling and make it easier to switch out specific implementations without changing much code. If you are just learning, I would take a look at various design patterns and how they solve problems by coding to interfaces. Reading the book Head First: Design Patterns really helped things click for me.
As I understand it, one creates interfaces to delineate expected functionality, and then implements these "contracts" in concrete classes.
The only sort of mutation i see in your thinking is this - You're going to call out expected contracts, not expected functionality. The functionality is implemented in the concrete classes. The interface only states that you will be able to call something that implements the interface with the expected method signatures. Functionality is hidden from the calling object.
This will allow you to stretch your thinking into polymorphism as follows.
SoundMaker sm = new Duck();<br/>
SoundMaker sm1 = new ThunderousCloud();
sm.makeSound(); // quack, calls all sorts of stuff like larynx, etc.<br/>
sm1.makeSound(); // BOOM!, completely different operations here...
I recently attended an interview and they asked me the question "Why Interfaces are preferred over Abstract classes?"
I tried giving a few answers like:
We can get only one Extends functionality
they are 100% Abstract
Implementation is not hard-coded
They asked me take any of the JDBC api that you use. "Why are they Interfaces?".
Can I get a better answer for this?
That interview question reflects a certain belief of the person asking the question. I believe that the person is wrong, and therefore you can go one of two directions.
Give them the answer they want.
Respectfully disagree.
The answer that they want, well, the other posters have highlighted those incredibly well.
Multiple interface inheritance, the inheritance forces the class to make implementation choices, interfaces can be changed easier.
However, if you create a compelling (and correct) argument in your disagreement, then the interviewer might take note.
First, highlight the positive things about interfaces, this is a MUST.
Secondly, I would say that interfaces are better in many scenarios, but they also lead to code duplication which is a negative thing. If you have a wide array of subclasses which will be doing largely the same implementation, plus extra functionality, then you might want an abstract class. It allows you to have many similar objects with fine grained detail, whereas with only interfaces, you must have many distinct objects with almost duplicate code.
Interfaces have many uses, and there is a compelling reason to believe they are 'better'. However you should always be using the correct tool for the job, and that means that you can't write off abstract classes.
In general, and this is by no means a "rule" that should be blindly followed, the most flexible arrangement is:
interface
abstract class
concrete class 1
concrete class 2
The interface is there for a couple of reasons:
an existing class that already extends something can implement the interface (assuming you have control over the code for the existing class)
an existing class can be subclasses and the subclass can implement the interface (assuming the existing class is subclassable)
This means that you can take pre-existing classes (or just classes that MUST extend from something else) and have them work with your code.
The abstract class is there to provide all of the common bits for the concrete classes. The abstract class is extended from when you are writing new classes or modifying classes that you want to extend it (assuming they extend from java.lang.Object).
You should always (unless you have a really good reason not to) declare variables (instance, class, local, and method parameters) as the interface.
You only get one shot at inheritance. If you make an abstract class rather than an interface, someone who inherits your class can't also inherit a different abstract class.
You can implement more than one interface, but you can only inherit from a single class
Abstract Classes
1.Cannot be instantiated independently from their derived classes. Abstract class constructors are called only by their derived classes.
2.Define abstract member signatures that base classes must implement.
3.Are more extensible than interfaces, without breaking any version compatibility. With abstract classes, it is possible to add additional nonabstract members that all derived classes can inherit.
4.Can include data stored in fields.
5.Allow for (virtual) members that have implementation and, therefore, provide a default implementation of a member to the deriving class.
6.Deriving from an abstract class uses up a subclass's one and only base class option.
Interface
1.Cannot be instantiated.
2.Implementation of all members of the interface occurs in the base class. It is not possible to implement only some members within the implementing class.
3.Extending interfaces with additional members breaks the version compatibility.
4.Cannot store any data. Fields can be specified only on the deriving classes. The workaround for this is to define properties, but without implementation.
5.All members are automatically virtual and cannot include any implementation.
6.Although no default implementation can appear, classes implementing interfaces can continue to derive from one another.
As devinb and others mention, it sounds like the interviewer shows their ignorance in not accepting your valid answers.
However, the mention of JDBC might be a hint. In that case, perhaps they are asking for the benefits of a client coding against an interface instead of a class.
So instead of perfectly valid answers such as "you only get one use of inheritance", which are relating to class design, they may be looking for an answer more like "decouples a client from a specific implementation".
Abstract classes have a number of potential pitfalls. For example, if you override a method, the super() method is not called unless you explicitly call it. This can cause problems for poorly-implemented overriding classes. Also, there are potential problems with equals() when you use inheritance.
Using interfaces can encourage use of composition when you want to share an implementation. Composition is very often a better way to reuse others objects, as it is less brittle. Inheritance is easily overused or used for the wrong purposes.
Defining an interface is a very safe way to define how an object is supposed to act, without risking the brittleness that can come with extending another class, abstract or not.
Also, as you mention, you can only extend one class at a time, but you can implement as many interfaces as you wish.
Abstract classes are used when you inherit implementation, interfaces are used when you inherit specification. The JDBC standards state that "A connection must do this". That's specification.
When you use abstract classes you create a coupling between the subclass and the base class. This coupling can sometimes make code really hard to change, especially as the number of subclasses increases. Interfaces do not have this problem.
You also only have one inheritance, so you should make sure you use it for the proper reasons.
"Why Interfaces are preferred over
Abstract classes?"
The other posts have done a great job of looking at the differences between interfaces and abstract classes, so I won't duplicate those thoughts.
But looking at the interview question, the better question is really "When should interfaces be preferred over abstract classes?" (and vice versa).
As with most programming constructs, they're available for a reason and absolute statements like the one in the interview question tend to miss that. It sort of reminds me of all the statement you used to read regarding the goto statement in C. "You should never use goto - it reveals poor coding skills." However, goto always had its appropriate uses.
Respectfully disagree with most of the above posters (sorry! mod me down if you want :-) )
First, the "only one super class" answer is lame. Anyone who gave me that answer in an interview would be quickly countered with "C++ existed before Java and C++ had multiple super classes. Why do you think James Gosling only allowed one superclass for Java?"
Understand the philosophy behind your answer otherwise you are toast (at least if I interview you.)
Second, interfaces have multiple advantages over abstract classes, especially when designing interfaces. The biggest one is not having a particular class structure imposed on the caller of a method. There is nothing worse than trying to use a method call that demands a particular class structure. It is painful and awkward. Using an interface anything can be passed to the method with a minimum of expectations.
Example:
public void foo(Hashtable bar);
vs.
public void foo(Map bar);
For the former, the caller will always be taking their existing data structure and slamming it into a new Hashtable.
Third, interfaces allow public methods in the concrete class implementers to be "private". If the method is not declared in the interface then the method cannot be used (or misused) by classes that have no business using the method. Which brings me to point 4....
Fourth, Interfaces represent a minimal contract between the implementing class and the caller. This minimal contract specifies exactly how the concrete implementer expects to be used and no more. The calling class is not allowed to use any other method not specified by the "contract" of the interface. The interface name in use also flavors the developer's expectation of how they should be using the object. If a developer is passed a
public interface FragmentVisitor {
public void visit(Node node);
}
The developer knows that the only method they can call is the visit method. They don't get distracted by the bright shiny methods in the concrete class that they shouldn't mess with.
Lastly, abstract classes have many methods that are really only present for the subclasses to be using. So abstract classes tend to look a little like a mess to the outside developer, there is no guidance on which methods are intended to be used by outside code.
Yes of course some such methods can be made protected. However, sadly protected methods are also visible to other classes in the same package. And if an abstract class' method implements an interface the method must be public.
However using interfaces all this innards that are hanging out when looking at the abstract super class or the concrete class are safely tucked away.
Yes I know that of course the developer may use some "special" knowledge to cast an object to another broader interface or the concrete class itself. But such a cast violates the expected contract, and the developer should be slapped with a salmon.
If they think that X is better than Y I wouldn't be worried about getting the job, I wouldn't like working for someone who forced me to one design over another because they were told interfaces are the best. Both are good depending on the situation, otherwise why did the language choose to add abstract classes? Surely, the language designers are smarter than me.
This is the issue of "Multiple Inheritance".
We can "extends" not more than one abstarct class at one time through another class but in Interfaces, we can "implement" multiple interfaces in single class.
So, though Java doesn't provide multiple inheritance in general but by using interfaces we can incorporate multiplt inheritance property in it.
Hope this helps!!!
interfaces are a cleaner way of writing a purely abstract class. You can tell that implementation has not sneaked in (of course you might want to do that at certain maintenance stages, which makes interfaces bad). That's about it. There is almost no difference discernible to client code.
JDBC is a really bad example. Ask anyone who has tried to implement the interfaces and maintain the code between JDK releases. JAX-WS is even worse, adding methods in update releases.
There are technical differences, such as the ability to multiply "inherit" interface. That tends to be the result of confused design. In rare cases it might be useful to have an implementation hierarchy that is different from the interface hierarchy.
On the downside for interfaces, the compiler is unable to pick up on some impossible casts/instanceofs.
There is one reason not mentioned by the above.
You can decorate any interface easily with java.lang.reflect.Proxy allowing you to add custom code at runtime to any method in the given interface. It is very powerful.
See http://tutorials.jenkov.com/java-reflection/dynamic-proxies.html for a tutorial.
interface is not substitute for abstract class.
Prefer
interface: To implement a contract by multiple unrelated objects
abstract class: To implement the same or different behaviour among multiple related objects
Refer to this related SE question for use cases of both interface and abstract class
Interface vs Abstract Class (general OO)
Use case:
If you have to use Template_method pattern, you can't achieve with interface. Abstract class should be chosen to achieve it.
If you have to implement a capability for many unrleated objects, abstract class does not serve the purpose and you have to chose interface.
You can implement multiple interfaces, but particularly with c# you can not have multiple inheritances
Because interfaces are not forcing you into some inheritance hierarchy.
You define interfaces when you only require that some object implement certain methods but you don't care about its pedigree. So someone can extend an existing class to implement an interface, without affecting the previously existing behavior of that class.
That's why JDBC is all interfaces; you don't really care what classes are used in a JDBC implementation, you only need any JDBC implementation to have the same expected behavior. Internally, the Oracle JDBC driver may be very different from the PostgreSQL driver, but that's irrelevant to you. One may have to inherit from some internal classes that the database developers already had, while another one may be completely developed from scratch, but that's not important to you as long as they both implement the same interfaces so that you can communicate with one or the other without knowing the internal workings of either.
Well, I'd suggest the question itself should be rephrased. Interfaces are mainly contracts that a class acquires, the implementation of that contract itself will vary. An abstract class will usually contain some default logic and its child classes will add some more logic.
I'd say that the answer to the questions relies on the diamond problem. Java prevents multiple inheritance to avoid it. ( http://en.wikipedia.org/wiki/Diamond_problem ).
They asked me take any of the JDBC api
that you use. "Why are they
Interfaces?".
My answer to this specific question is :
SUN doesnt know how to implement them or what to put in the implementation. Its up to the service providers/db vendors to put their logic into the implementation.
The JDBC design has relationship with the Bridge pattern, which says "Decouple an abstraction from its implementation so that the two can vary independently".
That means JDBC api's interfaces hierarchy can be evolved irrespective of the implementation hierarchy that a jdbc vendor provides or uses.
Abstract classes offer a way to define a template of behavior, where the user plugins in the details.
One good example is Java 6's SwingWorker. It defines a framework to do something in the background, requiring the user to define doInBackground() for the actual task.
I extended this class such that it automatically created a popup progress bar. I overrode done(), to control disposal of this pop-up, but then provided a new override point, allowing the user to optionally define what happens after the progress bar disappears.
public abstract class ProgressiveSwingWorker<T, V> extends SwingWorker<T, V> {
private JFrame progress;
public ProgressiveSwingWorker(final String title, final String label) {
SwingUtilities.invokeLater(new Runnable() {
#SuppressWarnings("serial")
#Override
public void run() {
progress = new JFrame() {{
setLayout(new MigLayout("","[grow]"));
setTitle(title);
add(new JLabel(label));
JProgressBar bar = new JProgressBar();
bar.setIndeterminate(true);
add(bar);
pack();
setLocationRelativeTo(null);
setVisible(true);
}};
}
});
}
/**
* This method has been marked final to secure disposing of the progress dialog. Any behavior
* intended for this should be put in afterProgressBarDisposed.
*/
#Override
protected final void done() {
progress.dispose();
try {
afterProgressBarDisposed(get());
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
protected void afterProgressBarDisposed(T results) {
}
}
The user still has the requirement of providing the implementation of doInBackground(). However, they can also have follow-up behavior, such as opening another window, displaying a JOptionPane with results, or simply do nothing.
To use it:
new ProgressiveSwingWorker<DataResultType, Object>("Editing some data", "Editing " + data.getSource()) {
#Override
protected DataResultType doInBackground() throws Exception {
return retrieve(data.getSource());
}
#Override
protected void afterProgressBarDisposed(DataResultType results) {
new DataEditor(results);
}
}.execute();
This shows how an abstract class can nicely provide a templated operation, orthogonal to the concept of interfaces defining an API contract.
Its depend on your requirement and power of implementation, which is much important.
You have got so many answer regarding this question.
What i think about this question is that abstract class is the evolution if API.
You can define your future function definition in abstract class but you don't need all function implementation in your main class but with interface you cant do this thing.