Java with a for loop with in for loop - java

I am not sure why this isn't working to the questionhave to use a one dimensional integer array to count the number of times each possible sum appears in 36000 rolls.
However my problem is I that keep getting all 0.0 instead of something like 1200000 or 700000.
import java.util.Arrays;
import java.util.Random;
public class StockSim {
public static void main(String args[]) {
double data[] = new double[10];
System.out.println(percentGen());
double percent;
for (int i = 0; i < data.length; i++) {
percent = percentGen();
data[i] = data[i] + (data[i] * percent);
}
}
for (int i = 0; i < data.length; i++) {
System.out.println(data[i]);
}
}
public static double percentGen() {
Random rand = new Random();
return randomNum;
}
}

It is a simple fix, you just forgot to get the actual percentage by dividing the random percentage by one hundred. Substitute your return randomNum by return randomNum/100.
Besides that, I tested your code and it should be working just fine.
I hope that helps!

You also need to move the instantiation of the Random class outside the loop or provide a random seed otherwise the results are not random. For example you could instantiate the Random class and pass it as an argument to percentGen
Random rand= new Random()
System.out.println(percentGen(rand));

Related

How to get the value from each index?

I'm extremely new to Java and we're tasked to take random values of an array and pass them through a method where it adds all of them for a running total.
For the sumMethod I'd like to take each value from all the index (given by sizeOfArray) and add them together.
Thank you!
public static void sumMethod(double[] arrayOfDoubles){
//How to get the value from each indexes (given by sizeOfArray) and add them for the sum
int arrayLength = arrayOfDoubles.length;
System.out.println(arrayOfDoubles);
}
public static void main(String[] args) {
//1-3: Set up Scanner object to collect user's input on the size of array.
Scanner keyboard = new Scanner(System.in);
System.out.println("How many double numerical entries do you have?");
//4: Declare an array of size sizeOfArray
int sizeOfArray = keyboard.nextInt();
//Initialize array
double[] arrayOfDoubles;
arrayOfDoubles = new double[sizeOfArray];
for(int i = 0; i < sizeOfArray; i++){
//5: Use the Random number Class and walk over the array
Random randomNum = new Random();
arrayOfDoubles[i] = randomNum.nextDouble(0.0 , 100.0);
//6: Invoke SumMethod
sumMethod(arrayOfDoubles);
}
}
}
public static void sumMethod(double[] arrayOfDoubles) {
double sum = 0;
for (int j = 0; j < arrayOfDoubles.length; j++) {
sum += arrayOfDoubles[j];
}
}
This will work too, if you are not familiar with the for-each loop yet.
Additionally, it is better to use arrayOfDoubles.length in the loop, in case you edit the code later, and change the size, or add or remove an element.
For sumMethod, I'd say the first thing you could do is give it a return value rather than void, (public static double sumMethod). That way when you run that method in main you can hold onto the result it prints out.
I may be wrong but my understanding is that your goal is to take an array and sum up the values within. For that purpose, the following would be a way to do it.
public static double sumMethod(double[] arrayOfDoubles) {
double total = 0;
for (double num : arrayOfDoubles) {
total += num;
}
return total;
}

Math.random with changing values

I have this dilemma with a script
I want to do a Bingo game and here I'd use this Math.random script
public class Bingo{
public static void main(String[]args){
int num = (int) (Math.random() *(75)) +1;
int x = 0;
while(x==0){
System.out.println(num +"\n");
}
}
}
In this case my output is always 34
Is there a way so that my output is always a different number? Thanks!
First using Math.random() gives a floating point value. It is not advisable to use that for random integer generation. So I'll use random.nextInt() here.
Secondly you'll need a set to maintain previously generated numbers and break the loop when size of the set hits 75. You can continue the loop if you've already generated that number.
Here's the code.
int num = 0;
Random r = new Random();
Set<Integer> set = new HashSet<>();
while (set.size() < 75) {
num = r.nextInt(75) + 1;
if (set.contains(num))
continue;
set.add(num);
System.out.println(num + "\n");
}
imports:
import java.io.IOException;
import java.util.HashSet;
import java.util.Random;
import java.util.Set;
Based on your requirement to only draw each number once, you will have to choose a different approach. I would add all balls to a list and then shuffle the list. Then you can iterate over the balls (and perhaps break when the game is won) :
final List<Integer> balls = new ArrayList<>();
for (int i = 0; i <= 75; i++) {
balls.add(i);
}
Collections.shuffle(balls);
for (int ball : balls) {
System.out.println(ball); //or whatever your logic is
}
Imports:
import java.util.Collections;
import java.util.List;
import java.util.stream.Collectors;
Your num it is always with the same value because you are not changing it inside while loop.
Try something like:
/* your code here */
while (x==0) {
num = (int) (Math.random() *(75)) +1;
System.out.println(num);
}
Change to
public class Bingo {
public static void main(String[] args) {
int x = 0;
while (x == 0) {
int num = (int) (Math.random() * (75)) + 1;
System.out.println(num + "\n");
}
}
}
Why not use the following code:
Random random = new Random();
int randomNumber = random.nextInt(max + 1 - min) + min;
Where max will be 75 and min is 0. Also both the numbers are inclusive. Please note that the internal algorithm fo math random uses Leniar congruential generator(though not the best), but considering you will be using a 64 bit machine, the numbers should not repeat soon enough.

remove duplicates inside random generated arrays [duplicate]

I'm trying to get random numbers between 0 and 100. But I want them to be unique, not repeated in a sequence. For example if I got 5 numbers, they should be 82,12,53,64,32 and not 82,12,53,12,32
I used this, but it generates same numbers in a sequence.
Random rand = new Random();
selected = rand.nextInt(100);
Add each number in the range sequentially in a list structure.
Shuffle it.
Take the first 'n'.
Here is a simple implementation. This will print 3 unique random numbers from the range 1-10.
import java.util.ArrayList;
import java.util.Collections;
public class UniqueRandomNumbers {
public static void main(String[] args) {
ArrayList<Integer> list = new ArrayList<Integer>();
for (int i=1; i<11; i++) list.add(i);
Collections.shuffle(list);
for (int i=0; i<3; i++) System.out.println(list.get(i));
}
}
The first part of the fix with the original approach, as Mark Byers pointed out in an answer now deleted, is to use only a single Random instance.
That is what is causing the numbers to be identical. A Random instance is seeded by the current time in milliseconds. For a particular seed value, the 'random' instance will return the exact same sequence of pseudo random numbers.
With Java 8+ you can use the ints method of Random to get an IntStream of random values then distinct and limit to reduce the stream to a number of unique random values.
ThreadLocalRandom.current().ints(0, 100).distinct().limit(5).forEach(System.out::println);
Random also has methods which create LongStreams and DoubleStreams if you need those instead.
If you want all (or a large amount) of the numbers in a range in a random order it might be more efficient to add all of the numbers to a list, shuffle it, and take the first n because the above example is currently implemented by generating random numbers in the range requested and passing them through a set (similarly to Rob Kielty's answer), which may require generating many more than the amount passed to limit because the probability of a generating a new unique number decreases with each one found. Here's an example of the other way:
List<Integer> range = IntStream.range(0, 100).boxed()
.collect(Collectors.toCollection(ArrayList::new));
Collections.shuffle(range);
range.subList(0, 99).forEach(System.out::println);
Create an array of 100 numbers, then randomize their order.
Devise a pseudo-random number generator that has a range of 100.
Create a boolean array of 100 elements, then set an element true when you pick that number. When you pick the next number check against the array and try again if the array element is set. (You can make an easy-to-clear boolean array with an array of long where you shift and mask to access individual bits.)
Use Collections.shuffle() on all 100 numbers and select the first five, as shown here and below.
Console:
59 9 68 24 82
Code:
private static final Random rnd = new Random();
private static final int N = 100;
private static final int K = 5;
private static final List<Integer> S = new ArrayList<>(N);
public static void main(String[] args) {
for (int i = 0; i < N; i++) {
S.add(i + 1);
}
Collections.shuffle(S, rnd);
for (int i = 0; i < K; i++) {
System.out.print(S.get(i) + " ");
}
System.out.println();
}
I feel like this method is worth mentioning.
private static final Random RANDOM = new Random();
/**
* Pick n numbers between 0 (inclusive) and k (inclusive)
* While there are very deterministic ways to do this,
* for large k and small n, this could be easier than creating
* an large array and sorting, i.e. k = 10,000
*/
public Set<Integer> pickRandom(int n, int k) {
final Set<Integer> picked = new HashSet<>();
while (picked.size() < n) {
picked.add(RANDOM.nextInt(k + 1));
}
return picked;
}
I re-factored Anand's answer to make use not only of the unique properties of a Set but also use the boolean false returned by the set.add() when an add to the set fails.
import java.util.HashSet;
import java.util.Random;
import java.util.Set;
public class randomUniqueNumberGenerator {
public static final int SET_SIZE_REQUIRED = 10;
public static final int NUMBER_RANGE = 100;
public static void main(String[] args) {
Random random = new Random();
Set set = new HashSet<Integer>(SET_SIZE_REQUIRED);
while(set.size()< SET_SIZE_REQUIRED) {
while (set.add(random.nextInt(NUMBER_RANGE)) != true)
;
}
assert set.size() == SET_SIZE_REQUIRED;
System.out.println(set);
}
}
I have made this like that.
Random random = new Random();
ArrayList<Integer> arrayList = new ArrayList<Integer>();
while (arrayList.size() < 6) { // how many numbers u need - it will 6
int a = random.nextInt(49)+1; // this will give numbers between 1 and 50.
if (!arrayList.contains(a)) {
arrayList.add(a);
}
}
This will work to generate unique random numbers................
import java.util.HashSet;
import java.util.Random;
public class RandomExample {
public static void main(String[] args) {
Random rand = new Random();
int e;
int i;
int g = 10;
HashSet<Integer> randomNumbers = new HashSet<Integer>();
for (i = 0; i < g; i++) {
e = rand.nextInt(20);
randomNumbers.add(e);
if (randomNumbers.size() <= 10) {
if (randomNumbers.size() == 10) {
g = 10;
}
g++;
randomNumbers.add(e);
}
}
System.out.println("Ten Unique random numbers from 1 to 20 are : " + randomNumbers);
}
}
One clever way to do this is to use exponents of a primitive element in modulus.
For example, 2 is a primitive root mod 101, meaning that the powers of 2 mod 101 give you a non-repeating sequence that sees every number from 1 to 100 inclusive:
2^0 mod 101 = 1
2^1 mod 101 = 2
2^2 mod 101 = 4
...
2^50 mod 101 = 100
2^51 mod 101 = 99
2^52 mod 101 = 97
...
2^100 mod 101 = 1
In Java code, you would write:
void randInts() {
int num=1;
for (int ii=0; ii<101; ii++) {
System.out.println(num);
num= (num*2) % 101;
}
}
Finding a primitive root for a specific modulus can be tricky, but Maple's "primroot" function will do this for you.
I have come here from another question, which has been duplicate of this question (Generating unique random number in java)
Store 1 to 100 numbers in an Array.
Generate random number between 1 to 100 as position and return array[position-1] to get the value
Once you use a number in array, mark the value as -1 ( No need to maintain another array to check if this number is already used)
If value in array is -1, get the random number again to fetch new location in array.
I have easy solution for this problem,
With this we can easily generate n number of unique random numbers,
Its just logic anyone can use it in any language.
for(int i=0;i<4;i++)
{
rn[i]= GenerateRandomNumber();
for (int j=0;j<i;j++)
{
if (rn[i] == rn[j])
{
i--;
}
}
}
Choose n unique random numbers from 0 to m-1.
int[] uniqueRand(int n, int m){
Random rand = new Random();
int[] r = new int[n];
int[] result = new int[n];
for(int i = 0; i < n; i++){
r[i] = rand.nextInt(m-i);
result[i] = r[i];
for(int j = i-1; j >= 0; j--){
if(result[i] >= r[j])
result[i]++;
}
}
return result;
}
Imagine a list containing numbers from 0 to m-1. To choose the first number, we simply use rand.nextInt(m). Then remove the number from the list. Now there remains m-1 numbers, so we call rand.nextInt(m-1). The number we get represents the position in the list. If it is less than the first number, then it is the second number, since the part of list prior to the first number wasn't changed by the removal of the first number. If the position is greater than or equal to the first number, the second number is position+1. Do some further derivation, you can get this algorithm.
Explanation
This algorithm has O(n^2) complexity. So it is good for generating small amount of unique numbers from a large set. While the shuffle based algorithm need at least O(m) to do the shuffle.
Also shuffle based algorithm need memory to store every possible outcome to do the shuffle, this algorithm doesn’t need.
Though it's an old thread, but adding another option might not harm. (JDK 1.8 lambda functions seem to make it easy);
The problem could be broken down into the following steps;
Get a minimum value for the provided list of integers (for which to generate unique random numbers)
Get a maximum value for the provided list of integers
Use ThreadLocalRandom class (from JDK 1.8) to generate random integer values against the previously found min and max integer values and then filter to ensure that the values are indeed contained by the originally provided list. Finally apply distinct to the intstream to ensure that generated numbers are unique.
Here is the function with some description:
/**
* Provided an unsequenced / sequenced list of integers, the function returns unique random IDs as defined by the parameter
* #param numberToGenerate
* #param idList
* #return List of unique random integer values from the provided list
*/
private List<Integer> getUniqueRandomInts(List<Integer> idList, Integer numberToGenerate) {
List<Integer> generatedUniqueIds = new ArrayList<>();
Integer minId = idList.stream().mapToInt (v->v).min().orElseThrow(NoSuchElementException::new);
Integer maxId = idList.stream().mapToInt (v->v).max().orElseThrow(NoSuchElementException::new);
ThreadLocalRandom.current().ints(minId,maxId)
.filter(e->idList.contains(e))
.distinct()
.limit(numberToGenerate)
.forEach(generatedUniqueIds:: add);
return generatedUniqueIds;
}
So that, to get 11 unique random numbers for 'allIntegers' list object, we'll call the function like;
List<Integer> ids = getUniqueRandomInts(allIntegers,11);
The function declares new arrayList 'generatedUniqueIds' and populates with each unique random integer up to the required number before returning.
P.S. ThreadLocalRandom class avoids common seed value in case of concurrent threads.
try this out
public class RandomValueGenerator {
/**
*
*/
private volatile List<Double> previousGenValues = new ArrayList<Double>();
public void init() {
previousGenValues.add(Double.valueOf(0));
}
public String getNextValue() {
Random random = new Random();
double nextValue=0;
while(previousGenValues.contains(Double.valueOf(nextValue))) {
nextValue = random.nextDouble();
}
previousGenValues.add(Double.valueOf(nextValue));
return String.valueOf(nextValue);
}
}
This isn't significantly different from other answers, but I wanted the array of integers in the end:
Integer[] indices = new Integer[n];
Arrays.setAll(indices, i -> i);
Collections.shuffle(Arrays.asList(indices));
return Arrays.stream(indices).mapToInt(Integer::intValue).toArray();
you can use boolean array to fill the true if value taken else set navigate through boolean array to get value as per given below
package study;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/*
Created By Sachin Rane on Jul 18, 2018
*/
public class UniqueRandomNumber {
static Boolean[] boolArray;
public static void main(String s[]){
List<Integer> integers = new ArrayList<>();
for (int i = 0; i < 10; i++) {
integers.add(i);
}
//get unique random numbers
boolArray = new Boolean[integers.size()+1];
Arrays.fill(boolArray, false);
for (int i = 0; i < 10; i++) {
System.out.print(getUniqueRandomNumber(integers) + " ");
}
}
private static int getUniqueRandomNumber(List<Integer> integers) {
int randNum =(int) (Math.random()*integers.size());
if(boolArray[randNum]){
while(boolArray[randNum]){
randNum++;
if(randNum>boolArray.length){
randNum=0;
}
}
boolArray[randNum]=true;
return randNum;
}else {
boolArray[randNum]=true;
return randNum;
}
}
}
This is the most simple method to generate unique random values in a range or from an array.
In this example, I will be using a predefined array but you can adapt this method to generate random numbers as well. First, we will create a sample array to retrieve our data from.
Generate a random number and add it to the new array.
Generate another random number and check if it is already stored in the new array.
If not then add it and continue
else reiterate the step.
ArrayList<Integer> sampleList = new ArrayList<>();
sampleList.add(1);
sampleList.add(2);
sampleList.add(3);
sampleList.add(4);
sampleList.add(5);
sampleList.add(6);
sampleList.add(7);
sampleList.add(8);
Now from the sampleList we will produce five random numbers that are unique.
int n;
randomList = new ArrayList<>();
for(int i=0;i<5;i++){
Random random = new Random();
n=random.nextInt(8); //Generate a random index between 0-7
if(!randomList.contains(sampleList.get(n)))
randomList.add(sampleList.get(n));
else
i--; //reiterating the step
}
This is conceptually very simple. If the random value generated already exists then we will reiterate the step. This will continue until all the values generated are unique.
If you found this answer useful then you can vote it up as it is much simple in concept as compared to the other answers.
Check this
public class RandomNumbers {
public static void main(String[] args) {
// TODO Auto-generated method stub
int n = 5;
int A[] = uniqueRandomArray(n);
for(int i = 0; i<n; i++){
System.out.println(A[i]);
}
}
public static int[] uniqueRandomArray(int n){
int [] A = new int[n];
for(int i = 0; i< A.length; ){
if(i == A.length){
break;
}
int b = (int)(Math.random() *n) + 1;
if(f(A,b) == false){
A[i++] = b;
}
}
return A;
}
public static boolean f(int[] A, int n){
for(int i=0; i<A.length; i++){
if(A[i] == n){
return true;
}
}
return false;
}
}
Below is a way I used to generate unique number always. Random function generates number and stores it in textfile then next time it checks it in file compares it and generate new unique number hence in this way there is always a new unique number.
public int GenerateRandomNo()
{
int _min = 0000;
int _max = 9999;
Random _rdm = new Random();
return _rdm.Next(_min, _max);
}
public int rand_num()
{
randnum = GenerateRandomNo();
string createText = randnum.ToString() + Environment.NewLine;
string file_path = System.IO.Path.GetDirectoryName(System.Windows.Forms.Application.ExecutablePath) + #"\Invoices\numbers.txt";
File.AppendAllText(file_path, createText);
int number = File.ReadLines(file_path).Count(); //count number of lines in file
System.IO.StreamReader file = new System.IO.StreamReader(file_path);
do
{
randnum = GenerateRandomNo();
}
while ((file.ReadLine()) == randnum.ToString());
file.Close();
return randnum;
}
You can use the Collections class.
A utility class called Collections offers different actions that can be performed on a collection like an ArrayList (e.g., search the elements, find the maximum or minimum element, reverse the order of elements, and so on). One of the actions it can perform is to shuffle the elements. The shuffle will randomly move each element to a different position in the list. It does this by using a Random object. This means it's deterministic randomness, but it will do in most situations.
To shuffle the ArrayList, add the Collections import to the top of the program and then use the Shuffle static method. It takes the ArrayList to be shuffled as a parameter:
import java.util.Collections;
import java.util.ArrayList;
public class Lottery {
public static void main(String[] args) {
//define ArrayList to hold Integer objects
ArrayList numbers = new ArrayList();
for(int i = 0; i < 100; i++)
{
numbers.add(i+1);
}
Collections.shuffle(numbers);
System.out.println(numbers);
}
}
You can generate n unique random number between 0 to n-1 in java
public static void RandomGenerate(int n)
{
Set<Integer> st=new HashSet<Integer>();
Random r=new Random();
while(st.size()<n)
{
st.add(r.nextInt(n));
}
}

Random variables in Java

My professor asked us to generate random variables between 0 and 0.5. I wrote this code:
public class Random_Number_Generator {
double randomGenerator() {
Random generator = new Random();
double num = generator.nextDouble() * (0.5 - 0);
return num;
}
}
But my professor is saying this code is generating random numbers not random variables. What could this mean?
Apparently I misread the post; the following should be read with that in mind.
In that code, num and generators are local variables. A random number (a value) is assigned to the variable called num using the Random object named by the generator variable. Finally, the value stored in the variable num is returned from the method.
In any case, generator.nextDouble() returns a value between [0,1) so to get a value between [0,0.5), just scale it by half: divide it by two or, as done, multiply it by a half.
The - 0 in the above code is silly, but "okay" because (0.5 - 0) == 0.5.
(Also, it is good to get into the practice of to creating one Random instance and re-using it .. although this issue is more obvious in .NET.)
Now, actual random variable is, as far as I know, a function that maps values to their probability. I don't think you're supposed to return a function, so I've scratched this: the closest thing to what I guess you're supposed to do:
import java.util.*;
import java.lang.*;
class RandomVar
{
TreeMap<Double, Integer> variables;
public RandomVar()
{
variables = new TreeMap<Double, Integer>();
int count = Main.RandGen.nextInt(15);
double probabilityLeft = 1.0;
for (int i = 0 ; i < count - 1; i++)
{
int toPut = Main.RandGen.nextInt(100);
while (variables.containsValue(toPut)) toPut = Main.RandGen.nextInt(100);
double prob = probabilityLeft * Main.RandGen.nextDouble();
variables.put(prob, toPut);
}
int toPut = Main.RandGen.nextInt(100);
while (variables.containsValue(toPut)) toPut = Main.RandGen.nextInt(100);
double prob = probabilityLeft;
variables.put(prob, toPut);
}
public int getValue()
{
double rand = Main.RandGen.nextDouble();
double sum = 0;
for (double prob : variables.keySet()) //keySet() is sorted ascending
{
if (prob >= rand)
return variables.get(prob);
}
return variables.get(variables.lastKey());
}
//Shows probabilities of values
public void test()
{
for (double key : variables.keySet())
System.out.println(key + " :: " + variables.get(key));
}
}
class Main
{
public static Random RandGen = new Random();
public static void main (String[] args)
{
RandomVar rv = new RandomVar();
rv.test();
System.out.println("------------------------------");
for (int i = 0; i < 40 ; i++)
System.out.print(rv.getValue() + ", ");
}
}
This is very lousy solution, basically a class which allows you to return values with a set (random) probability. I still don't know if this is what you professor wants though...
Try this code:
public static void main(String[] arg) {
System.out.print(Random());
}
public static double Random() {
double START = 0;
double END = 0.5;
Random random = new Random();
double token = RandomNumber(START, END, random);
return token;
}
public static double RandomNumber(double aStart, double aEnd, Random aRandom) {
if (aStart > aEnd) {
throw new IllegalArgumentException("Start cannot exceed End.");
}
// get the range, casting to long to avoid overflow problems
double range = aEnd - aStart;
// compute a fraction of the range, 0 <= frac < range
double fraction = (range * aRandom.nextDouble());
double randomNumber = (fraction + aStart);
return randomNumber;
}

Generating Unique Random Numbers in Java

I'm trying to get random numbers between 0 and 100. But I want them to be unique, not repeated in a sequence. For example if I got 5 numbers, they should be 82,12,53,64,32 and not 82,12,53,12,32
I used this, but it generates same numbers in a sequence.
Random rand = new Random();
selected = rand.nextInt(100);
Add each number in the range sequentially in a list structure.
Shuffle it.
Take the first 'n'.
Here is a simple implementation. This will print 3 unique random numbers from the range 1-10.
import java.util.ArrayList;
import java.util.Collections;
public class UniqueRandomNumbers {
public static void main(String[] args) {
ArrayList<Integer> list = new ArrayList<Integer>();
for (int i=1; i<11; i++) list.add(i);
Collections.shuffle(list);
for (int i=0; i<3; i++) System.out.println(list.get(i));
}
}
The first part of the fix with the original approach, as Mark Byers pointed out in an answer now deleted, is to use only a single Random instance.
That is what is causing the numbers to be identical. A Random instance is seeded by the current time in milliseconds. For a particular seed value, the 'random' instance will return the exact same sequence of pseudo random numbers.
With Java 8+ you can use the ints method of Random to get an IntStream of random values then distinct and limit to reduce the stream to a number of unique random values.
ThreadLocalRandom.current().ints(0, 100).distinct().limit(5).forEach(System.out::println);
Random also has methods which create LongStreams and DoubleStreams if you need those instead.
If you want all (or a large amount) of the numbers in a range in a random order it might be more efficient to add all of the numbers to a list, shuffle it, and take the first n because the above example is currently implemented by generating random numbers in the range requested and passing them through a set (similarly to Rob Kielty's answer), which may require generating many more than the amount passed to limit because the probability of a generating a new unique number decreases with each one found. Here's an example of the other way:
List<Integer> range = IntStream.range(0, 100).boxed()
.collect(Collectors.toCollection(ArrayList::new));
Collections.shuffle(range);
range.subList(0, 99).forEach(System.out::println);
Create an array of 100 numbers, then randomize their order.
Devise a pseudo-random number generator that has a range of 100.
Create a boolean array of 100 elements, then set an element true when you pick that number. When you pick the next number check against the array and try again if the array element is set. (You can make an easy-to-clear boolean array with an array of long where you shift and mask to access individual bits.)
Use Collections.shuffle() on all 100 numbers and select the first five, as shown here and below.
Console:
59 9 68 24 82
Code:
private static final Random rnd = new Random();
private static final int N = 100;
private static final int K = 5;
private static final List<Integer> S = new ArrayList<>(N);
public static void main(String[] args) {
for (int i = 0; i < N; i++) {
S.add(i + 1);
}
Collections.shuffle(S, rnd);
for (int i = 0; i < K; i++) {
System.out.print(S.get(i) + " ");
}
System.out.println();
}
I feel like this method is worth mentioning.
private static final Random RANDOM = new Random();
/**
* Pick n numbers between 0 (inclusive) and k (inclusive)
* While there are very deterministic ways to do this,
* for large k and small n, this could be easier than creating
* an large array and sorting, i.e. k = 10,000
*/
public Set<Integer> pickRandom(int n, int k) {
final Set<Integer> picked = new HashSet<>();
while (picked.size() < n) {
picked.add(RANDOM.nextInt(k + 1));
}
return picked;
}
I re-factored Anand's answer to make use not only of the unique properties of a Set but also use the boolean false returned by the set.add() when an add to the set fails.
import java.util.HashSet;
import java.util.Random;
import java.util.Set;
public class randomUniqueNumberGenerator {
public static final int SET_SIZE_REQUIRED = 10;
public static final int NUMBER_RANGE = 100;
public static void main(String[] args) {
Random random = new Random();
Set set = new HashSet<Integer>(SET_SIZE_REQUIRED);
while(set.size()< SET_SIZE_REQUIRED) {
while (set.add(random.nextInt(NUMBER_RANGE)) != true)
;
}
assert set.size() == SET_SIZE_REQUIRED;
System.out.println(set);
}
}
I have made this like that.
Random random = new Random();
ArrayList<Integer> arrayList = new ArrayList<Integer>();
while (arrayList.size() < 6) { // how many numbers u need - it will 6
int a = random.nextInt(49)+1; // this will give numbers between 1 and 50.
if (!arrayList.contains(a)) {
arrayList.add(a);
}
}
This will work to generate unique random numbers................
import java.util.HashSet;
import java.util.Random;
public class RandomExample {
public static void main(String[] args) {
Random rand = new Random();
int e;
int i;
int g = 10;
HashSet<Integer> randomNumbers = new HashSet<Integer>();
for (i = 0; i < g; i++) {
e = rand.nextInt(20);
randomNumbers.add(e);
if (randomNumbers.size() <= 10) {
if (randomNumbers.size() == 10) {
g = 10;
}
g++;
randomNumbers.add(e);
}
}
System.out.println("Ten Unique random numbers from 1 to 20 are : " + randomNumbers);
}
}
One clever way to do this is to use exponents of a primitive element in modulus.
For example, 2 is a primitive root mod 101, meaning that the powers of 2 mod 101 give you a non-repeating sequence that sees every number from 1 to 100 inclusive:
2^0 mod 101 = 1
2^1 mod 101 = 2
2^2 mod 101 = 4
...
2^50 mod 101 = 100
2^51 mod 101 = 99
2^52 mod 101 = 97
...
2^100 mod 101 = 1
In Java code, you would write:
void randInts() {
int num=1;
for (int ii=0; ii<101; ii++) {
System.out.println(num);
num= (num*2) % 101;
}
}
Finding a primitive root for a specific modulus can be tricky, but Maple's "primroot" function will do this for you.
I have come here from another question, which has been duplicate of this question (Generating unique random number in java)
Store 1 to 100 numbers in an Array.
Generate random number between 1 to 100 as position and return array[position-1] to get the value
Once you use a number in array, mark the value as -1 ( No need to maintain another array to check if this number is already used)
If value in array is -1, get the random number again to fetch new location in array.
I have easy solution for this problem,
With this we can easily generate n number of unique random numbers,
Its just logic anyone can use it in any language.
for(int i=0;i<4;i++)
{
rn[i]= GenerateRandomNumber();
for (int j=0;j<i;j++)
{
if (rn[i] == rn[j])
{
i--;
}
}
}
Choose n unique random numbers from 0 to m-1.
int[] uniqueRand(int n, int m){
Random rand = new Random();
int[] r = new int[n];
int[] result = new int[n];
for(int i = 0; i < n; i++){
r[i] = rand.nextInt(m-i);
result[i] = r[i];
for(int j = i-1; j >= 0; j--){
if(result[i] >= r[j])
result[i]++;
}
}
return result;
}
Imagine a list containing numbers from 0 to m-1. To choose the first number, we simply use rand.nextInt(m). Then remove the number from the list. Now there remains m-1 numbers, so we call rand.nextInt(m-1). The number we get represents the position in the list. If it is less than the first number, then it is the second number, since the part of list prior to the first number wasn't changed by the removal of the first number. If the position is greater than or equal to the first number, the second number is position+1. Do some further derivation, you can get this algorithm.
Explanation
This algorithm has O(n^2) complexity. So it is good for generating small amount of unique numbers from a large set. While the shuffle based algorithm need at least O(m) to do the shuffle.
Also shuffle based algorithm need memory to store every possible outcome to do the shuffle, this algorithm doesn’t need.
Though it's an old thread, but adding another option might not harm. (JDK 1.8 lambda functions seem to make it easy);
The problem could be broken down into the following steps;
Get a minimum value for the provided list of integers (for which to generate unique random numbers)
Get a maximum value for the provided list of integers
Use ThreadLocalRandom class (from JDK 1.8) to generate random integer values against the previously found min and max integer values and then filter to ensure that the values are indeed contained by the originally provided list. Finally apply distinct to the intstream to ensure that generated numbers are unique.
Here is the function with some description:
/**
* Provided an unsequenced / sequenced list of integers, the function returns unique random IDs as defined by the parameter
* #param numberToGenerate
* #param idList
* #return List of unique random integer values from the provided list
*/
private List<Integer> getUniqueRandomInts(List<Integer> idList, Integer numberToGenerate) {
List<Integer> generatedUniqueIds = new ArrayList<>();
Integer minId = idList.stream().mapToInt (v->v).min().orElseThrow(NoSuchElementException::new);
Integer maxId = idList.stream().mapToInt (v->v).max().orElseThrow(NoSuchElementException::new);
ThreadLocalRandom.current().ints(minId,maxId)
.filter(e->idList.contains(e))
.distinct()
.limit(numberToGenerate)
.forEach(generatedUniqueIds:: add);
return generatedUniqueIds;
}
So that, to get 11 unique random numbers for 'allIntegers' list object, we'll call the function like;
List<Integer> ids = getUniqueRandomInts(allIntegers,11);
The function declares new arrayList 'generatedUniqueIds' and populates with each unique random integer up to the required number before returning.
P.S. ThreadLocalRandom class avoids common seed value in case of concurrent threads.
try this out
public class RandomValueGenerator {
/**
*
*/
private volatile List<Double> previousGenValues = new ArrayList<Double>();
public void init() {
previousGenValues.add(Double.valueOf(0));
}
public String getNextValue() {
Random random = new Random();
double nextValue=0;
while(previousGenValues.contains(Double.valueOf(nextValue))) {
nextValue = random.nextDouble();
}
previousGenValues.add(Double.valueOf(nextValue));
return String.valueOf(nextValue);
}
}
This isn't significantly different from other answers, but I wanted the array of integers in the end:
Integer[] indices = new Integer[n];
Arrays.setAll(indices, i -> i);
Collections.shuffle(Arrays.asList(indices));
return Arrays.stream(indices).mapToInt(Integer::intValue).toArray();
you can use boolean array to fill the true if value taken else set navigate through boolean array to get value as per given below
package study;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/*
Created By Sachin Rane on Jul 18, 2018
*/
public class UniqueRandomNumber {
static Boolean[] boolArray;
public static void main(String s[]){
List<Integer> integers = new ArrayList<>();
for (int i = 0; i < 10; i++) {
integers.add(i);
}
//get unique random numbers
boolArray = new Boolean[integers.size()+1];
Arrays.fill(boolArray, false);
for (int i = 0; i < 10; i++) {
System.out.print(getUniqueRandomNumber(integers) + " ");
}
}
private static int getUniqueRandomNumber(List<Integer> integers) {
int randNum =(int) (Math.random()*integers.size());
if(boolArray[randNum]){
while(boolArray[randNum]){
randNum++;
if(randNum>boolArray.length){
randNum=0;
}
}
boolArray[randNum]=true;
return randNum;
}else {
boolArray[randNum]=true;
return randNum;
}
}
}
This is the most simple method to generate unique random values in a range or from an array.
In this example, I will be using a predefined array but you can adapt this method to generate random numbers as well. First, we will create a sample array to retrieve our data from.
Generate a random number and add it to the new array.
Generate another random number and check if it is already stored in the new array.
If not then add it and continue
else reiterate the step.
ArrayList<Integer> sampleList = new ArrayList<>();
sampleList.add(1);
sampleList.add(2);
sampleList.add(3);
sampleList.add(4);
sampleList.add(5);
sampleList.add(6);
sampleList.add(7);
sampleList.add(8);
Now from the sampleList we will produce five random numbers that are unique.
int n;
randomList = new ArrayList<>();
for(int i=0;i<5;i++){
Random random = new Random();
n=random.nextInt(8); //Generate a random index between 0-7
if(!randomList.contains(sampleList.get(n)))
randomList.add(sampleList.get(n));
else
i--; //reiterating the step
}
This is conceptually very simple. If the random value generated already exists then we will reiterate the step. This will continue until all the values generated are unique.
If you found this answer useful then you can vote it up as it is much simple in concept as compared to the other answers.
Check this
public class RandomNumbers {
public static void main(String[] args) {
// TODO Auto-generated method stub
int n = 5;
int A[] = uniqueRandomArray(n);
for(int i = 0; i<n; i++){
System.out.println(A[i]);
}
}
public static int[] uniqueRandomArray(int n){
int [] A = new int[n];
for(int i = 0; i< A.length; ){
if(i == A.length){
break;
}
int b = (int)(Math.random() *n) + 1;
if(f(A,b) == false){
A[i++] = b;
}
}
return A;
}
public static boolean f(int[] A, int n){
for(int i=0; i<A.length; i++){
if(A[i] == n){
return true;
}
}
return false;
}
}
Below is a way I used to generate unique number always. Random function generates number and stores it in textfile then next time it checks it in file compares it and generate new unique number hence in this way there is always a new unique number.
public int GenerateRandomNo()
{
int _min = 0000;
int _max = 9999;
Random _rdm = new Random();
return _rdm.Next(_min, _max);
}
public int rand_num()
{
randnum = GenerateRandomNo();
string createText = randnum.ToString() + Environment.NewLine;
string file_path = System.IO.Path.GetDirectoryName(System.Windows.Forms.Application.ExecutablePath) + #"\Invoices\numbers.txt";
File.AppendAllText(file_path, createText);
int number = File.ReadLines(file_path).Count(); //count number of lines in file
System.IO.StreamReader file = new System.IO.StreamReader(file_path);
do
{
randnum = GenerateRandomNo();
}
while ((file.ReadLine()) == randnum.ToString());
file.Close();
return randnum;
}
You can use the Collections class.
A utility class called Collections offers different actions that can be performed on a collection like an ArrayList (e.g., search the elements, find the maximum or minimum element, reverse the order of elements, and so on). One of the actions it can perform is to shuffle the elements. The shuffle will randomly move each element to a different position in the list. It does this by using a Random object. This means it's deterministic randomness, but it will do in most situations.
To shuffle the ArrayList, add the Collections import to the top of the program and then use the Shuffle static method. It takes the ArrayList to be shuffled as a parameter:
import java.util.Collections;
import java.util.ArrayList;
public class Lottery {
public static void main(String[] args) {
//define ArrayList to hold Integer objects
ArrayList numbers = new ArrayList();
for(int i = 0; i < 100; i++)
{
numbers.add(i+1);
}
Collections.shuffle(numbers);
System.out.println(numbers);
}
}
You can generate n unique random number between 0 to n-1 in java
public static void RandomGenerate(int n)
{
Set<Integer> st=new HashSet<Integer>();
Random r=new Random();
while(st.size()<n)
{
st.add(r.nextInt(n));
}
}

Categories