Why does matlabcontrol interrupt calling thread upon proxy create? - java

I made my Matlab controlling thread interruptable and found, that it is interrupted all the time on first run.
This is because GetProxyRequestCallback has interrupting code inside:
private static class GetProxyRequestCallback implements RequestCallback
{
private final Thread _requestingThread;
private volatile MatlabProxy _proxy;
public GetProxyRequestCallback()
{
_requestingThread = Thread.currentThread();
}
#Override
public void proxyCreated(MatlabProxy proxy)
{
_proxy = proxy;
_requestingThread.interrupt();
}
public MatlabProxy getProxy()
{
return _proxy;
}
}
Are there any reasons to interrupt calling thread or this is just a bug?

The RemoteMatlabProxyFactory.getProxy() method creates an instance of GetProxyRequestCallback and then sleeps, waiting for the proxyCreated(...) method to be called. Therefore, if proxyCreated() did not interrupt the thread that originally created the request, this thread would wait until the timeout would be reached.
In my opinion, this is a flaw in the matlabcontrol library: Thread.interrupt() should not be abused for this purpose because a thread being interrupted can have different reasons and should not be used for anything except signaling that the thread should stop.
This should be fixed in the matlabcontrol library by waiting on a mutex instead.
For example:
class RemoteMatlabProxyFactory implements ProxyFactory {
// [...]
#Override
public MatlabProxy getProxy() throws MatlabConnectionException {
GetProxyRequestCallback callback = new GetProxyRequestCallback();
Request request = this.requestProxy(callback);
return callback.getProxy(_options.getProxyTimeout());
}
// [...]
}
private static class GetProxyRequestCallback implements RequestCallback {
private final Object _lock = new Object();
private MatlabProxy _proxy;
#Override
public void proxyCreated(MatlabProxy proxy) {
_proxy = proxy;
_requestingThread.interrupt();
}
public MatlabProxy getProxy(long timeout) throws MatlabConnectionException {
synchronized (_lock) {
if (_proxy != null) {
return _proxy;
}
try {
_lock.wait(timeout);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new MatlabConnectionException("Thread was interrupted while waiting for MATLAB proxy", e);
}
if (_proxy == null) {
throw new MatlabConnectionException("MATLAB proxy could not be created in " + timeout + " milliseconds");
}
return _proxy;
}
}
}

Related

Unit testing asynchronous computation that has to be interrupted manually

I have got a class that records eyetracking data asynchronously. There are methods to start and stop the recording process. The data is collected in a collection and the collection can only be accessed if the recording thread has finished its work. It basically encapsulates all the threading and synchronizing so the user of my library doesn't have to do it.
The heavily shortened code (generics and error handling omitted):
public class Recorder {
private Collection accumulatorCollection;
private Thread recordingThread;
private class RecordingRunnable implements Runnable {
...
public void run() {
while(!Thread.currentThread().isInterrupted()) {
// fetch data and collect it in the accumulator
synchronized(acc) { acc.add(Eyetracker.getData()) }
}
}
}
public void start() {
accumulatorCollection = new Collection();
recordingThread = new Thread(new RecordingRunnable(accumulatorCollection));
recordingThread.start();
}
public void stop() {
recordingThread.interrupt();
}
public void getData() {
try {
recordingThread.join(2000);
if(recordingThread.isAlive()) { throw Exception(); }
}
catch(InterruptedException e) { ... }
synchronized(accumulatorCollection) { return accumulatorCollection; }
}
}
The usage is quite simple:
recorder.start();
...
recorder.stop();
Collection data = recorder.getData();
My problem with the whole thing is how to test it. Currently i am doing it like this:
recorder.start();
Thread.sleep(50);
recorder.stop();
Collection data = recorder.getData();
assert(stuff);
This works, but it is non-deterministic and slows down the test suite quite a bit (i marked these tests as integration tests, so they have to be run separately to circumvent this problem).
Is there a better way?
There is a better way using a CountDownLatch.
The non-deterministic part of the test stems from two variables in time you do not account for:
creating and starting a thread takes time and the thread may not have started executing the runnable when Thread.start() returns (the runnable will get executed, but it may be a bit later).
the stop/interrupt will break the while-loop in the Runnable but not immediately, it may be a bit later.
This is where a CountDownLatch comes in: it gives you precise information about where another thread is in execution. E.g. let the first thread wait on the latch, while the second "counts down" the latch as last statement within a runnable and now the first thread knows that the runnable finished. The CountDownLatch also acts as a synchronizer: whatever the second thread was writing to memory, can now be read by the first thread.
Instead of using an interrupt, you can also use a volatile boolean. Any thread reading the volatile variable is guaranteed to see the last value set by any other thread.
A CountDownLatch can also be given a timeout which is useful for tests that can hang: if you have to wait to long you can abort the whole test (e.g. shutdown executors, interrupt threads) and throw an AssertionError. In the code below I re-used the timeout to wait for a certain amount of data to collect instead of 'sleeping'.
As an optimization, use an Executor (ThreadPool) instead of creating and starting threads. The latter is relative expensive, using an Executor can really make a difference.
Below the updated code, I made it runnable as an application (main method). (edit 28/02/17: check maxCollect > 0 in while-loop)
import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicBoolean;
public class Recorder {
private final ExecutorService executor;
private Thread recordingThread;
private volatile boolean stopRecording;
private CountDownLatch finishedRecording;
private Collection<Object> eyeData;
private int maxCollect;
private final AtomicBoolean started = new AtomicBoolean();
private final AtomicBoolean stopped = new AtomicBoolean();
public Recorder() {
this(null);
}
public Recorder(ExecutorService executor) {
this.executor = executor;
}
public Recorder maxCollect(int max) { maxCollect = max; return this; }
private class RecordingRunnable implements Runnable {
#Override public void run() {
try {
int collected = 0;
while (!stopRecording) {
eyeData.add(EyeTracker.getData());
if (maxCollect > 0 && ++collected >= maxCollect) {
stopRecording = true;
}
}
} finally {
finishedRecording.countDown();
}
}
}
public Recorder start() {
if (!started.compareAndSet(false, true)) {
throw new IllegalStateException("already started");
}
stopRecording = false;
finishedRecording = new CountDownLatch(1);
eyeData = new ArrayList<Object>();
// the RecordingRunnable created below will see the values assigned above ('happens before relationship')
if (executor == null) {
recordingThread = new Thread(new RecordingRunnable());
recordingThread.start();
} else {
executor.execute(new RecordingRunnable());
}
return this;
}
public Collection<Object> getData(long timeout, TimeUnit tunit) {
if (started.get() == false) {
throw new IllegalStateException("start first");
}
if (!stopped.compareAndSet(false, true)) {
throw new IllegalStateException("data already fetched");
}
if (maxCollect <= 0) {
stopRecording = true;
}
boolean recordingStopped = false;
try {
// this establishes a 'happens before relationship'
// all updates to eyeData are now visible in this thread.
recordingStopped = finishedRecording.await(timeout, tunit);
} catch(InterruptedException e) {
throw new RuntimeException("interrupted", e);
} finally {
stopRecording = true;
}
// if recording did not stop, do not return the eyeData (could stil be modified by recording-runnable).
if (!recordingStopped) {
throw new RuntimeException("recording");
}
// only when everything is OK this recorder instance can be re-used
started.set(false);
stopped.set(false);
return eyeData;
}
public static class EyeTracker {
public static Object getData() {
try { Thread.sleep(1); } catch (Exception ignored) {}
return new Object();
}
}
public static void main(String[] args) {
System.out.println("Starting.");
ExecutorService exe = Executors.newSingleThreadExecutor();
try {
Recorder r = new Recorder(exe).maxCollect(50).start();
int dsize = r.getData(2000, TimeUnit.MILLISECONDS).size();
System.out.println("Collected " + dsize);
r.maxCollect(100).start();
dsize = r.getData(2000, TimeUnit.MILLISECONDS).size();
System.out.println("Collected " + dsize);
r.maxCollect(0).start();
Thread.sleep(100);
dsize = r.getData(2000, TimeUnit.MILLISECONDS).size();
System.out.println("Collected " + dsize);
} catch (Exception e) {
e.printStackTrace();
} finally {
exe.shutdownNow();
System.out.println("Done.");
}
}
}
Happy coding :)

How to Stop Thread [duplicate]

I need a solution to properly stop the thread in Java.
I have IndexProcessorclass which implements the Runnable interface:
public class IndexProcessor implements Runnable {
private static final Logger LOGGER = LoggerFactory.getLogger(IndexProcessor.class);
#Override
public void run() {
boolean run = true;
while (run) {
try {
LOGGER.debug("Sleeping...");
Thread.sleep((long) 15000);
LOGGER.debug("Processing");
} catch (InterruptedException e) {
LOGGER.error("Exception", e);
run = false;
}
}
}
}
And I have ServletContextListener class which starts and stops the thread:
public class SearchEngineContextListener implements ServletContextListener {
private static final Logger LOGGER = LoggerFactory.getLogger(SearchEngineContextListener.class);
private Thread thread = null;
#Override
public void contextInitialized(ServletContextEvent event) {
thread = new Thread(new IndexProcessor());
LOGGER.debug("Starting thread: " + thread);
thread.start();
LOGGER.debug("Background process successfully started.");
}
#Override
public void contextDestroyed(ServletContextEvent event) {
LOGGER.debug("Stopping thread: " + thread);
if (thread != null) {
thread.interrupt();
LOGGER.debug("Thread successfully stopped.");
}
}
}
But when I shutdown tomcat, I get the exception in my IndexProcessor class:
2012-06-09 17:04:50,671 [Thread-3] ERROR IndexProcessor Exception
java.lang.InterruptedException: sleep interrupted
at java.lang.Thread.sleep(Native Method)
at lt.ccl.searchengine.processor.IndexProcessor.run(IndexProcessor.java:22)
at java.lang.Thread.run(Unknown Source)
I am using JDK 1.6. So the question is:
How can I stop the thread and not throw any exceptions?
P.S. I do not want to use .stop(); method because it is deprecated.
Using Thread.interrupt() is a perfectly acceptable way of doing this. In fact, it's probably preferrable to a flag as suggested above. The reason being that if you're in an interruptable blocking call (like Thread.sleep or using java.nio Channel operations), you'll actually be able to break out of those right away.
If you use a flag, you have to wait for the blocking operation to finish and then you can check your flag. In some cases you have to do this anyway, such as using standard InputStream/OutputStream which are not interruptable.
In that case, when a thread is interrupted, it will not interrupt the IO, however, you can easily do this routinely in your code (and you should do this at strategic points where you can safely stop and cleanup)
if (Thread.currentThread().isInterrupted()) {
// cleanup and stop execution
// for example a break in a loop
}
Like I said, the main advantage to Thread.interrupt() is that you can immediately break out of interruptable calls, which you can't do with the flag approach.
In the IndexProcessor class you need a way of setting a flag which informs the thread that it will need to terminate, similar to the variable run that you have used just in the class scope.
When you wish to stop the thread, you set this flag and call join() on the thread and wait for it to finish.
Make sure that the flag is thread safe by using a volatile variable or by using getter and setter methods which are synchronised with the variable being used as the flag.
public class IndexProcessor implements Runnable {
private static final Logger LOGGER = LoggerFactory.getLogger(IndexProcessor.class);
private volatile boolean running = true;
public void terminate() {
running = false;
}
#Override
public void run() {
while (running) {
try {
LOGGER.debug("Sleeping...");
Thread.sleep((long) 15000);
LOGGER.debug("Processing");
} catch (InterruptedException e) {
LOGGER.error("Exception", e);
running = false;
}
}
}
}
Then in SearchEngineContextListener:
public class SearchEngineContextListener implements ServletContextListener {
private static final Logger LOGGER = LoggerFactory.getLogger(SearchEngineContextListener.class);
private Thread thread = null;
private IndexProcessor runnable = null;
#Override
public void contextInitialized(ServletContextEvent event) {
runnable = new IndexProcessor();
thread = new Thread(runnable);
LOGGER.debug("Starting thread: " + thread);
thread.start();
LOGGER.debug("Background process successfully started.");
}
#Override
public void contextDestroyed(ServletContextEvent event) {
LOGGER.debug("Stopping thread: " + thread);
if (thread != null) {
runnable.terminate();
thread.join();
LOGGER.debug("Thread successfully stopped.");
}
}
}
Simple answer:
You can stop a thread INTERNALLY in one of two common ways:
The run method hits a return subroutine.
Run method finishes, and returns implicitly.
You can also stop threads EXTERNALLY:
Call system.exit (this kills your entire process)
Call the thread object's interrupt() method *
See if the thread has an implemented method that sounds like it would work (like kill() or stop())
*: The expectation is that this is supposed to stop a thread. However, what the thread actually does when this happens is entirely up to what the developer wrote when they created the thread implementation.
A common pattern you see with run method implementations is a while(boolean){}, where the boolean is typically something named isRunning, it's a member variable of its thread class, it's volatile, and typically accessible by other threads by a setter method of sorts, e.g. kill() { isRunnable=false; }. These subroutines are nice because they allow the thread to release any resources it holds before terminating.
You should always end threads by checking a flag in the run() loop (if any).
Your thread should look like this:
public class IndexProcessor implements Runnable {
private static final Logger LOGGER = LoggerFactory.getLogger(IndexProcessor.class);
private volatile boolean execute;
#Override
public void run() {
this.execute = true;
while (this.execute) {
try {
LOGGER.debug("Sleeping...");
Thread.sleep((long) 15000);
LOGGER.debug("Processing");
} catch (InterruptedException e) {
LOGGER.error("Exception", e);
this.execute = false;
}
}
}
public void stopExecuting() {
this.execute = false;
}
}
Then you can end the thread by calling thread.stopExecuting(). That way the thread is ended clean, but this takes up to 15 seconds (due to your sleep).
You can still call thread.interrupt() if it's really urgent - but the prefered way should always be checking the flag.
To avoid waiting for 15 seconds, you can split up the sleep like this:
...
try {
LOGGER.debug("Sleeping...");
for (int i = 0; (i < 150) && this.execute; i++) {
Thread.sleep((long) 100);
}
LOGGER.debug("Processing");
} catch (InterruptedException e) {
...
Typically, a thread is terminated when it's interrupted. So, why not use the native boolean? Try isInterrupted():
Thread t = new Thread(new Runnable(){
#Override
public void run() {
while(!Thread.currentThread().isInterrupted()){
// do stuff
}
}});
t.start();
// Sleep a second, and then interrupt
try {
Thread.sleep(1000);
} catch (InterruptedException e) {}
t.interrupt();
ref- How can I kill a thread? without using stop();
For synchronizing threads I prefer using CountDownLatch which helps threads to wait until the process being performed complete. In this case, the worker class is set up with a CountDownLatch instance with a given count. A call to await method will block until the current count reaches zero due to invocations of the countDown method or the timeout set is reached. This approach allows interrupting a thread instantly without having to wait for the specified waiting time to elapse:
public class IndexProcessor implements Runnable {
private static final Logger LOGGER = LoggerFactory.getLogger(IndexProcessor.class);
private final CountDownLatch countdownlatch;
public IndexProcessor(CountDownLatch countdownlatch) {
this.countdownlatch = countdownlatch;
}
public void run() {
try {
while (!countdownlatch.await(15000, TimeUnit.MILLISECONDS)) {
LOGGER.debug("Processing...");
}
} catch (InterruptedException e) {
LOGGER.error("Exception", e);
run = false;
}
}
}
When you want to finish execution of the other thread, execute countDown on the CountDownLatch and join the thread to the main thread:
public class SearchEngineContextListener implements ServletContextListener {
private static final Logger LOGGER = LoggerFactory.getLogger(SearchEngineContextListener.class);
private Thread thread = null;
private IndexProcessor runnable = null;
private CountDownLatch countdownLatch = null;
#Override
public void contextInitialized(ServletContextEvent event) {
countdownLatch = new CountDownLatch(1);
Thread thread = new Thread(new IndexProcessor(countdownLatch));
LOGGER.debug("Starting thread: " + thread);
thread.start();
LOGGER.debug("Background process successfully started.");
}
#Override
public void contextDestroyed(ServletContextEvent event) {
LOGGER.debug("Stopping thread: " + thread);
if (countdownLatch != null)
{
countdownLatch.countDown();
}
if (thread != null) {
try {
thread.join();
} catch (InterruptedException e) {
LOGGER.error("Exception", e);
}
LOGGER.debug("Thread successfully stopped.");
}
}
}
Some supplementary info.
Both flag and interrupt are suggested in the Java doc.
https://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
private volatile Thread blinker;
public void stop() {
blinker = null;
}
public void run() {
Thread thisThread = Thread.currentThread();
while (blinker == thisThread) {
try {
Thread.sleep(interval);
} catch (InterruptedException e){
}
repaint();
}
}
For a thread that waits for long periods (e.g., for input), use Thread.interrupt
public void stop() {
Thread moribund = waiter;
waiter = null;
moribund.interrupt();
}
I didn't get the interrupt to work in Android, so I used this method, works perfectly:
boolean shouldCheckUpdates = true;
private void startupCheckForUpdatesEveryFewSeconds() {
threadCheckChat = new Thread(new CheckUpdates());
threadCheckChat.start();
}
private class CheckUpdates implements Runnable{
public void run() {
while (shouldCheckUpdates){
System.out.println("Do your thing here");
}
}
}
public void stop(){
shouldCheckUpdates = false;
}
Brian Goetz in his book suggests to use Thread.currentThread().isInterrupted() flag and interrupt() method for cancellation.
Blocking library methods like sleep() and wait() try to detect when a thread has been interrupted and return early. They respond to interruption by clearing the interrupted status and throwing InterruptedException, indicating that the blocking operation completed early due to interruption.
The JVM makes no guarantees on how quickly a blocking method will detect interruption, but in practice this happens reasonably quickly.
class PrimeProducer extends Thread {
private final BlockingQueue<BigInteger> queue;
PrimeProducer(BlockingQueue<BigInteger> queue) {
this.queue = queue;
}
public void run() {
try {
BigInteger p = BigInteger.ONE;
while (!Thread.currentThread().isInterrupted()) {
queue.put(p = p.nextProbablePrime()); // blocking operation
}
} catch (InterruptedException consumed) {
// allow thread to exit
}
// any code here will still be executed
}
public void cancel() {
interrupt();
}
}
If you put any code after catch block, it will still be executed as we swallow InterruptedException to exit from run() gracefully.
Just a couple words on how interrupt() works.
If interrupt is called on non-blocked thread, interrupt() will not cause InterruptedException inside run() but will just change flag isInterrupted to true and thread will continue its work until it reaches Thread.currentThread().isInterrupted() check and exit from run().
If interrupt is called on blocked thread (sleep() or wait()was called, in our case it's put() that might block a thread) then isInterrupted will be set to false and InterruptedException will be thrown inside put().

Java : how to end and get out from inheritIO process [duplicate]

I need a solution to properly stop the thread in Java.
I have IndexProcessorclass which implements the Runnable interface:
public class IndexProcessor implements Runnable {
private static final Logger LOGGER = LoggerFactory.getLogger(IndexProcessor.class);
#Override
public void run() {
boolean run = true;
while (run) {
try {
LOGGER.debug("Sleeping...");
Thread.sleep((long) 15000);
LOGGER.debug("Processing");
} catch (InterruptedException e) {
LOGGER.error("Exception", e);
run = false;
}
}
}
}
And I have ServletContextListener class which starts and stops the thread:
public class SearchEngineContextListener implements ServletContextListener {
private static final Logger LOGGER = LoggerFactory.getLogger(SearchEngineContextListener.class);
private Thread thread = null;
#Override
public void contextInitialized(ServletContextEvent event) {
thread = new Thread(new IndexProcessor());
LOGGER.debug("Starting thread: " + thread);
thread.start();
LOGGER.debug("Background process successfully started.");
}
#Override
public void contextDestroyed(ServletContextEvent event) {
LOGGER.debug("Stopping thread: " + thread);
if (thread != null) {
thread.interrupt();
LOGGER.debug("Thread successfully stopped.");
}
}
}
But when I shutdown tomcat, I get the exception in my IndexProcessor class:
2012-06-09 17:04:50,671 [Thread-3] ERROR IndexProcessor Exception
java.lang.InterruptedException: sleep interrupted
at java.lang.Thread.sleep(Native Method)
at lt.ccl.searchengine.processor.IndexProcessor.run(IndexProcessor.java:22)
at java.lang.Thread.run(Unknown Source)
I am using JDK 1.6. So the question is:
How can I stop the thread and not throw any exceptions?
P.S. I do not want to use .stop(); method because it is deprecated.
Using Thread.interrupt() is a perfectly acceptable way of doing this. In fact, it's probably preferrable to a flag as suggested above. The reason being that if you're in an interruptable blocking call (like Thread.sleep or using java.nio Channel operations), you'll actually be able to break out of those right away.
If you use a flag, you have to wait for the blocking operation to finish and then you can check your flag. In some cases you have to do this anyway, such as using standard InputStream/OutputStream which are not interruptable.
In that case, when a thread is interrupted, it will not interrupt the IO, however, you can easily do this routinely in your code (and you should do this at strategic points where you can safely stop and cleanup)
if (Thread.currentThread().isInterrupted()) {
// cleanup and stop execution
// for example a break in a loop
}
Like I said, the main advantage to Thread.interrupt() is that you can immediately break out of interruptable calls, which you can't do with the flag approach.
In the IndexProcessor class you need a way of setting a flag which informs the thread that it will need to terminate, similar to the variable run that you have used just in the class scope.
When you wish to stop the thread, you set this flag and call join() on the thread and wait for it to finish.
Make sure that the flag is thread safe by using a volatile variable or by using getter and setter methods which are synchronised with the variable being used as the flag.
public class IndexProcessor implements Runnable {
private static final Logger LOGGER = LoggerFactory.getLogger(IndexProcessor.class);
private volatile boolean running = true;
public void terminate() {
running = false;
}
#Override
public void run() {
while (running) {
try {
LOGGER.debug("Sleeping...");
Thread.sleep((long) 15000);
LOGGER.debug("Processing");
} catch (InterruptedException e) {
LOGGER.error("Exception", e);
running = false;
}
}
}
}
Then in SearchEngineContextListener:
public class SearchEngineContextListener implements ServletContextListener {
private static final Logger LOGGER = LoggerFactory.getLogger(SearchEngineContextListener.class);
private Thread thread = null;
private IndexProcessor runnable = null;
#Override
public void contextInitialized(ServletContextEvent event) {
runnable = new IndexProcessor();
thread = new Thread(runnable);
LOGGER.debug("Starting thread: " + thread);
thread.start();
LOGGER.debug("Background process successfully started.");
}
#Override
public void contextDestroyed(ServletContextEvent event) {
LOGGER.debug("Stopping thread: " + thread);
if (thread != null) {
runnable.terminate();
thread.join();
LOGGER.debug("Thread successfully stopped.");
}
}
}
Simple answer:
You can stop a thread INTERNALLY in one of two common ways:
The run method hits a return subroutine.
Run method finishes, and returns implicitly.
You can also stop threads EXTERNALLY:
Call system.exit (this kills your entire process)
Call the thread object's interrupt() method *
See if the thread has an implemented method that sounds like it would work (like kill() or stop())
*: The expectation is that this is supposed to stop a thread. However, what the thread actually does when this happens is entirely up to what the developer wrote when they created the thread implementation.
A common pattern you see with run method implementations is a while(boolean){}, where the boolean is typically something named isRunning, it's a member variable of its thread class, it's volatile, and typically accessible by other threads by a setter method of sorts, e.g. kill() { isRunnable=false; }. These subroutines are nice because they allow the thread to release any resources it holds before terminating.
You should always end threads by checking a flag in the run() loop (if any).
Your thread should look like this:
public class IndexProcessor implements Runnable {
private static final Logger LOGGER = LoggerFactory.getLogger(IndexProcessor.class);
private volatile boolean execute;
#Override
public void run() {
this.execute = true;
while (this.execute) {
try {
LOGGER.debug("Sleeping...");
Thread.sleep((long) 15000);
LOGGER.debug("Processing");
} catch (InterruptedException e) {
LOGGER.error("Exception", e);
this.execute = false;
}
}
}
public void stopExecuting() {
this.execute = false;
}
}
Then you can end the thread by calling thread.stopExecuting(). That way the thread is ended clean, but this takes up to 15 seconds (due to your sleep).
You can still call thread.interrupt() if it's really urgent - but the prefered way should always be checking the flag.
To avoid waiting for 15 seconds, you can split up the sleep like this:
...
try {
LOGGER.debug("Sleeping...");
for (int i = 0; (i < 150) && this.execute; i++) {
Thread.sleep((long) 100);
}
LOGGER.debug("Processing");
} catch (InterruptedException e) {
...
Typically, a thread is terminated when it's interrupted. So, why not use the native boolean? Try isInterrupted():
Thread t = new Thread(new Runnable(){
#Override
public void run() {
while(!Thread.currentThread().isInterrupted()){
// do stuff
}
}});
t.start();
// Sleep a second, and then interrupt
try {
Thread.sleep(1000);
} catch (InterruptedException e) {}
t.interrupt();
ref- How can I kill a thread? without using stop();
For synchronizing threads I prefer using CountDownLatch which helps threads to wait until the process being performed complete. In this case, the worker class is set up with a CountDownLatch instance with a given count. A call to await method will block until the current count reaches zero due to invocations of the countDown method or the timeout set is reached. This approach allows interrupting a thread instantly without having to wait for the specified waiting time to elapse:
public class IndexProcessor implements Runnable {
private static final Logger LOGGER = LoggerFactory.getLogger(IndexProcessor.class);
private final CountDownLatch countdownlatch;
public IndexProcessor(CountDownLatch countdownlatch) {
this.countdownlatch = countdownlatch;
}
public void run() {
try {
while (!countdownlatch.await(15000, TimeUnit.MILLISECONDS)) {
LOGGER.debug("Processing...");
}
} catch (InterruptedException e) {
LOGGER.error("Exception", e);
run = false;
}
}
}
When you want to finish execution of the other thread, execute countDown on the CountDownLatch and join the thread to the main thread:
public class SearchEngineContextListener implements ServletContextListener {
private static final Logger LOGGER = LoggerFactory.getLogger(SearchEngineContextListener.class);
private Thread thread = null;
private IndexProcessor runnable = null;
private CountDownLatch countdownLatch = null;
#Override
public void contextInitialized(ServletContextEvent event) {
countdownLatch = new CountDownLatch(1);
Thread thread = new Thread(new IndexProcessor(countdownLatch));
LOGGER.debug("Starting thread: " + thread);
thread.start();
LOGGER.debug("Background process successfully started.");
}
#Override
public void contextDestroyed(ServletContextEvent event) {
LOGGER.debug("Stopping thread: " + thread);
if (countdownLatch != null)
{
countdownLatch.countDown();
}
if (thread != null) {
try {
thread.join();
} catch (InterruptedException e) {
LOGGER.error("Exception", e);
}
LOGGER.debug("Thread successfully stopped.");
}
}
}
Some supplementary info.
Both flag and interrupt are suggested in the Java doc.
https://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
private volatile Thread blinker;
public void stop() {
blinker = null;
}
public void run() {
Thread thisThread = Thread.currentThread();
while (blinker == thisThread) {
try {
Thread.sleep(interval);
} catch (InterruptedException e){
}
repaint();
}
}
For a thread that waits for long periods (e.g., for input), use Thread.interrupt
public void stop() {
Thread moribund = waiter;
waiter = null;
moribund.interrupt();
}
I didn't get the interrupt to work in Android, so I used this method, works perfectly:
boolean shouldCheckUpdates = true;
private void startupCheckForUpdatesEveryFewSeconds() {
threadCheckChat = new Thread(new CheckUpdates());
threadCheckChat.start();
}
private class CheckUpdates implements Runnable{
public void run() {
while (shouldCheckUpdates){
System.out.println("Do your thing here");
}
}
}
public void stop(){
shouldCheckUpdates = false;
}
Brian Goetz in his book suggests to use Thread.currentThread().isInterrupted() flag and interrupt() method for cancellation.
Blocking library methods like sleep() and wait() try to detect when a thread has been interrupted and return early. They respond to interruption by clearing the interrupted status and throwing InterruptedException, indicating that the blocking operation completed early due to interruption.
The JVM makes no guarantees on how quickly a blocking method will detect interruption, but in practice this happens reasonably quickly.
class PrimeProducer extends Thread {
private final BlockingQueue<BigInteger> queue;
PrimeProducer(BlockingQueue<BigInteger> queue) {
this.queue = queue;
}
public void run() {
try {
BigInteger p = BigInteger.ONE;
while (!Thread.currentThread().isInterrupted()) {
queue.put(p = p.nextProbablePrime()); // blocking operation
}
} catch (InterruptedException consumed) {
// allow thread to exit
}
// any code here will still be executed
}
public void cancel() {
interrupt();
}
}
If you put any code after catch block, it will still be executed as we swallow InterruptedException to exit from run() gracefully.
Just a couple words on how interrupt() works.
If interrupt is called on non-blocked thread, interrupt() will not cause InterruptedException inside run() but will just change flag isInterrupted to true and thread will continue its work until it reaches Thread.currentThread().isInterrupted() check and exit from run().
If interrupt is called on blocked thread (sleep() or wait()was called, in our case it's put() that might block a thread) then isInterrupted will be set to false and InterruptedException will be thrown inside put().

How to interrupt Callable threads that are blocked inside a loop?

This is the first time I've ever created a multi-threaded application in Java that that will run continuously until canceled and I'm having trouble shutting down/interrupting my threads.
I have some threads that communicate with a Mediator which encapsulates a TransferQueue, an ExecutorService, and facilitates communication between producing and consuming threads.
I'm using this Mediator instead of Future because TransferQueue is a lot more block-friendly when it comes to a single consumer handling multiple producers (producer threads can mediator.put(E e) any time they want, and consumer threads can just wait on E e = mediator.take() for something to be available) and I do not want to waste CPU cycles polling.
The design is very clean, fast, and effective, but I'm having trouble interrupting blocking on queue.take(), serverSocket.accept(), and interrupting the threads as a whole.
The producers:
public class SocketProducer implements Colleague<Socket> {
private Mediator<Socket> mediator;
private ServerSocket serverSocket;
private Integer listeningPort;
private volatile boolean runnable = true;
public SocketProducer(Mediator<Socket> mediator) {
this.mediator = mediator;
}
public Colleague<Socket> setListeningPort(Integer listeningPort) {
this.listeningPort = listeningPort;
return this;
}
public Void call() throws Exception {
serverSocket = new ServerSocket(listeningPort, 10);
while (runnable) {
Socket socket = serverSocket.accept(); // blocks until connection
mediator.putIntoQueue(socket);
}
return null;
}
public void interrupt() {
// ?
runnable = false;
serverSocket.close();
// ?
}
}
and the consumer:
private class SocketConsumer implements Colleague<Socket> {
private Mediator<Socket> mediator;
private volatile boolean runnable = true;
public SomeConsumer(Mediator<Socket> mediator) {
this.mediator = mediator;
}
public Void call() throws Exception {
while (runnable) {
Socket socket = mediator.takeFromQueue(); // blocks until element is in queue
}
return null;
}
public void interrupt() {
// ?
runnable = false;
// ?
}
}
The Colleague interface just extends Callable, to give some additional capability to the Mediator in managing its producer/consumer colleagues (ie: calling for:each colleague.interrupt()).
I've tried a lot of methods, throwing InterruptedException in various places, catching InterruptedException in various places, letting threads return an instance of their Thread to the mediator for interruption. Everything I've tried has been so ineffective that it feels like I'm missing some crucial piece to this puzzle.
So far the most effective method I've seen is the poison pill (which would be great if the queues didn't throw NPE on a null insertion), and all the methods I've tried of introducing a poison generic have failed because of ClassCastException (trying to cast Object to Socket, trying to instantiate a generic Socket, etc.).
I'm really not sure where to go from here. I'd really like to be able to cleanly terminate these threads on demand.
Completed solutions:
public class SocketProducer implements Colleague<Socket> {
private static final Logger logger = LogManager.getLogger(SocketProducer.class.getName());
private Mediator<Socket> mediator;
private ServerSocket serverSocket;
private Integer listeningPort;
private volatile boolean runnable = true;
public SocketProducer(Mediator<Socket> mediator) {
this.mediator = mediator;
}
public Colleague<Socket> setListeningPort(Integer listeningPort) {
this.listeningPort = listeningPort;
return this;
}
public Void call() throws Exception {
serverSocket = new ServerSocket(listeningPort, 10);
logger.info("Listening on port " + listeningPort);
while (runnable) {
try {
Socket socket = serverSocket.accept();
logger.info("Connected on port " + socket.getLocalPort());
mediator.putIntoQueue(socket);
} catch (SocketException e) {
logger.info("Stopped listening on port " + listeningPort);
}
}
return null;
}
public void interrupt() {
try {
runnable = false;
serverSocket.close();
} catch (IOException e) {
logger.error(e);
}
}
}
public class SocketConsumer implements Colleague<Socket> {
private static final Logger logger = getLogger(SocketConsumer.class.getName());
private Mediator<Socket> socketMediator;
public SocketConsumer(Mediator<Socket> mediator) {
this.socketMediator = mediator;
}
public Void call() throws Exception {
while (!Thread.currentThread().isInterrupted()) {
try {
Socket socket = socketMediator.takeFromQueue();
logger.info("Received socket on port: " + socket.getLocalPort());
} catch (InterruptedException e) {
logger.info("Interrupted.");
Thread.currentThread().interrupt();
}
}
return null;
}
public void interrupt() {
Thread.currentThread().interrupt();
}
}
I think poison pills will only make things more complicated, so I'd keep it simple.
As for the ServerSocket, this answer suggests that calling close() should be enough to interrupt it.
As for BlockingQueue, consumer can look like this:
// you can use volatile flag instead if you like
while (!Thread.currentThread.isInterrupted()) {
try {
Object item = queue.take();
// do something with item
} catch (InterruptedException e) {
log.error("Consumer interrupted", e);
Thread.currentThread().interrupt(); // restore flag
}
}
Then in your Mediator you can just call interrupt() on a consumer thread.
A poison pill is straight forward.
private static Socket poisonPill = new Socket();
public Void call() throws Exception {
while (runnable) {
Socket socket = mediator.takeFromQueue(); // blocks until element is in queue
if (socket == poisonPill) {
// quit the thread...
}
}
return null;
}
Note the socket == poisonPill. This is an equality check that they're the exact same instance, so that's how the poisonPill works yet still being type safe.

Active Object Pattern in Concurrent Java 1.5+

I am trying to develop active object pattern in concurrent Java using java.util.concurrent classes.
I describe it using a Client and a Server. A sample Server is as:
class Server implements Runnable {
public final LinkedBlockingQueue que = new LinkedBlockingQueue();
private final ExecutorService es = Executors.newCachedThreadPool();
private Message currentMessage;
private boolean state = false;
public init() {
es.submit(this);
}
public void requestForServer() {
if (state) {
this.currentMessage.await();
}
state = true;
}
public void run() {
for(;;) {
Message m = que.take();
this.currentMessage = m;
this.es.submit(m);
}
}
}
And a sample Client:
class Client {
private Server server;
public Client(Server s) {
this.server = s;
}
public void doSomething() {
Message m = new Message(new Callable() {
public Object call() {
server.requestForServer();
}
});
this.server.que.add(m);
}
}
And a sample Message encapsulation is:
class Message<V> extends FutureTask<V> {
private Lock lock = new ReentrantLock();
private Condition condition = new Condition();
public Message(Callable<V> callable) {
super(callable);
}
public void run() {
try {
lock.lock();
super.run();
lock.unlock();
} catch(Exception e) {}
}
public void await() {
try {
condition.await();
} catch(Exception e) {}
}
public void signal() {
try {
condition.signalAll();
} catch(Exception e) {}
}
}
And a sample running code:
Server s = new Server();
Client c = new Client (s);
s.init();
c.doSomething();
I dropped some implementation details to get my message across.
Now, the problem is when in Server the state is true so the incoming message should wait and the await is called on the current message. However, I get IllegalMonitorStateException which means that the current message does not own the current thread to await on it. But, I believe this is strange since the current message gets called in the Server and its thread pool so the current message has also an access to the current thread of execution.
I'd be most thankful for any ideas or suggestions, or with a known working implementation of this pattern using java.util.concurrent. Thanks in advance.
UPDATE:
I discussed the solution I could deploy in this blog post. I hope it could help.
You have to actually acquire the lock when you await on its corresponding condition. Without that lock you cannot associate yourself to the condition directly. To demonstrate this:
public void await() {
lock.lock();
try {
condition.await();
} catch(Exception e) {}
finally{
lock.unlock();
}
}
That should resolve your IllegalMonitorStateException
On a side note of correctness you should always release a lock in a try{ } finally{ } manner, you can observe what I wrote as an example. The reason for this is if an exception occurs between lock().lock(); and super.run(); lock.unlock() will never be called.

Categories