Why this double operation is not precise in Java? [duplicate] - java

public class doublePrecision {
public static void main(String[] args) {
double total = 0;
total += 5.6;
total += 5.8;
System.out.println(total);
}
}
The above code prints:
11.399999999999
How would I get this to just print (or be able to use it as) 11.4?

As others have mentioned, you'll probably want to use the BigDecimal class, if you want to have an exact representation of 11.4.
Now, a little explanation into why this is happening:
The float and double primitive types in Java are floating point numbers, where the number is stored as a binary representation of a fraction and a exponent.
More specifically, a double-precision floating point value such as the double type is a 64-bit value, where:
1 bit denotes the sign (positive or negative).
11 bits for the exponent.
52 bits for the significant digits (the fractional part as a binary).
These parts are combined to produce a double representation of a value.
(Source: Wikipedia: Double precision)
For a detailed description of how floating point values are handled in Java, see the Section 4.2.3: Floating-Point Types, Formats, and Values of the Java Language Specification.
The byte, char, int, long types are fixed-point numbers, which are exact representions of numbers. Unlike fixed point numbers, floating point numbers will some times (safe to assume "most of the time") not be able to return an exact representation of a number. This is the reason why you end up with 11.399999999999 as the result of 5.6 + 5.8.
When requiring a value that is exact, such as 1.5 or 150.1005, you'll want to use one of the fixed-point types, which will be able to represent the number exactly.
As has been mentioned several times already, Java has a BigDecimal class which will handle very large numbers and very small numbers.
From the Java API Reference for the BigDecimal class:
Immutable,
arbitrary-precision signed decimal
numbers. A BigDecimal consists of an
arbitrary precision integer unscaled
value and a 32-bit integer scale. If
zero or positive, the scale is the
number of digits to the right of the
decimal point. If negative, the
unscaled value of the number is
multiplied by ten to the power of the
negation of the scale. The value of
the number represented by the
BigDecimal is therefore (unscaledValue
× 10^-scale).
There has been many questions on Stack Overflow relating to the matter of floating point numbers and its precision. Here is a list of related questions that may be of interest:
Why do I see a double variable initialized to some value like 21.4 as 21.399999618530273?
How to print really big numbers in C++
How is floating point stored? When does it matter?
Use Float or Decimal for Accounting Application Dollar Amount?
If you really want to get down to the nitty gritty details of floating point numbers, take a look at What Every Computer Scientist Should Know About Floating-Point Arithmetic.

When you input a double number, for example, 33.33333333333333, the value you get is actually the closest representable double-precision value, which is exactly:
33.3333333333333285963817615993320941925048828125
Dividing that by 100 gives:
0.333333333333333285963817615993320941925048828125
which also isn't representable as a double-precision number, so again it is rounded to the nearest representable value, which is exactly:
0.3333333333333332593184650249895639717578887939453125
When you print this value out, it gets rounded yet again to 17 decimal digits, giving:
0.33333333333333326

If you just want to process values as fractions, you can create a Fraction class which holds a numerator and denominator field.
Write methods for add, subtract, multiply and divide as well as a toDouble method. This way you can avoid floats during calculations.
EDIT: Quick implementation,
public class Fraction {
private int numerator;
private int denominator;
public Fraction(int n, int d){
numerator = n;
denominator = d;
}
public double toDouble(){
return ((double)numerator)/((double)denominator);
}
public static Fraction add(Fraction a, Fraction b){
if(a.denominator != b.denominator){
double aTop = b.denominator * a.numerator;
double bTop = a.denominator * b.numerator;
return new Fraction(aTop + bTop, a.denominator * b.denominator);
}
else{
return new Fraction(a.numerator + b.numerator, a.denominator);
}
}
public static Fraction divide(Fraction a, Fraction b){
return new Fraction(a.numerator * b.denominator, a.denominator * b.numerator);
}
public static Fraction multiply(Fraction a, Fraction b){
return new Fraction(a.numerator * b.numerator, a.denominator * b.denominator);
}
public static Fraction subtract(Fraction a, Fraction b){
if(a.denominator != b.denominator){
double aTop = b.denominator * a.numerator;
double bTop = a.denominator * b.numerator;
return new Fraction(aTop-bTop, a.denominator*b.denominator);
}
else{
return new Fraction(a.numerator - b.numerator, a.denominator);
}
}
}

Observe that you'd have the same problem if you used limited-precision decimal arithmetic, and wanted to deal with 1/3: 0.333333333 * 3 is 0.999999999, not 1.00000000.
Unfortunately, 5.6, 5.8 and 11.4 just aren't round numbers in binary, because they involve fifths. So the float representation of them isn't exact, just as 0.3333 isn't exactly 1/3.
If all the numbers you use are non-recurring decimals, and you want exact results, use BigDecimal. Or as others have said, if your values are like money in the sense that they're all a multiple of 0.01, or 0.001, or something, then multiply everything by a fixed power of 10 and use int or long (addition and subtraction are trivial: watch out for multiplication).
However, if you are happy with binary for the calculation, but you just want to print things out in a slightly friendlier format, try java.util.Formatter or String.format. In the format string specify a precision less than the full precision of a double. To 10 significant figures, say, 11.399999999999 is 11.4, so the result will be almost as accurate and more human-readable in cases where the binary result is very close to a value requiring only a few decimal places.
The precision to specify depends a bit on how much maths you've done with your numbers - in general the more you do, the more error will accumulate, but some algorithms accumulate it much faster than others (they're called "unstable" as opposed to "stable" with respect to rounding errors). If all you're doing is adding a few values, then I'd guess that dropping just one decimal place of precision will sort things out. Experiment.

You may want to look into using java's java.math.BigDecimal class if you really need precision math. Here is a good article from Oracle/Sun on the case for BigDecimal. While you can never represent 1/3 as someone mentioned, you can have the power to decide exactly how precise you want the result to be. setScale() is your friend.. :)
Ok, because I have way too much time on my hands at the moment here is a code example that relates to your question:
import java.math.BigDecimal;
/**
* Created by a wonderful programmer known as:
* Vincent Stoessel
* xaymaca#gmail.com
* on Mar 17, 2010 at 11:05:16 PM
*/
public class BigUp {
public static void main(String[] args) {
BigDecimal first, second, result ;
first = new BigDecimal("33.33333333333333") ;
second = new BigDecimal("100") ;
result = first.divide(second);
System.out.println("result is " + result);
//will print : result is 0.3333333333333333
}
}
and to plug my new favorite language, Groovy, here is a neater example of the same thing:
import java.math.BigDecimal
def first = new BigDecimal("33.33333333333333")
def second = new BigDecimal("100")
println "result is " + first/second // will print: result is 0.33333333333333

Pretty sure you could've made that into a three line example. :)
If you want exact precision, use BigDecimal. Otherwise, you can use ints multiplied by 10 ^ whatever precision you want.

As others have noted, not all decimal values can be represented as binary since decimal is based on powers of 10 and binary is based on powers of two.
If precision matters, use BigDecimal, but if you just want friendly output:
System.out.printf("%.2f\n", total);
Will give you:
11.40

You're running up against the precision limitation of type double.
Java.Math has some arbitrary-precision arithmetic facilities.

You can't, because 7.3 doesn't have a finite representation in binary. The closest you can get is 2054767329987789/2**48 = 7.3+1/1407374883553280.
Take a look at http://docs.python.org/tutorial/floatingpoint.html for a further explanation. (It's on the Python website, but Java and C++ have the same "problem".)
The solution depends on what exactly your problem is:
If it's that you just don't like seeing all those noise digits, then fix your string formatting. Don't display more than 15 significant digits (or 7 for float).
If it's that the inexactness of your numbers is breaking things like "if" statements, then you should write if (abs(x - 7.3) < TOLERANCE) instead of if (x == 7.3).
If you're working with money, then what you probably really want is decimal fixed point. Store an integer number of cents or whatever the smallest unit of your currency is.
(VERY UNLIKELY) If you need more than 53 significant bits (15-16 significant digits) of precision, then use a high-precision floating-point type, like BigDecimal.

private void getRound() {
// this is very simple and interesting
double a = 5, b = 3, c;
c = a / b;
System.out.println(" round val is " + c);
// round val is : 1.6666666666666667
// if you want to only two precision point with double we
// can use formate option in String
// which takes 2 parameters one is formte specifier which
// shows dicimal places another double value
String s = String.format("%.2f", c);
double val = Double.parseDouble(s);
System.out.println(" val is :" + val);
// now out put will be : val is :1.67
}

Use java.math.BigDecimal
Doubles are binary fractions internally, so they sometimes cannot represent decimal fractions to the exact decimal.

/*
0.8 1.2
0.7 1.3
0.7000000000000002 2.3
0.7999999999999998 4.2
*/
double adjust = fToInt + 1.0 - orgV;
// The following two lines works for me.
String s = String.format("%.2f", adjust);
double val = Double.parseDouble(s);
System.out.println(val); // output: 0.8, 0.7, 0.7, 0.8

Doubles are approximations of the decimal numbers in your Java source. You're seeing the consequence of the mismatch between the double (which is a binary-coded value) and your source (which is decimal-coded).
Java's producing the closest binary approximation. You can use the java.text.DecimalFormat to display a better-looking decimal value.

Short answer: Always use BigDecimal and make sure you are using the constructor with String argument, not the double one.
Back to your example, the following code will print 11.4, as you wish.
public class doublePrecision {
public static void main(String[] args) {
BigDecimal total = new BigDecimal("0");
total = total.add(new BigDecimal("5.6"));
total = total.add(new BigDecimal("5.8"));
System.out.println(total);
}
}

Multiply everything by 100 and store it in a long as cents.

Computers store numbers in binary and can't actually represent numbers such as 33.333333333 or 100.0 exactly. This is one of the tricky things about using doubles. You will have to just round the answer before showing it to a user. Luckily in most applications, you don't need that many decimal places anyhow.

Floating point numbers differ from real numbers in that for any given floating point number there is a next higher floating point number. Same as integers. There's no integer between 1 and 2.
There's no way to represent 1/3 as a float. There's a float below it and there's a float above it, and there's a certain distance between them. And 1/3 is in that space.
Apfloat for Java claims to work with arbitrary precision floating point numbers, but I've never used it. Probably worth a look.
http://www.apfloat.org/apfloat_java/
A similar question was asked here before
Java floating point high precision library

Use a BigDecimal. It even lets you specify rounding rules (like ROUND_HALF_EVEN, which will minimize statistical error by rounding to the even neighbor if both are the same distance; i.e. both 1.5 and 2.5 round to 2).

Why not use the round() method from Math class?
// The number of 0s determines how many digits you want after the floating point
// (here one digit)
total = (double)Math.round(total * 10) / 10;
System.out.println(total); // prints 11.4

Check out BigDecimal, it handles problems dealing with floating point arithmetic like that.
The new call would look like this:
term[number].coefficient.add(co);
Use setScale() to set the number of decimal place precision to be used.

If you have no choice other than using double values, can use the below code.
public static double sumDouble(double value1, double value2) {
double sum = 0.0;
String value1Str = Double.toString(value1);
int decimalIndex = value1Str.indexOf(".");
int value1Precision = 0;
if (decimalIndex != -1) {
value1Precision = (value1Str.length() - 1) - decimalIndex;
}
String value2Str = Double.toString(value2);
decimalIndex = value2Str.indexOf(".");
int value2Precision = 0;
if (decimalIndex != -1) {
value2Precision = (value2Str.length() - 1) - decimalIndex;
}
int maxPrecision = value1Precision > value2Precision ? value1Precision : value2Precision;
sum = value1 + value2;
String s = String.format("%." + maxPrecision + "f", sum);
sum = Double.parseDouble(s);
return sum;
}

You can Do the Following!
System.out.println(String.format("%.12f", total));
if you change the decimal value here %.12f

So far I understand it as main goal to get correct double from wrong double.
Look for my solution how to get correct value from "approximate" wrong value - if it is real floating point it rounds last digit - counted from all digits - counting before dot and try to keep max possible digits after dot - hope that it is enough precision for most cases:
public static double roundError(double value) {
BigDecimal valueBigDecimal = new BigDecimal(Double.toString(value));
String valueString = valueBigDecimal.toPlainString();
if (!valueString.contains(".")) return value;
String[] valueArray = valueString.split("[.]");
int places = 16;
places -= valueArray[0].length();
if ("56789".contains("" + valueArray[0].charAt(valueArray[0].length() - 1))) places--;
//System.out.println("Rounding " + value + "(" + valueString + ") to " + places + " places");
return valueBigDecimal.setScale(places, RoundingMode.HALF_UP).doubleValue();
}
I know it is long code, sure not best, maybe someone can fix it to be more elegant. Anyway it is working, see examples:
roundError(5.6+5.8) = 11.399999999999999 = 11.4
roundError(0.4-0.3) = 0.10000000000000003 = 0.1
roundError(37235.137567000005) = 37235.137567
roundError(1/3) 0.3333333333333333 = 0.333333333333333
roundError(3723513756.7000005) = 3.7235137567E9 (3723513756.7)
roundError(3723513756123.7000005) = 3.7235137561237E12 (3723513756123.7)
roundError(372351375612.7000005) = 3.723513756127E11 (372351375612.7)
roundError(1.7976931348623157) = 1.797693134862316

Do not waste your efford using BigDecimal. In 99.99999% cases you don't need it. java double type is of cource approximate but in almost all cases, it is sufficiently precise. Mind that your have an error at 14th significant digit. This is really negligible!
To get nice output use:
System.out.printf("%.2f\n", total);

Related

Java - Numbers aren't subtracting correctly? [duplicate]

public class doublePrecision {
public static void main(String[] args) {
double total = 0;
total += 5.6;
total += 5.8;
System.out.println(total);
}
}
The above code prints:
11.399999999999
How would I get this to just print (or be able to use it as) 11.4?
As others have mentioned, you'll probably want to use the BigDecimal class, if you want to have an exact representation of 11.4.
Now, a little explanation into why this is happening:
The float and double primitive types in Java are floating point numbers, where the number is stored as a binary representation of a fraction and a exponent.
More specifically, a double-precision floating point value such as the double type is a 64-bit value, where:
1 bit denotes the sign (positive or negative).
11 bits for the exponent.
52 bits for the significant digits (the fractional part as a binary).
These parts are combined to produce a double representation of a value.
(Source: Wikipedia: Double precision)
For a detailed description of how floating point values are handled in Java, see the Section 4.2.3: Floating-Point Types, Formats, and Values of the Java Language Specification.
The byte, char, int, long types are fixed-point numbers, which are exact representions of numbers. Unlike fixed point numbers, floating point numbers will some times (safe to assume "most of the time") not be able to return an exact representation of a number. This is the reason why you end up with 11.399999999999 as the result of 5.6 + 5.8.
When requiring a value that is exact, such as 1.5 or 150.1005, you'll want to use one of the fixed-point types, which will be able to represent the number exactly.
As has been mentioned several times already, Java has a BigDecimal class which will handle very large numbers and very small numbers.
From the Java API Reference for the BigDecimal class:
Immutable,
arbitrary-precision signed decimal
numbers. A BigDecimal consists of an
arbitrary precision integer unscaled
value and a 32-bit integer scale. If
zero or positive, the scale is the
number of digits to the right of the
decimal point. If negative, the
unscaled value of the number is
multiplied by ten to the power of the
negation of the scale. The value of
the number represented by the
BigDecimal is therefore (unscaledValue
× 10^-scale).
There has been many questions on Stack Overflow relating to the matter of floating point numbers and its precision. Here is a list of related questions that may be of interest:
Why do I see a double variable initialized to some value like 21.4 as 21.399999618530273?
How to print really big numbers in C++
How is floating point stored? When does it matter?
Use Float or Decimal for Accounting Application Dollar Amount?
If you really want to get down to the nitty gritty details of floating point numbers, take a look at What Every Computer Scientist Should Know About Floating-Point Arithmetic.
When you input a double number, for example, 33.33333333333333, the value you get is actually the closest representable double-precision value, which is exactly:
33.3333333333333285963817615993320941925048828125
Dividing that by 100 gives:
0.333333333333333285963817615993320941925048828125
which also isn't representable as a double-precision number, so again it is rounded to the nearest representable value, which is exactly:
0.3333333333333332593184650249895639717578887939453125
When you print this value out, it gets rounded yet again to 17 decimal digits, giving:
0.33333333333333326
If you just want to process values as fractions, you can create a Fraction class which holds a numerator and denominator field.
Write methods for add, subtract, multiply and divide as well as a toDouble method. This way you can avoid floats during calculations.
EDIT: Quick implementation,
public class Fraction {
private int numerator;
private int denominator;
public Fraction(int n, int d){
numerator = n;
denominator = d;
}
public double toDouble(){
return ((double)numerator)/((double)denominator);
}
public static Fraction add(Fraction a, Fraction b){
if(a.denominator != b.denominator){
double aTop = b.denominator * a.numerator;
double bTop = a.denominator * b.numerator;
return new Fraction(aTop + bTop, a.denominator * b.denominator);
}
else{
return new Fraction(a.numerator + b.numerator, a.denominator);
}
}
public static Fraction divide(Fraction a, Fraction b){
return new Fraction(a.numerator * b.denominator, a.denominator * b.numerator);
}
public static Fraction multiply(Fraction a, Fraction b){
return new Fraction(a.numerator * b.numerator, a.denominator * b.denominator);
}
public static Fraction subtract(Fraction a, Fraction b){
if(a.denominator != b.denominator){
double aTop = b.denominator * a.numerator;
double bTop = a.denominator * b.numerator;
return new Fraction(aTop-bTop, a.denominator*b.denominator);
}
else{
return new Fraction(a.numerator - b.numerator, a.denominator);
}
}
}
Observe that you'd have the same problem if you used limited-precision decimal arithmetic, and wanted to deal with 1/3: 0.333333333 * 3 is 0.999999999, not 1.00000000.
Unfortunately, 5.6, 5.8 and 11.4 just aren't round numbers in binary, because they involve fifths. So the float representation of them isn't exact, just as 0.3333 isn't exactly 1/3.
If all the numbers you use are non-recurring decimals, and you want exact results, use BigDecimal. Or as others have said, if your values are like money in the sense that they're all a multiple of 0.01, or 0.001, or something, then multiply everything by a fixed power of 10 and use int or long (addition and subtraction are trivial: watch out for multiplication).
However, if you are happy with binary for the calculation, but you just want to print things out in a slightly friendlier format, try java.util.Formatter or String.format. In the format string specify a precision less than the full precision of a double. To 10 significant figures, say, 11.399999999999 is 11.4, so the result will be almost as accurate and more human-readable in cases where the binary result is very close to a value requiring only a few decimal places.
The precision to specify depends a bit on how much maths you've done with your numbers - in general the more you do, the more error will accumulate, but some algorithms accumulate it much faster than others (they're called "unstable" as opposed to "stable" with respect to rounding errors). If all you're doing is adding a few values, then I'd guess that dropping just one decimal place of precision will sort things out. Experiment.
You may want to look into using java's java.math.BigDecimal class if you really need precision math. Here is a good article from Oracle/Sun on the case for BigDecimal. While you can never represent 1/3 as someone mentioned, you can have the power to decide exactly how precise you want the result to be. setScale() is your friend.. :)
Ok, because I have way too much time on my hands at the moment here is a code example that relates to your question:
import java.math.BigDecimal;
/**
* Created by a wonderful programmer known as:
* Vincent Stoessel
* xaymaca#gmail.com
* on Mar 17, 2010 at 11:05:16 PM
*/
public class BigUp {
public static void main(String[] args) {
BigDecimal first, second, result ;
first = new BigDecimal("33.33333333333333") ;
second = new BigDecimal("100") ;
result = first.divide(second);
System.out.println("result is " + result);
//will print : result is 0.3333333333333333
}
}
and to plug my new favorite language, Groovy, here is a neater example of the same thing:
import java.math.BigDecimal
def first = new BigDecimal("33.33333333333333")
def second = new BigDecimal("100")
println "result is " + first/second // will print: result is 0.33333333333333
Pretty sure you could've made that into a three line example. :)
If you want exact precision, use BigDecimal. Otherwise, you can use ints multiplied by 10 ^ whatever precision you want.
As others have noted, not all decimal values can be represented as binary since decimal is based on powers of 10 and binary is based on powers of two.
If precision matters, use BigDecimal, but if you just want friendly output:
System.out.printf("%.2f\n", total);
Will give you:
11.40
You're running up against the precision limitation of type double.
Java.Math has some arbitrary-precision arithmetic facilities.
You can't, because 7.3 doesn't have a finite representation in binary. The closest you can get is 2054767329987789/2**48 = 7.3+1/1407374883553280.
Take a look at http://docs.python.org/tutorial/floatingpoint.html for a further explanation. (It's on the Python website, but Java and C++ have the same "problem".)
The solution depends on what exactly your problem is:
If it's that you just don't like seeing all those noise digits, then fix your string formatting. Don't display more than 15 significant digits (or 7 for float).
If it's that the inexactness of your numbers is breaking things like "if" statements, then you should write if (abs(x - 7.3) < TOLERANCE) instead of if (x == 7.3).
If you're working with money, then what you probably really want is decimal fixed point. Store an integer number of cents or whatever the smallest unit of your currency is.
(VERY UNLIKELY) If you need more than 53 significant bits (15-16 significant digits) of precision, then use a high-precision floating-point type, like BigDecimal.
private void getRound() {
// this is very simple and interesting
double a = 5, b = 3, c;
c = a / b;
System.out.println(" round val is " + c);
// round val is : 1.6666666666666667
// if you want to only two precision point with double we
// can use formate option in String
// which takes 2 parameters one is formte specifier which
// shows dicimal places another double value
String s = String.format("%.2f", c);
double val = Double.parseDouble(s);
System.out.println(" val is :" + val);
// now out put will be : val is :1.67
}
Use java.math.BigDecimal
Doubles are binary fractions internally, so they sometimes cannot represent decimal fractions to the exact decimal.
/*
0.8 1.2
0.7 1.3
0.7000000000000002 2.3
0.7999999999999998 4.2
*/
double adjust = fToInt + 1.0 - orgV;
// The following two lines works for me.
String s = String.format("%.2f", adjust);
double val = Double.parseDouble(s);
System.out.println(val); // output: 0.8, 0.7, 0.7, 0.8
Doubles are approximations of the decimal numbers in your Java source. You're seeing the consequence of the mismatch between the double (which is a binary-coded value) and your source (which is decimal-coded).
Java's producing the closest binary approximation. You can use the java.text.DecimalFormat to display a better-looking decimal value.
Short answer: Always use BigDecimal and make sure you are using the constructor with String argument, not the double one.
Back to your example, the following code will print 11.4, as you wish.
public class doublePrecision {
public static void main(String[] args) {
BigDecimal total = new BigDecimal("0");
total = total.add(new BigDecimal("5.6"));
total = total.add(new BigDecimal("5.8"));
System.out.println(total);
}
}
Multiply everything by 100 and store it in a long as cents.
Computers store numbers in binary and can't actually represent numbers such as 33.333333333 or 100.0 exactly. This is one of the tricky things about using doubles. You will have to just round the answer before showing it to a user. Luckily in most applications, you don't need that many decimal places anyhow.
Floating point numbers differ from real numbers in that for any given floating point number there is a next higher floating point number. Same as integers. There's no integer between 1 and 2.
There's no way to represent 1/3 as a float. There's a float below it and there's a float above it, and there's a certain distance between them. And 1/3 is in that space.
Apfloat for Java claims to work with arbitrary precision floating point numbers, but I've never used it. Probably worth a look.
http://www.apfloat.org/apfloat_java/
A similar question was asked here before
Java floating point high precision library
Use a BigDecimal. It even lets you specify rounding rules (like ROUND_HALF_EVEN, which will minimize statistical error by rounding to the even neighbor if both are the same distance; i.e. both 1.5 and 2.5 round to 2).
Why not use the round() method from Math class?
// The number of 0s determines how many digits you want after the floating point
// (here one digit)
total = (double)Math.round(total * 10) / 10;
System.out.println(total); // prints 11.4
Check out BigDecimal, it handles problems dealing with floating point arithmetic like that.
The new call would look like this:
term[number].coefficient.add(co);
Use setScale() to set the number of decimal place precision to be used.
If you have no choice other than using double values, can use the below code.
public static double sumDouble(double value1, double value2) {
double sum = 0.0;
String value1Str = Double.toString(value1);
int decimalIndex = value1Str.indexOf(".");
int value1Precision = 0;
if (decimalIndex != -1) {
value1Precision = (value1Str.length() - 1) - decimalIndex;
}
String value2Str = Double.toString(value2);
decimalIndex = value2Str.indexOf(".");
int value2Precision = 0;
if (decimalIndex != -1) {
value2Precision = (value2Str.length() - 1) - decimalIndex;
}
int maxPrecision = value1Precision > value2Precision ? value1Precision : value2Precision;
sum = value1 + value2;
String s = String.format("%." + maxPrecision + "f", sum);
sum = Double.parseDouble(s);
return sum;
}
You can Do the Following!
System.out.println(String.format("%.12f", total));
if you change the decimal value here %.12f
So far I understand it as main goal to get correct double from wrong double.
Look for my solution how to get correct value from "approximate" wrong value - if it is real floating point it rounds last digit - counted from all digits - counting before dot and try to keep max possible digits after dot - hope that it is enough precision for most cases:
public static double roundError(double value) {
BigDecimal valueBigDecimal = new BigDecimal(Double.toString(value));
String valueString = valueBigDecimal.toPlainString();
if (!valueString.contains(".")) return value;
String[] valueArray = valueString.split("[.]");
int places = 16;
places -= valueArray[0].length();
if ("56789".contains("" + valueArray[0].charAt(valueArray[0].length() - 1))) places--;
//System.out.println("Rounding " + value + "(" + valueString + ") to " + places + " places");
return valueBigDecimal.setScale(places, RoundingMode.HALF_UP).doubleValue();
}
I know it is long code, sure not best, maybe someone can fix it to be more elegant. Anyway it is working, see examples:
roundError(5.6+5.8) = 11.399999999999999 = 11.4
roundError(0.4-0.3) = 0.10000000000000003 = 0.1
roundError(37235.137567000005) = 37235.137567
roundError(1/3) 0.3333333333333333 = 0.333333333333333
roundError(3723513756.7000005) = 3.7235137567E9 (3723513756.7)
roundError(3723513756123.7000005) = 3.7235137561237E12 (3723513756123.7)
roundError(372351375612.7000005) = 3.723513756127E11 (372351375612.7)
roundError(1.7976931348623157) = 1.797693134862316
Do not waste your efford using BigDecimal. In 99.99999% cases you don't need it. java double type is of cource approximate but in almost all cases, it is sufficiently precise. Mind that your have an error at 14th significant digit. This is really negligible!
To get nice output use:
System.out.printf("%.2f\n", total);

Java - Equation issues [duplicate]

public class doublePrecision {
public static void main(String[] args) {
double total = 0;
total += 5.6;
total += 5.8;
System.out.println(total);
}
}
The above code prints:
11.399999999999
How would I get this to just print (or be able to use it as) 11.4?
As others have mentioned, you'll probably want to use the BigDecimal class, if you want to have an exact representation of 11.4.
Now, a little explanation into why this is happening:
The float and double primitive types in Java are floating point numbers, where the number is stored as a binary representation of a fraction and a exponent.
More specifically, a double-precision floating point value such as the double type is a 64-bit value, where:
1 bit denotes the sign (positive or negative).
11 bits for the exponent.
52 bits for the significant digits (the fractional part as a binary).
These parts are combined to produce a double representation of a value.
(Source: Wikipedia: Double precision)
For a detailed description of how floating point values are handled in Java, see the Section 4.2.3: Floating-Point Types, Formats, and Values of the Java Language Specification.
The byte, char, int, long types are fixed-point numbers, which are exact representions of numbers. Unlike fixed point numbers, floating point numbers will some times (safe to assume "most of the time") not be able to return an exact representation of a number. This is the reason why you end up with 11.399999999999 as the result of 5.6 + 5.8.
When requiring a value that is exact, such as 1.5 or 150.1005, you'll want to use one of the fixed-point types, which will be able to represent the number exactly.
As has been mentioned several times already, Java has a BigDecimal class which will handle very large numbers and very small numbers.
From the Java API Reference for the BigDecimal class:
Immutable,
arbitrary-precision signed decimal
numbers. A BigDecimal consists of an
arbitrary precision integer unscaled
value and a 32-bit integer scale. If
zero or positive, the scale is the
number of digits to the right of the
decimal point. If negative, the
unscaled value of the number is
multiplied by ten to the power of the
negation of the scale. The value of
the number represented by the
BigDecimal is therefore (unscaledValue
× 10^-scale).
There has been many questions on Stack Overflow relating to the matter of floating point numbers and its precision. Here is a list of related questions that may be of interest:
Why do I see a double variable initialized to some value like 21.4 as 21.399999618530273?
How to print really big numbers in C++
How is floating point stored? When does it matter?
Use Float or Decimal for Accounting Application Dollar Amount?
If you really want to get down to the nitty gritty details of floating point numbers, take a look at What Every Computer Scientist Should Know About Floating-Point Arithmetic.
When you input a double number, for example, 33.33333333333333, the value you get is actually the closest representable double-precision value, which is exactly:
33.3333333333333285963817615993320941925048828125
Dividing that by 100 gives:
0.333333333333333285963817615993320941925048828125
which also isn't representable as a double-precision number, so again it is rounded to the nearest representable value, which is exactly:
0.3333333333333332593184650249895639717578887939453125
When you print this value out, it gets rounded yet again to 17 decimal digits, giving:
0.33333333333333326
If you just want to process values as fractions, you can create a Fraction class which holds a numerator and denominator field.
Write methods for add, subtract, multiply and divide as well as a toDouble method. This way you can avoid floats during calculations.
EDIT: Quick implementation,
public class Fraction {
private int numerator;
private int denominator;
public Fraction(int n, int d){
numerator = n;
denominator = d;
}
public double toDouble(){
return ((double)numerator)/((double)denominator);
}
public static Fraction add(Fraction a, Fraction b){
if(a.denominator != b.denominator){
double aTop = b.denominator * a.numerator;
double bTop = a.denominator * b.numerator;
return new Fraction(aTop + bTop, a.denominator * b.denominator);
}
else{
return new Fraction(a.numerator + b.numerator, a.denominator);
}
}
public static Fraction divide(Fraction a, Fraction b){
return new Fraction(a.numerator * b.denominator, a.denominator * b.numerator);
}
public static Fraction multiply(Fraction a, Fraction b){
return new Fraction(a.numerator * b.numerator, a.denominator * b.denominator);
}
public static Fraction subtract(Fraction a, Fraction b){
if(a.denominator != b.denominator){
double aTop = b.denominator * a.numerator;
double bTop = a.denominator * b.numerator;
return new Fraction(aTop-bTop, a.denominator*b.denominator);
}
else{
return new Fraction(a.numerator - b.numerator, a.denominator);
}
}
}
Observe that you'd have the same problem if you used limited-precision decimal arithmetic, and wanted to deal with 1/3: 0.333333333 * 3 is 0.999999999, not 1.00000000.
Unfortunately, 5.6, 5.8 and 11.4 just aren't round numbers in binary, because they involve fifths. So the float representation of them isn't exact, just as 0.3333 isn't exactly 1/3.
If all the numbers you use are non-recurring decimals, and you want exact results, use BigDecimal. Or as others have said, if your values are like money in the sense that they're all a multiple of 0.01, or 0.001, or something, then multiply everything by a fixed power of 10 and use int or long (addition and subtraction are trivial: watch out for multiplication).
However, if you are happy with binary for the calculation, but you just want to print things out in a slightly friendlier format, try java.util.Formatter or String.format. In the format string specify a precision less than the full precision of a double. To 10 significant figures, say, 11.399999999999 is 11.4, so the result will be almost as accurate and more human-readable in cases where the binary result is very close to a value requiring only a few decimal places.
The precision to specify depends a bit on how much maths you've done with your numbers - in general the more you do, the more error will accumulate, but some algorithms accumulate it much faster than others (they're called "unstable" as opposed to "stable" with respect to rounding errors). If all you're doing is adding a few values, then I'd guess that dropping just one decimal place of precision will sort things out. Experiment.
You may want to look into using java's java.math.BigDecimal class if you really need precision math. Here is a good article from Oracle/Sun on the case for BigDecimal. While you can never represent 1/3 as someone mentioned, you can have the power to decide exactly how precise you want the result to be. setScale() is your friend.. :)
Ok, because I have way too much time on my hands at the moment here is a code example that relates to your question:
import java.math.BigDecimal;
/**
* Created by a wonderful programmer known as:
* Vincent Stoessel
* xaymaca#gmail.com
* on Mar 17, 2010 at 11:05:16 PM
*/
public class BigUp {
public static void main(String[] args) {
BigDecimal first, second, result ;
first = new BigDecimal("33.33333333333333") ;
second = new BigDecimal("100") ;
result = first.divide(second);
System.out.println("result is " + result);
//will print : result is 0.3333333333333333
}
}
and to plug my new favorite language, Groovy, here is a neater example of the same thing:
import java.math.BigDecimal
def first = new BigDecimal("33.33333333333333")
def second = new BigDecimal("100")
println "result is " + first/second // will print: result is 0.33333333333333
Pretty sure you could've made that into a three line example. :)
If you want exact precision, use BigDecimal. Otherwise, you can use ints multiplied by 10 ^ whatever precision you want.
As others have noted, not all decimal values can be represented as binary since decimal is based on powers of 10 and binary is based on powers of two.
If precision matters, use BigDecimal, but if you just want friendly output:
System.out.printf("%.2f\n", total);
Will give you:
11.40
You're running up against the precision limitation of type double.
Java.Math has some arbitrary-precision arithmetic facilities.
You can't, because 7.3 doesn't have a finite representation in binary. The closest you can get is 2054767329987789/2**48 = 7.3+1/1407374883553280.
Take a look at http://docs.python.org/tutorial/floatingpoint.html for a further explanation. (It's on the Python website, but Java and C++ have the same "problem".)
The solution depends on what exactly your problem is:
If it's that you just don't like seeing all those noise digits, then fix your string formatting. Don't display more than 15 significant digits (or 7 for float).
If it's that the inexactness of your numbers is breaking things like "if" statements, then you should write if (abs(x - 7.3) < TOLERANCE) instead of if (x == 7.3).
If you're working with money, then what you probably really want is decimal fixed point. Store an integer number of cents or whatever the smallest unit of your currency is.
(VERY UNLIKELY) If you need more than 53 significant bits (15-16 significant digits) of precision, then use a high-precision floating-point type, like BigDecimal.
private void getRound() {
// this is very simple and interesting
double a = 5, b = 3, c;
c = a / b;
System.out.println(" round val is " + c);
// round val is : 1.6666666666666667
// if you want to only two precision point with double we
// can use formate option in String
// which takes 2 parameters one is formte specifier which
// shows dicimal places another double value
String s = String.format("%.2f", c);
double val = Double.parseDouble(s);
System.out.println(" val is :" + val);
// now out put will be : val is :1.67
}
Use java.math.BigDecimal
Doubles are binary fractions internally, so they sometimes cannot represent decimal fractions to the exact decimal.
/*
0.8 1.2
0.7 1.3
0.7000000000000002 2.3
0.7999999999999998 4.2
*/
double adjust = fToInt + 1.0 - orgV;
// The following two lines works for me.
String s = String.format("%.2f", adjust);
double val = Double.parseDouble(s);
System.out.println(val); // output: 0.8, 0.7, 0.7, 0.8
Doubles are approximations of the decimal numbers in your Java source. You're seeing the consequence of the mismatch between the double (which is a binary-coded value) and your source (which is decimal-coded).
Java's producing the closest binary approximation. You can use the java.text.DecimalFormat to display a better-looking decimal value.
Short answer: Always use BigDecimal and make sure you are using the constructor with String argument, not the double one.
Back to your example, the following code will print 11.4, as you wish.
public class doublePrecision {
public static void main(String[] args) {
BigDecimal total = new BigDecimal("0");
total = total.add(new BigDecimal("5.6"));
total = total.add(new BigDecimal("5.8"));
System.out.println(total);
}
}
Multiply everything by 100 and store it in a long as cents.
Computers store numbers in binary and can't actually represent numbers such as 33.333333333 or 100.0 exactly. This is one of the tricky things about using doubles. You will have to just round the answer before showing it to a user. Luckily in most applications, you don't need that many decimal places anyhow.
Floating point numbers differ from real numbers in that for any given floating point number there is a next higher floating point number. Same as integers. There's no integer between 1 and 2.
There's no way to represent 1/3 as a float. There's a float below it and there's a float above it, and there's a certain distance between them. And 1/3 is in that space.
Apfloat for Java claims to work with arbitrary precision floating point numbers, but I've never used it. Probably worth a look.
http://www.apfloat.org/apfloat_java/
A similar question was asked here before
Java floating point high precision library
Use a BigDecimal. It even lets you specify rounding rules (like ROUND_HALF_EVEN, which will minimize statistical error by rounding to the even neighbor if both are the same distance; i.e. both 1.5 and 2.5 round to 2).
Why not use the round() method from Math class?
// The number of 0s determines how many digits you want after the floating point
// (here one digit)
total = (double)Math.round(total * 10) / 10;
System.out.println(total); // prints 11.4
Check out BigDecimal, it handles problems dealing with floating point arithmetic like that.
The new call would look like this:
term[number].coefficient.add(co);
Use setScale() to set the number of decimal place precision to be used.
If you have no choice other than using double values, can use the below code.
public static double sumDouble(double value1, double value2) {
double sum = 0.0;
String value1Str = Double.toString(value1);
int decimalIndex = value1Str.indexOf(".");
int value1Precision = 0;
if (decimalIndex != -1) {
value1Precision = (value1Str.length() - 1) - decimalIndex;
}
String value2Str = Double.toString(value2);
decimalIndex = value2Str.indexOf(".");
int value2Precision = 0;
if (decimalIndex != -1) {
value2Precision = (value2Str.length() - 1) - decimalIndex;
}
int maxPrecision = value1Precision > value2Precision ? value1Precision : value2Precision;
sum = value1 + value2;
String s = String.format("%." + maxPrecision + "f", sum);
sum = Double.parseDouble(s);
return sum;
}
You can Do the Following!
System.out.println(String.format("%.12f", total));
if you change the decimal value here %.12f
So far I understand it as main goal to get correct double from wrong double.
Look for my solution how to get correct value from "approximate" wrong value - if it is real floating point it rounds last digit - counted from all digits - counting before dot and try to keep max possible digits after dot - hope that it is enough precision for most cases:
public static double roundError(double value) {
BigDecimal valueBigDecimal = new BigDecimal(Double.toString(value));
String valueString = valueBigDecimal.toPlainString();
if (!valueString.contains(".")) return value;
String[] valueArray = valueString.split("[.]");
int places = 16;
places -= valueArray[0].length();
if ("56789".contains("" + valueArray[0].charAt(valueArray[0].length() - 1))) places--;
//System.out.println("Rounding " + value + "(" + valueString + ") to " + places + " places");
return valueBigDecimal.setScale(places, RoundingMode.HALF_UP).doubleValue();
}
I know it is long code, sure not best, maybe someone can fix it to be more elegant. Anyway it is working, see examples:
roundError(5.6+5.8) = 11.399999999999999 = 11.4
roundError(0.4-0.3) = 0.10000000000000003 = 0.1
roundError(37235.137567000005) = 37235.137567
roundError(1/3) 0.3333333333333333 = 0.333333333333333
roundError(3723513756.7000005) = 3.7235137567E9 (3723513756.7)
roundError(3723513756123.7000005) = 3.7235137561237E12 (3723513756123.7)
roundError(372351375612.7000005) = 3.723513756127E11 (372351375612.7)
roundError(1.7976931348623157) = 1.797693134862316
Do not waste your efford using BigDecimal. In 99.99999% cases you don't need it. java double type is of cource approximate but in almost all cases, it is sufficiently precise. Mind that your have an error at 14th significant digit. This is really negligible!
To get nice output use:
System.out.printf("%.2f\n", total);

Setting precision for double in java

DecimalFormat df = new DecimalFormat("#.000000");
int a[] = { 2, 2, 3, 3, 4, 4 };
double sum = 0.000000;
for (int i = 0; i < a.length; i++)
{
sum = sum + (double) a[i];
}
output1=Double.valueOf(df.format(sum / a.length));
where sum/a.length value is 3. output1 is double variable. Now the result I wanted is 3.000000 and it must be store in double variable output1 but I can't get it.
Although in certain cases it might work, in general there is no way to determine/force the decimal precision of a double value, or indeed any IEEE floating point number.
If you want decimal precision in Java, use BigDecimal. This is even more important if the numbers you work with represent money.
If an approximate result is good enough (and there are lots of calculations where it is), you can use double but be aware that it's a binary floating point number and accurate rounding to decimals might not always be possible.
The primitive type double is an approximation of a real number, with a sequence of (negative) powers of 2.
Hence the decimal notation 0.2 = 0*2-1 + ... + 1*2-4 + ... with an error as one would need an infinite sequence in base 2.
If one wants a precision with the value, one needs BigDecimal:
BigDecimal oneFifth = new BigDecimal("0.200"); // Precision/scale 3
BigDecimal hundredPlusOnefifth =
oneFifth.multiply(BigDecimal.valueOf(501)); // 100.200
Using a String in the constructor, BigDecimal can set the precision.
Not so nice writing expressions in BigDecimal though.
With double one might live, while carefully rounding at appropriate points in the code. There always will be a small error and, outputting needs a formatter as the number of digits is lost.
The value of 3.0 and 3.00000 are the same in a double variable. When you print it, format it the way you want:
System.out.println( df.format( output1 ) );
Looks like sum is int and you have the result of integer division (because a.length is int). Just multiply one of those values by 1.0:
output1 = Double.valueOf(df.format((sum * 1.0) / a.length));
With your edited code, your problem is not in obtaining the value of output1 but how you show it. Don't print output1 directly, instead use the DecimalFormat you used previously:
System.out.println(df.format(output1));

Double subtraction precision issue

My coworker did this experiment:
public class DoubleDemo {
public static void main(String[] args) {
double a = 1.435;
double b = 1.43;
double c = a - b;
System.out.println(c);
}
}
For this first-grade operation I expected this output:
0.005
But unexpectedly the output was:
0.0050000000000001155
Why does double fails in such a simple operation? And if double is not the datatype for this work, what should I use?
double is internally stored as a fraction in binary -- like 1/4 + 1/8 + 1/16 + ...
The value 0.005 -- or the value 1.435 -- cannot be stored as an exact fraction in binary, so double cannot store the exact value 0.005, and the subtracted value isn't quite exact.
If you care about precise decimal arithmetic, use BigDecimal.
You may also find this article useful reading.
double and float are not exactly real numbers.
There are infinite number of real numbers in any range, but only finite number of bits to represent them! for this reason, rounding errors is expected for double and floats.
The number you get is the closest number possible that can be represented by double in floating point representation.
For more details, you might want to read this article [warning: might be high-level].
You might want to use BigDecimal to get exactly a decimal number [but you will again encounter rounding errors when you try to get 1/3].
Yes it worked this way using BigDecimal operations
private static void subtractUsingBigDecimalOperation(double a, double b) {
BigDecimal c = BigDecimal.valueOf(a).subtract(BigDecimal.valueOf(b));
System.out.println(c);
}
double and float arithmetic are never going to be exactly correct because of the rounding that occurs "under the hood".
Essentially doubles and floats can have an infinite amount of decimals but in memory they must be represented by some real number of bits. So when you do this decimal arithmetic a rounding procedure occurs and is often off by a very small amount if you take all of the decimals into account.
As suggested earlier, if you need completely exact values then use BigDecimal which stores its values differently. Here's the API
public class BigDecimalExample {
public static void main(String args[]) throws IOException {
//floating point calculation
double amount1 = 2.15;
double amount2 = 1.10;
System.out.println("difference between 2.15 and 1.0 using double is: " + (amount1 - amount2));
//Use BigDecimal for financial calculation
BigDecimal amount3 = new BigDecimal("2.15");
BigDecimal amount4 = new BigDecimal("1.10") ;
System.out.println("difference between 2.15 and 1.0 using BigDecimal is: " + (amount3.subtract(amount4)));
}
}
Output:
difference between 2.15 and 1.0 using double is: 1.0499999999999998
difference between 2.15 and 1.0 using BigDecmial is: 1.05
//just try to make a quick example to make b to have the same precision as a has, by using BigDecimal
private double getDesiredPrecision(Double a, Double b){
String[] splitter = a.toString().split("\\.");
splitter[0].length(); // Before Decimal Count
int numDecimals = splitter[1].length(); //After Decimal Count
BigDecimal bBigDecimal = new BigDecimal(b);
bBigDecimal = bBigDecimal.setScale(numDecimals,BigDecimal.ROUND_HALF_EVEN);
return bBigDecimal.doubleValue();
}

Double vs. BigDecimal?

I have to calculate some floating point variables and my colleague suggest me to use BigDecimal instead of double since it will be more precise. But I want to know what it is and how to make most out of BigDecimal?
A BigDecimal is an exact way of representing numbers. A Double has a certain precision. Working with doubles of various magnitudes (say d1=1000.0 and d2=0.001) could result in the 0.001 being dropped altogether when summing as the difference in magnitude is so large. With BigDecimal this would not happen.
The disadvantage of BigDecimal is that it's slower, and it's a bit more difficult to program algorithms that way (due to + - * and / not being overloaded).
If you are dealing with money, or precision is a must, use BigDecimal. Otherwise Doubles tend to be good enough.
I do recommend reading the javadoc of BigDecimal as they do explain things better than I do here :)
My English is not good so I'll just write a simple example here.
double a = 0.02;
double b = 0.03;
double c = b - a;
System.out.println(c);
BigDecimal _a = new BigDecimal("0.02");
BigDecimal _b = new BigDecimal("0.03");
BigDecimal _c = _b.subtract(_a);
System.out.println(_c);
Program output:
0.009999999999999998
0.01
Does anyone still want to use double? ;)
There are two main differences from double:
Arbitrary precision, similarly to BigInteger they can contain number of arbitrary precision and size (whereas a double has a fixed number of bits)
Base 10 instead of Base 2, a BigDecimal is n*10^-scale where n is an arbitrary large signed integer and scale can be thought of as the number of digits to move the decimal point left or right
It is still not true to say that BigDecimal can represent any number. But two reasons you should use BigDecimal for monetary calculations are:
It can represent all numbers that can be represented in decimal notion and that includes virtually all numbers in the monetary world (you never transfer 1/3 $ to someone).
The precision can be controlled to avoid accumulated errors. With a double, as the magnitude of the value increases, its precision decreases and this can introduce significant error into the result.
If you write down a fractional value like 1 / 7 as decimal value you get
1/7 = 0.142857142857142857142857142857142857142857...
with an infinite repetition of the digits 142857. Since you can only write a finite number of digits you will inevitably introduce a rounding (or truncation) error.
Numbers like 1/10 or 1/100 expressed as binary numbers with a fractional part also have an infinite number of digits after the decimal point:
1/10 = binary 0.0001100110011001100110011001100110...
Doubles store values as binary and therefore might introduce an error solely by converting a decimal number to a binary number, without even doing any arithmetic.
Decimal numbers (like BigDecimal), on the other hand, store each decimal digit as is (binary coded, but each decimal on its own). This means that a decimal type is not more precise than a binary floating point or fixed point type in a general sense (i.e. it cannot store 1/7 without loss of precision), but it is more accurate for numbers that have a finite number of decimal digits as is often the case for money calculations.
Java's BigDecimal has the additional advantage that it can have an arbitrary (but finite) number of digits on both sides of the decimal point, limited only by the available memory.
If you are dealing with calculation, there are laws on how you should calculate and what precision you should use. If you fail that you will be doing something illegal.
The only real reason is that the bit representation of decimal cases are not precise. As Basil simply put, an example is the best explanation. Just to complement his example, here's what happens:
static void theDoubleProblem1() {
double d1 = 0.3;
double d2 = 0.2;
System.out.println("Double:\t 0,3 - 0,2 = " + (d1 - d2));
float f1 = 0.3f;
float f2 = 0.2f;
System.out.println("Float:\t 0,3 - 0,2 = " + (f1 - f2));
BigDecimal bd1 = new BigDecimal("0.3");
BigDecimal bd2 = new BigDecimal("0.2");
System.out.println("BigDec:\t 0,3 - 0,2 = " + (bd1.subtract(bd2)));
}
Output:
Double: 0,3 - 0,2 = 0.09999999999999998
Float: 0,3 - 0,2 = 0.10000001
BigDec: 0,3 - 0,2 = 0.1
Also we have that:
static void theDoubleProblem2() {
double d1 = 10;
double d2 = 3;
System.out.println("Double:\t 10 / 3 = " + (d1 / d2));
float f1 = 10f;
float f2 = 3f;
System.out.println("Float:\t 10 / 3 = " + (f1 / f2));
// Exception!
BigDecimal bd3 = new BigDecimal("10");
BigDecimal bd4 = new BigDecimal("3");
System.out.println("BigDec:\t 10 / 3 = " + (bd3.divide(bd4)));
}
Gives us the output:
Double: 10 / 3 = 3.3333333333333335
Float: 10 / 3 = 3.3333333
Exception in thread "main" java.lang.ArithmeticException: Non-terminating decimal expansion
But:
static void theDoubleProblem2() {
BigDecimal bd3 = new BigDecimal("10");
BigDecimal bd4 = new BigDecimal("3");
System.out.println("BigDec:\t 10 / 3 = " + (bd3.divide(bd4, 4, BigDecimal.ROUND_HALF_UP)));
}
Has the output:
BigDec: 10 / 3 = 3.3333
BigDecimal is Oracle's arbitrary-precision numerical library. BigDecimal is part of the Java language and is useful for a variety of applications ranging from the financial to the scientific (that's where sort of am).
There's nothing wrong with using doubles for certain calculations. Suppose, however, you wanted to calculate Math.Pi * Math.Pi / 6, that is, the value of the Riemann Zeta Function for a real argument of two (a project I'm currently working on). Floating-point division presents you with a painful problem of rounding error.
BigDecimal, on the other hand, includes many options for calculating expressions to arbitrary precision. The add, multiply, and divide methods as described in the Oracle documentation below "take the place" of +, *, and / in BigDecimal Java World:
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
The compareTo method is especially useful in while and for loops.
Be careful, however, in your use of constructors for BigDecimal. The string constructor is very useful in many cases. For instance, the code
BigDecimal onethird = new BigDecimal("0.33333333333");
utilizes a string representation of 1/3 to represent that infinitely-repeating number to a specified degree of accuracy. The round-off error is most likely somewhere so deep inside the JVM that the round-off errors won't disturb most of your practical calculations. I have, from personal experience, seen round-off creep up, however. The setScale method is important in these regards, as can be seen from the Oracle documentation.
If you need to use division in your arithmetic, you need to use double instead of BigDecimal. Division (divide(BigDecimal) method) in BigDecimal is pretty useless as BigDecimal can't handle repeating decimal rational numbers (division where divisors are and will throw java.lang.ArithmeticException: Non-terminating decimal expansion; no exact representable decimal result.
Just try BigDecimal.ONE.divide(new BigDecimal("3"));
Double, on the other hand, will handle division fine (with the understood precision which is roughly 15 significant digits)

Categories