Interfaces and methods in Java [duplicate] - java

This question already has answers here:
Is there more to an interface than having the correct methods
(17 answers)
Closed 7 years ago.
For Java!!
We can implement different methods in different classes. In interface we create an abstract method and provide its implementation in the class that implements the particular interface. What is the purpose of creating an interface if we can create and implement methods in classes separately?
Plz help me I'm new in Java?

Consider an example :
Suppose you are creating some application which is concerned with the animal kingdom.
Now you are asked to create a dog, cat, lion etc objects.
So first thing will come to your mind, since these all belong to animal kingdom I can create a base class named ' Animal ', and everything will inherits it. Now yo created something like this
class Animal {
legs;
family;
eat();
roam();
sleep();
makeNoise();
}
So all the animals inheriting the animal class will have these features. You can call this as a "IS-A" relationship. Like Dog IS-A Animal.
Now suppose you are asked to use your animal simulation program for some science-fair. You can use this design in that too.
Now suppose someone asked you to use your simulator in a pet-shop.
Since you don't have any pet behavior. What you did is add the pet features in the base class and thought this will work.
So now you program can create a lion which has the pet behavior. STRANGE!!
Now what you need to put all the pet behavior in one place and make sure that all the pet animals should posses it.
A way to do is create another superclass with all pet features and extend it. This is multiple inheritance, which JAVA don't allow (just Google deadly diamond of death). So comes the interface.
Interface is more like a set of behaviors which your object implements.
And since every object can have its own set of implementations, all these methods should be abstract.
It gives you polymorphic benefits without deadly diamond of death problem. It is a more like a contract which defines that your object must implements following features.
So now what you can do
interface PetBehavior{
befriend();
play();
}
and classes from different inheritance tree can implement this interface.

We do that in order to organize data. This the ability to perform operations lots of times and to structure your data. There is another thing called Vector. If objects implement the same method, they can be iterated and sorted via this Vector

Because with a single interface you can have multiple implementation.
For example if you have a list interface, implementation could be ArrayList or LinkedList.
They have different performances and are used based on the context. By having the same interface, if you want to change something you have to simply change from this
List<String> arrayList = new ArrayList<String>();
to this
List<String> arrayList = new LinkedList<String>();
bacause they have the same methods but implemented in different ways

I used to have this question too!
There are 3 main reasons why we need interfaces:
it makes more sense. Interfaces create a "can be used as" or "have the ability to" relationship between the implementing class and the interface. For example, you can have an interface called Flyable and all the things that can fly implements this interface. E.g. Bird, airplane and balloons. These implementing classes "have the ability to fly" because they all have a fly method or whatever is defined in the interface. Also, if a method requires a Flyable object, the programmer can just pass in a bird, an airplane, etc. with his/her common sense. But still, this isn't very practical, just like whether you should write the { on a new line doesn't matter.
It makes it easier for you, and other programmers using your API or library or whatever you are creating, to create custom behaviors. Java Swing is a very good example. If you don't know what swing is, it is an API used to create programs that has a "window" or GUI. How are you going to tell the computer what to do when the user clicks on a button? Via an interface! There is an interface called ActionListener. It let you create your own things to do when the users clicks on a button. You just pass an ActionListener object to a method, with your own implementation, and it will be run when the button is clicked! If my words don't make sense, let me use one sentence to summarize all this.
interfaces provide a way to pass around different methods (with custom implementations) as parameters in methods.
EDIT
Oh I missed one point!
interfaces aid polymorphism. Say you have a dog, a cat, and a fish class and all of them don't implement any interfaces but have similar methods (move, sleep, eat etc). If you want to create an array of all your animals, you can only create an array of Object because all Java classes inherits Object. This is unsafe because then you can add whatever you want into the array, and you need to do casting in order to use those move sleep eat methods. So sad! :( If you create an interface called Animal which contain the three common methods and make all three classes implement it, you can just create an array of Animal. And you don't even need to cast it to the right type before you can access move sleep eat! How cool is that!
So remember to create interfaces when a lot of your classes have similar methods but different implementations to just UNITE THEM ALL!

Related

not being able to use methods of subclass using a reference variable that is of type superclass [duplicate]

I have seen this mentioned a few times and I am not clear on what it means. When and why would you do this?
I know what interfaces do, but the fact I am not clear on this makes me think I am missing out on using them correctly.
Is it just so if you were to do:
IInterface classRef = new ObjectWhatever()
You could use any class that implements IInterface? When would you need to do that? The only thing I can think of is if you have a method and you are unsure of what object will be passed except for it implementing IInterface. I cannot think how often you would need to do that.
Also, how could you write a method that takes in an object that implements an interface? Is that possible?
There are some wonderful answers on here to this questions that get into all sorts of great detail about interfaces and loosely coupling code, inversion of control and so on. There are some fairly heady discussions, so I'd like to take the opportunity to break things down a bit for understanding why an interface is useful.
When I first started getting exposed to interfaces, I too was confused about their relevance. I didn't understand why you needed them. If we're using a language like Java or C#, we already have inheritance and I viewed interfaces as a weaker form of inheritance and thought, "why bother?" In a sense I was right, you can think of interfaces as sort of a weak form of inheritance, but beyond that I finally understood their use as a language construct by thinking of them as a means of classifying common traits or behaviors that were exhibited by potentially many non-related classes of objects.
For example -- say you have a SIM game and have the following classes:
class HouseFly inherits Insect {
void FlyAroundYourHead(){}
void LandOnThings(){}
}
class Telemarketer inherits Person {
void CallDuringDinner(){}
void ContinueTalkingWhenYouSayNo(){}
}
Clearly, these two objects have nothing in common in terms of direct inheritance. But, you could say they are both annoying.
Let's say our game needs to have some sort of random thing that annoys the game player when they eat dinner. This could be a HouseFly or a Telemarketer or both -- but how do you allow for both with a single function? And how do you ask each different type of object to "do their annoying thing" in the same way?
The key to realize is that both a Telemarketer and HouseFly share a common loosely interpreted behavior even though they are nothing alike in terms of modeling them. So, let's make an interface that both can implement:
interface IPest {
void BeAnnoying();
}
class HouseFly inherits Insect implements IPest {
void FlyAroundYourHead(){}
void LandOnThings(){}
void BeAnnoying() {
FlyAroundYourHead();
LandOnThings();
}
}
class Telemarketer inherits Person implements IPest {
void CallDuringDinner(){}
void ContinueTalkingWhenYouSayNo(){}
void BeAnnoying() {
CallDuringDinner();
ContinueTalkingWhenYouSayNo();
}
}
We now have two classes that can each be annoying in their own way. And they do not need to derive from the same base class and share common inherent characteristics -- they simply need to satisfy the contract of IPest -- that contract is simple. You just have to BeAnnoying. In this regard, we can model the following:
class DiningRoom {
DiningRoom(Person[] diningPeople, IPest[] pests) { ... }
void ServeDinner() {
when diningPeople are eating,
foreach pest in pests
pest.BeAnnoying();
}
}
Here we have a dining room that accepts a number of diners and a number of pests -- note the use of the interface. This means that in our little world, a member of the pests array could actually be a Telemarketer object or a HouseFly object.
The ServeDinner method is called when dinner is served and our people in the dining room are supposed to eat. In our little game, that's when our pests do their work -- each pest is instructed to be annoying by way of the IPest interface. In this way, we can easily have both Telemarketers and HouseFlys be annoying in each of their own ways -- we care only that we have something in the DiningRoom object that is a pest, we don't really care what it is and they could have nothing in common with other.
This very contrived pseudo-code example (that dragged on a lot longer than I anticipated) is simply meant to illustrate the kind of thing that finally turned the light on for me in terms of when we might use an interface. I apologize in advance for the silliness of the example, but hope that it helps in your understanding. And, to be sure, the other posted answers you've received here really cover the gamut of the use of interfaces today in design patterns and development methodologies.
The specific example I used to give to students is that they should write
List myList = new ArrayList(); // programming to the List interface
instead of
ArrayList myList = new ArrayList(); // this is bad
These look exactly the same in a short program, but if you go on to use myList 100 times in your program you can start to see a difference. The first declaration ensures that you only call methods on myList that are defined by the List interface (so no ArrayList specific methods). If you've programmed to the interface this way, later on you can decide that you really need
List myList = new TreeList();
and you only have to change your code in that one spot. You already know that the rest of your code doesn't do anything that will be broken by changing the implementation because you programmed to the interface.
The benefits are even more obvious (I think) when you're talking about method parameters and return values. Take this for example:
public ArrayList doSomething(HashMap map);
That method declaration ties you to two concrete implementations (ArrayList and HashMap). As soon as that method is called from other code, any changes to those types probably mean you're going to have to change the calling code as well. It would be better to program to the interfaces.
public List doSomething(Map map);
Now it doesn't matter what kind of List you return, or what kind of Map is passed in as a parameter. Changes that you make inside the doSomething method won't force you to change the calling code.
Programming to an interface is saying, "I need this functionality and I don't care where it comes from."
Consider (in Java), the List interface versus the ArrayList and LinkedList concrete classes. If all I care about is that I have a data structure containing multiple data items that I should access via iteration, I'd pick a List (and that's 99% of the time). If I know that I need constant-time insert/delete from either end of the list, I might pick the LinkedList concrete implementation (or more likely, use the Queue interface). If I know I need random access by index, I'd pick the ArrayList concrete class.
Programming to an interface has absolutely nothing to do with abstract interfaces like we see in Java or .NET. It isn't even an OOP concept.
What it means is don't go messing around with the internals of an object or data structure. Use the Abstract Program Interface, or API, to interact with your data. In Java or C# that means using public properties and methods instead of raw field access. For C that means using functions instead of raw pointers.
EDIT: And with databases it means using views and stored procedures instead of direct table access.
Using interfaces is a key factor in making your code easily testable in addition to removing unnecessary couplings between your classes. By creating an interface that defines the operations on your class, you allow classes that want to use that functionality the ability to use it without depending on your implementing class directly. If later on you decide to change and use a different implementation, you need only change the part of the code where the implementation is instantiated. The rest of the code need not change because it depends on the interface, not the implementing class.
This is very useful in creating unit tests. In the class under test you have it depend on the interface and inject an instance of the interface into the class (or a factory that allows it to build instances of the interface as needed) via the constructor or a property settor. The class uses the provided (or created) interface in its methods. When you go to write your tests, you can mock or fake the interface and provide an interface that responds with data configured in your unit test. You can do this because your class under test deals only with the interface, not your concrete implementation. Any class implementing the interface, including your mock or fake class, will do.
EDIT: Below is a link to an article where Erich Gamma discusses his quote, "Program to an interface, not an implementation."
http://www.artima.com/lejava/articles/designprinciples.html
You should look into Inversion of Control:
Martin Fowler: Inversion of Control Containers and the Dependency Injection pattern
Wikipedia: Inversion of Control
In such a scenario, you wouldn't write this:
IInterface classRef = new ObjectWhatever();
You would write something like this:
IInterface classRef = container.Resolve<IInterface>();
This would go into a rule-based setup in the container object, and construct the actual object for you, which could be ObjectWhatever. The important thing is that you could replace this rule with something that used another type of object altogether, and your code would still work.
If we leave IoC off the table, you can write code that knows that it can talk to an object that does something specific, but not which type of object or how it does it.
This would come in handy when passing parameters.
As for your parenthesized question "Also, how could you write a method that takes in an object that implements an Interface? Is that possible?", in C# you would simply use the interface type for the parameter type, like this:
public void DoSomethingToAnObject(IInterface whatever) { ... }
This plugs right into the "talk to an object that does something specific." The method defined above knows what to expect from the object, that it implements everything in IInterface, but it doesn't care which type of object it is, only that it adheres to the contract, which is what an interface is.
For instance, you're probably familiar with calculators and have probably used quite a few in your days, but most of the time they're all different. You, on the other hand, knows how a standard calculator should work, so you're able to use them all, even if you can't use the specific features that each calculator has that none of the other has.
This is the beauty of interfaces. You can write a piece of code, that knows that it will get objects passed to it that it can expect certain behavior from. It doesn't care one hoot what kind of object it is, only that it supports the behavior needed.
Let me give you a concrete example.
We have a custom-built translation system for windows forms. This system loops through controls on a form and translate text in each. The system knows how to handle basic controls, like the-type-of-control-that-has-a-Text-property, and similar basic stuff, but for anything basic, it falls short.
Now, since controls inherit from pre-defined classes that we have no control over, we could do one of three things:
Build support for our translation system to detect specifically which type of control it is working with, and translate the correct bits (maintenance nightmare)
Build support into base classes (impossible, since all the controls inherit from different pre-defined classes)
Add interface support
So we did nr. 3. All our controls implement ILocalizable, which is an interface that gives us one method, the ability to translate "itself" into a container of translation text/rules. As such, the form doesn't need to know which kind of control it has found, only that it implements the specific interface, and knows that there is a method where it can call to localize the control.
Code to the Interface Not the Implementation has NOTHING to do with Java, nor its Interface construct.
This concept was brought to prominence in the Patterns / Gang of Four books but was most probably around well before that. The concept certainly existed well before Java ever existed.
The Java Interface construct was created to aid in this idea (among other things), and people have become too focused on the construct as the centre of the meaning rather than the original intent. However, it is the reason we have public and private methods and attributes in Java, C++, C#, etc.
It means just interact with an object or system's public interface. Don't worry or even anticipate how it does what it does internally. Don't worry about how it is implemented. In object-oriented code, it is why we have public vs. private methods/attributes. We are intended to use the public methods because the private methods are there only for use internally, within the class. They make up the implementation of the class and can be changed as required without changing the public interface. Assume that regarding functionality, a method on a class will perform the same operation with the same expected result every time you call it with the same parameters. It allows the author to change how the class works, its implementation, without breaking how people interact with it.
And you can program to the interface, not the implementation without ever using an Interface construct. You can program to the interface not the implementation in C++, which does not have an Interface construct. You can integrate two massive enterprise systems much more robustly as long as they interact through public interfaces (contracts) rather than calling methods on objects internal to the systems. The interfaces are expected to always react the same expected way given the same input parameters; if implemented to the interface and not the implementation. The concept works in many places.
Shake the thought that Java Interfaces have anything what-so-ever to do with the concept of 'Program to the Interface, Not the Implementation'. They can help apply the concept, but they are not the concept.
It sounds like you understand how interfaces work but are unsure of when to use them and what advantages they offer. Here are a few examples of when an interface would make sense:
// if I want to add search capabilities to my application and support multiple search
// engines such as Google, Yahoo, Live, etc.
interface ISearchProvider
{
string Search(string keywords);
}
then I could create GoogleSearchProvider, YahooSearchProvider, LiveSearchProvider, etc.
// if I want to support multiple downloads using different protocols
// HTTP, HTTPS, FTP, FTPS, etc.
interface IUrlDownload
{
void Download(string url)
}
// how about an image loader for different kinds of images JPG, GIF, PNG, etc.
interface IImageLoader
{
Bitmap LoadImage(string filename)
}
then create JpegImageLoader, GifImageLoader, PngImageLoader, etc.
Most add-ins and plugin systems work off interfaces.
Another popular use is for the Repository pattern. Say I want to load a list of zip codes from different sources
interface IZipCodeRepository
{
IList<ZipCode> GetZipCodes(string state);
}
then I could create an XMLZipCodeRepository, SQLZipCodeRepository, CSVZipCodeRepository, etc. For my web applications, I often create XML repositories early on so I can get something up and running before the SQL Database is ready. Once the database is ready I write an SQLRepository to replace the XML version. The rest of my code remains unchanged since it runs solely off of interfaces.
Methods can accept interfaces such as:
PrintZipCodes(IZipCodeRepository zipCodeRepository, string state)
{
foreach (ZipCode zipCode in zipCodeRepository.GetZipCodes(state))
{
Console.WriteLine(zipCode.ToString());
}
}
It makes your code a lot more extensible and easier to maintain when you have sets of similar classes. I am a junior programmer, so I am no expert, but I just finished a project that required something similar.
I work on client side software that talks to a server running a medical device. We are developing a new version of this device that has some new components that the customer must configure at times. There are two types of new components, and they are different, but they are also very similar. Basically, I had to create two config forms, two lists classes, two of everything.
I decided that it would be best to create an abstract base class for each control type that would hold almost all of the real logic, and then derived types to take care of the differences between the two components. However, the base classes would not have been able to perform operations on these components if I had to worry about types all of the time (well, they could have, but there would have been an "if" statement or switch in every method).
I defined a simple interface for these components and all of the base classes talk to this interface. Now when I change something, it pretty much 'just works' everywhere and I have no code duplication.
A lot of explanation out there, but to make it even more simpler. Take for instance a List. One can implement a list with as:
An internal array
A linked list
Other implementations
By building to an interface, say a List. You only code as to definition of List or what List means in reality.
You could use any type of implementation internally say an array implementation. But suppose you wish to change the implementation for some reason say a bug or performance. Then you just have to change the declaration List<String> ls = new ArrayList<String>() to List<String> ls = new LinkedList<String>().
Nowhere else in code, will you have to change anything else; Because everything else was built on the definition of List.
If you program in Java, JDBC is a good example. JDBC defines a set of interfaces but says nothing about the implementation. Your applications can be written against this set of interfaces. In theory, you pick some JDBC driver and your application would just work. If you discover there's a faster or "better" or cheaper JDBC driver or for whatever reason, you can again in theory re-configure your property file, and without having to make any change in your application, your application would still work.
I am a late comer to this question, but I want to mention here that the line "Program to an interface, not an implementation" had some good discussion in the GoF (Gang of Four) Design Patterns book.
It stated, on p. 18:
Program to an interface, not an implementation
Don't declare variables to be instances of particular concrete classes. Instead, commit only to an interface defined by an abstract class. You will find this to be a common theme of the design patterns in this book.
and above that, it began with:
There are two benefits to manipulating objects solely in terms of the interface defined by abstract classes:
Clients remain unaware of the specific types of objects they use, as long as the objects adhere to the interface that clients expect.
Clients remain unaware of the classes that implement these objects. Clients only know about the abstract class(es) defining the interface.
So in other words, don't write it your classes so that it has a quack() method for ducks, and then a bark() method for dogs, because they are too specific for a particular implementation of a class (or subclass). Instead, write the method using names that are general enough to be used in the base class, such as giveSound() or move(), so that they can be used for ducks, dogs, or even cars, and then the client of your classes can just say .giveSound() rather than thinking about whether to use quack() or bark() or even determine the type before issuing the correct message to be sent to the object.
Programming to Interfaces is awesome, it promotes loose coupling. As #lassevk mentioned, Inversion of Control is a great use of this.
In addition, look into SOLID principals. here is a video series
It goes through a hard coded (strongly coupled example) then looks at interfaces, finally progressing to a IoC/DI tool (NInject)
To add to the existing posts, sometimes coding to interfaces helps on large projects when developers work on separate components simultaneously. All you need is to define interfaces upfront and write code to them while other developers write code to the interface you are implementing.
It can be advantageous to program to interfaces, even when we are not depending on abstractions.
Programming to interfaces forces us to use a contextually appropriate subset of an object. That helps because it:
prevents us from doing contextually inappropriate things, and
lets us safely change the implementation in the future.
For example, consider a Person class that implements the Friend and the Employee interface.
class Person implements AbstractEmployee, AbstractFriend {
}
In the context of the person's birthday, we program to the Friend interface, to prevent treating the person like an Employee.
function party() {
const friend: Friend = new Person("Kathryn");
friend.HaveFun();
}
In the context of the person's work, we program to the Employee interface, to prevent blurring workplace boundaries.
function workplace() {
const employee: Employee = new Person("Kathryn");
employee.DoWork();
}
Great. We have behaved appropriately in different contexts, and our software is working well.
Far into the future, if our business changes to work with dogs, we can change the software fairly easily. First, we create a Dog class that implements both Friend and Employee. Then, we safely change new Person() to new Dog(). Even if both functions have thousands of lines of code, that simple edit will work because we know the following are true:
Function party uses only the Friend subset of Person.
Function workplace uses only the Employee subset of Person.
Class Dog implements both the Friend and Employee interfaces.
On the other hand, if either party or workplace were to have programmed against Person, there would be a risk of both having Person-specific code. Changing from Person to Dog would require us to comb through the code to extirpate any Person-specific code that Dog does not support.
The moral: programming to interfaces helps our code to behave appropriately and to be ready for change. It also prepares our code to depend on abstractions, which brings even more advantages.
If I'm writing a new class Swimmer to add the functionality swim() and need to use an object of class say Dog, and this Dog class implements interface Animal which declares swim().
At the top of the hierarchy (Animal), it's very abstract while at the bottom (Dog) it's very concrete. The way I think about "programming to interfaces" is that, as I write Swimmer class, I want to write my code against the interface that's as far up that hierarchy which in this case is an Animal object. An interface is free from implementation details and thus makes your code loosely-coupled.
The implementation details can be changed with time, however, it would not affect the remaining code since all you are interacting with is with the interface and not the implementation. You don't care what the implementation is like... all you know is that there will be a class that would implement the interface.
It is also good for Unit Testing, you can inject your own classes (that meet the requirements of the interface) into a class that depends on it
Short story: A postman is asked to go home after home and receive the covers contains (letters, documents, cheques, gift cards, application, love letter) with the address written on it to deliver.
Suppose there is no cover and ask the postman to go home after home and receive all the things and deliver to other people, the postman can get confused.
So better wrap it with cover (in our story it is the interface) then he will do his job fine.
Now the postman's job is to receive and deliver the covers only (he wouldn't bothered what is inside in the cover).
Create a type of interface not actual type, but implement it with actual type.
To create to interface means your components get Fit into the rest of code easily
I give you an example.
you have the AirPlane interface as below.
interface Airplane{
parkPlane();
servicePlane();
}
Suppose you have methods in your Controller class of Planes like
parkPlane(Airplane plane)
and
servicePlane(Airplane plane)
implemented in your program. It will not BREAK your code.
I mean, it need not to change as long as it accepts arguments as AirPlane.
Because it will accept any Airplane despite actual type, flyer, highflyr, fighter, etc.
Also, in a collection:
List<Airplane> plane; // Will take all your planes.
The following example will clear your understanding.
You have a fighter plane that implements it, so
public class Fighter implements Airplane {
public void parkPlane(){
// Specific implementations for fighter plane to park
}
public void servicePlane(){
// Specific implementatoins for fighter plane to service.
}
}
The same thing for HighFlyer and other clasess:
public class HighFlyer implements Airplane {
public void parkPlane(){
// Specific implementations for HighFlyer plane to park
}
public void servicePlane(){
// specific implementatoins for HighFlyer plane to service.
}
}
Now think your controller classes using AirPlane several times,
Suppose your Controller class is ControlPlane like below,
public Class ControlPlane{
AirPlane plane;
// so much method with AirPlane reference are used here...
}
Here magic comes as you may make your new AirPlane type instances as many as you want and you are not changing the code of ControlPlane class.
You can add an instance...
JumboJetPlane // implementing AirPlane interface.
AirBus // implementing AirPlane interface.
You may remove instances of previously created types too.
So, just to get this right, the advantage of a interface is that I can separate the calling of a method from any particular class. Instead creating a instance of the interface, where the implementation is given from whichever class I choose that implements that interface. Thus allowing me to have many classes, which have similar but slightly different functionality and in some cases (the cases related to the intention of the interface) not care which object it is.
For example, I could have a movement interface. A method which makes something 'move' and any object (Person, Car, Cat) that implements the movement interface could be passed in and told to move. Without the method every knowing the type of class it is.
Imagine you have a product called 'Zebra' that can be extended by plugins. It finds the plugins by searching for DLLs in some directory. It loads all those DLLs and uses reflection to find any classes that implement IZebraPlugin, and then calls the methods of that interface to communicate with the plugins.
This makes it completely independent of any specific plugin class - it doesn't care what the classes are. It only cares that they fulfill the interface specification.
Interfaces are a way of defining points of extensibility like this. Code that talks to an interface is more loosely coupled - in fact it is not coupled at all to any other specific code. It can inter-operate with plugins written years later by people who have never met the original developer.
You could instead use a base class with virtual functions - all plugins would be derived from the base class. But this is much more limiting because a class can only have one base class, whereas it can implement any number of interfaces.
C++ explanation.
Think of an interface as your classes public methods.
You then could create a template that 'depends' on these public methods in order to carry out it's own function (it makes function calls defined in the classes public interface). Lets say this template is a container, like a Vector class, and the interface it depends on is a search algorithm.
Any algorithm class that defines the functions/interface Vector makes calls to will satisfy the 'contract' (as someone explained in the original reply). The algorithms don't even need to be of the same base class; the only requirement is that the functions/methods that the Vector depends on (interface) is defined in your algorithm.
The point of all of this is that you could supply any different search algorithm/class just as long as it supplied the interface that Vector depends on (bubble search, sequential search, quick search).
You might also want to design other containers (lists, queues) that would harness the same search algorithm as Vector by having them fulfill the interface/contract that your search algorithms depends on.
This saves time (OOP principle 'code reuse') as you are able to write an algorithm once instead of again and again and again specific to every new object you create without over-complicating the issue with an overgrown inheritance tree.
As for 'missing out' on how things operate; big-time (at least in C++), as this is how most of the Standard TEMPLATE Library's framework operates.
Of course when using inheritance and abstract classes the methodology of programming to an interface changes; but the principle is the same, your public functions/methods are your classes interface.
This is a huge topic and one of the the cornerstone principles of Design Patterns.
In Java these concrete classes all implement the CharSequence interface:
CharBuffer, String, StringBuffer, StringBuilder
These concrete classes do not have a common parent class other than Object, so there is nothing that relates them, other than the fact they each have something to do with arrays of characters, representing such, or manipulating such. For instance, the characters of String cannot be changed once a String object is instantiated, whereas the characters of StringBuffer or StringBuilder can be edited.
Yet each one of these classes is capable of suitably implementing the CharSequence interface methods:
char charAt(int index)
int length()
CharSequence subSequence(int start, int end)
String toString()
In some cases, Java class library classes that used to accept String have been revised to now accept the CharSequence interface. So if you have an instance of StringBuilder, instead of extracting a String object (which means instantiating a new object instance), it can instead just pass the StringBuilder itself as it implements the CharSequence interface.
The Appendable interface that some classes implement has much the same kind of benefit for any situation where characters can be appended to an instance of the underlying concrete class object instance. All of these concrete classes implement the Appendable interface:
BufferedWriter, CharArrayWriter, CharBuffer, FileWriter, FilterWriter, LogStream, OutputStreamWriter, PipedWriter, PrintStream, PrintWriter, StringBuffer, StringBuilder, StringWriter, Writer
Previous answers focus on programming to an abstraction for the sake of extensibility and loose coupling. While these are very important points,
readability is equally important. Readability allows others (and your future self) to understand the code with minimal effort. This is why readability leverages abstractions.
An abstraction is, by definition, simpler than its implementation. An abstraction omits detail in order to convey the essence or purpose of a thing, but nothing more.
Because abstractions are simpler, I can fit a lot more of them in my head at one time, compared to implementations.
As a programmer (in any language) I walk around with a general idea of a List in my head at all times. In particular, a List allows random access, duplicate elements, and maintains order. When I see a declaration like this: List myList = new ArrayList() I think, cool, this is a List that's being used in the (basic) way that I understand; and I don't have to think any more about it.
On the other hand, I do not carry around the specific implementation details of ArrayList in my head. So when I see, ArrayList myList = new ArrayList(). I think, uh-oh, this ArrayList must be used in a way that isn't covered by the List interface. Now I have to track down all the usages of this ArrayList to understand why, because otherwise I won't be able to fully understand this code. It gets even more confusing when I discover that 100% of the usages of this ArrayList do conform to the List interface. Then I'm left wondering... was there some code relying on ArrayList implementation details that got deleted? Was the programmer who instantiated it just incompetent? Is this application locked into that specific implementation in some way at runtime? A way that I don't understand?
I'm now confused and uncertain about this application, and all we're talking about is a simple List. What if this was a complex business object ignoring its interface? Then my knowledge of the business domain is insufficient to understand the purpose of the code.
So even when I need a List strictly within a private method (nothing that would break other applications if it changed, and I could easily find/replace every usage in my IDE) it still benefits readability to program to an abstraction. Because abstractions are simpler than implementation details. You could say that programming to abstractions is one way of adhering to the KISS principle.
An interface is like a contract, where you want your implementation class to implement methods written in the contract (interface). Since Java does not provide multiple inheritance, "programming to interface" is a good way to achieve multiple inheritance.
If you have a class A that is already extending some other class B, but you want that class A to also follow certain guidelines or implement a certain contract, then you can do so by the "programming to interface" strategy.
Q: - ... "Could you use any class that implements an interface?"
A: - Yes.
Q: - ... "When would you need to do that?"
A: - Each time you need a class(es) that implements interface(s).
Note: We couldn't instantiate an interface not implemented by a class - True.
Why?
Because the interface has only method prototypes, not definitions (just functions names, not their logic)
AnIntf anInst = new Aclass();
// we could do this only if Aclass implements AnIntf.
// anInst will have Aclass reference.
Note: Now we could understand what happened if Bclass and Cclass implemented same Dintf.
Dintf bInst = new Bclass();
// now we could call all Dintf functions implemented (defined) in Bclass.
Dintf cInst = new Cclass();
// now we could call all Dintf functions implemented (defined) in Cclass.
What we have: Same interface prototypes (functions names in interface), and call different implementations.
Bibliography:
Prototypes - wikipedia
program to an interface is a term from the GOF book. i would not directly say it has to do with java interface but rather real interfaces. to achieve clean layer separation, you need to create some separation between systems for example: Let's say you had a concrete database you want to use, you would never "program to the database" , instead you would "program to the storage interface". Likewise you would never "program to a Web Service" but rather you would program to a "client interface". this is so you can easily swap things out.
i find these rules help me:
1. we use a java interface when we have multiple types of an object. if i just have single object, i dont see the point. if there are at least two concrete implementations of some idea, then i would use a java interface.
2. if as i stated above, you want to bring decoupling from an external system (storage system) to your own system (local DB) then also use a interface.
notice how there are two ways to consider when to use them.
Coding to an interface is a philosophy, rather than specific language constructs or design patterns - it instructs you what is the correct order of steps to follow in order to create better software systems (e.g. more resilient, more testable, more scalable, more extendible, and other nice traits).
What it actually means is:
===
Before jumping to implementations and coding (the HOW) - think of the WHAT:
What black boxes should make up your system,
What is each box' responsibility,
What are the ways each "client" (that is, one of those other boxes, 3rd party "boxes", or even humans) should communicate with it (the API of each box).
After you figure the above, go ahead and implement those boxes (the HOW).
Thinking first of what a box' is and what its API, leads the developer to distil the box' responsibility, and to mark for himself and future developers the difference between what is its exposed details ("API") and it's hidden details ("implementation details"), which is a very important differentiation to have.
One immediate and easily noticeable gain is the team can then change and improve implementations without affecting the general architecture. It also makes the system MUCH more testable (it goes well with the TDD approach).
===
Beyond the traits I've mentioned above, you also save A LOT OF TIME going this direction.
Micro Services and DDD, when done right, are great examples of "Coding to an interface", however the concept wins in every pattern from monoliths to "serverless", from BE to FE, from OOP to functional, etc....
I strongly recommend this approach for Software Engineering (and I basically believe it makes total sense in other fields as well).
Program to an interface allows to change implementation of contract defined by interface seamlessly. It allows loose coupling between contract and specific implementations.
IInterface classRef = new ObjectWhatever()
You could use any class that implements IInterface? When would you need to do that?
Have a look at this SE question for good example.
Why should the interface for a Java class be preferred?
does using an Interface hit performance?
if so how much?
Yes. It will have slight performance overhead in sub-seconds. But if your application has requirement to change the implementation of interface dynamically, don't worry about performance impact.
how can you avoid it without having to maintain two bits of code?
Don't try to avoid multiple implementations of interface if your application need them. In absence of tight coupling of interface with one specific implementation, you may have to deploy the patch to change one implementation to other implementation.
One good use case: Implementation of Strategy pattern:
Real World Example of the Strategy Pattern
"Program to interface" means don't provide hard code right the way, meaning your code should be extended without breaking the previous functionality. Just extensions, not editing the previous code.
Also I see a lot of good and explanatory answers here, so I want to give my point of view here, including some extra information what I noticed when using this method.
Unit testing
For the last two years, I have written a hobby project and I did not write unit tests for it. After writing about 50K lines I found out it would be really necessary to write unit tests.
I did not use interfaces (or very sparingly) ... and when I made my first unit test, I found out it was complicated. Why?
Because I had to make a lot of class instances, used for input as class variables and/or parameters. So the tests look more like integration tests (having to make a complete 'framework' of classes since all was tied together).
Fear of interfaces
So I decided to use interfaces. My fear was that I had to implement all functionality everywhere (in all used classes) multiple times. In some way this is true, however, by using inheritance it can be reduced a lot.
Combination of interfaces and inheritance
I found out the combination is very good to be used. I give a very simple example.
public interface IPricable
{
int Price { get; }
}
public interface ICar : IPricable
public abstract class Article
{
public int Price { get { return ... } }
}
public class Car : Article, ICar
{
// Price does not need to be defined here
}
This way copying code is not necessary, while still having the benefit of using a car as interface (ICar).

Interface and Inheritance - an Object Oriented Design Dilemma

I'm having trouble understanding when/why to implement inheritance and when/why to implement inheritance via interface. Please bear with me as I explain..
Let's say we have a parent class Animal and we wish to extend it with 3 subclasses: Dog, Cat and Mouse.
Suppose all Animals are able to eat(), sleep(), scratch() and move(). and Dog is able to pant(). With this knowledge we would proceed to add the first 4 behaviors to the Animal superclass and have Dog, Cat and Mouse extend Animal. We would also add the method pant() to the Dog class bec only dogs pant().
Now what happens if we wish to add another method called waggleTail() but only Cat and Dog exhibit this behavior. We cannot add this behavior to Animal bec then Mouse will also inherit the behavior (and Mouse doesn't waggle it's tail). An alternative is to add the method waggleTail() to both the Dog and the Cat classes but not to the Mouse class. This approach, however, does not make sense bec we would then violate the DRY principle (don't repeat yourself) by writing the method waggleTail() twice. We want to write each method once, and only once.
Perhaps we could solve this problem by creating a new sub class that inherits from Animal called TailWagglingAnimal, add the method waggleTail() to this subclass and then have both Dog and Cat inherit from this new subclass. This sounds reasonable until you realize that there are dozens of other such anomalies and we'd have to repeat this process again and again for each one (this would expand the inheritance hierarchy to no end).
Further, what if we have a specific kind of Dog (let's call him the "Coton de Tulear") that exhibits all of the other behaviors of Dog (such as panting) except that it doesn't waggle its tail. If we have "Coton de Tulear" inherit directly from Animal it would be unable to pant(). If we had it inherit from Dog it would be able to waggle its tail (bec Dog extends TailWagglingAnimal). If we had Dog extend Animal directly and then create a new subclass called TailWagglingDog (as appose to TailWagglingAnimal) then Cat will be unable to inherit this behavior (so we'd need to duplicate the behavior somewhere within the Cat hierarchy which violates the DRY principle).
What do we do?
Based on dozens of threads on stackoverflow (and several OO design books) it has been suggested to remove the method waggleTail() from the Dog class and add it to and interface. Let's call the interface TailWaggler and then have all dogs (except for "Coton de Tulear") implement this interface. However, I have trouble understanding why/how this is useful.
If you think about it, this means that all 50+ breads of dogs (let's assume there are 50 breads of Dog that need to exhibit this behavior) need to add the implements TailWaggler keyword just bec a single kind of Dog does not exhibit this behavior. Not only does this mean a lot of extra manual work on the part of the programmer (adding implements TailWaggler to the beginning of each class) it means that all descendants need to be concerned with all of little and petty details of the behavior they exhibit (this would not be the case had we added this behavior to the parent class and extended the parent class). This may be fine if we only had a few such cases but what if we had dozens or hundreds of such cases? Finally, as we add new types of subclasses of type dogs there will eventually be one kind of Dog are another that will not exhibit one of the behaviors of Dog parent class - so this means slowly but surely we'll need to remove almost all behavior from the (parent) Dog class and add them to an interface? We'd then need to make sure all of the sub classes implement dozens of different interfaces. One might suggest that we group all related behavior in a single interface but this is only possible if the behavior exhibited by different dogs is uniform - what if this is not the case?)
Thanks!
We'd then need to make sure all of the sub classes implement dozens of
different interfaces
If your class needs implementing too many interfaces check that it does not violate the Single Responsibility principle. Consider breaking the class into smaller ones.
Implementing several small interfaces instead of a large one conforms to Interface Segregation principle which leads to some positive consequences.
it means that all descendants need to be concerned with all of little
and petty details of the behavior they exhibit
This is more about implementation difficulties. Multiple inheritance or auto delegation could help here. Since we don't have either in Java we have to choose between other options:
Implement delegation manually for each class :(
Use Java 8 interfaces if implementation is not complicated.
Use code generation library to autogenerate delegation code (e.g. look at lombok library #Delegate feature https://projectlombok.org/features/experimental/Delegate.html)
Inheritance is used when you want to morph a class which is of the same type of your parent class and which have a similar behavior.
Interface is used to declare a functionality of your class.
For example, Dogs, Cats and Mice are all Animals (same type) and they have similar behavior (they get born, grow up, die, move, eat, ...). So your Dog class can extend Animal.
Now, your interfaces declare their functions. Like we just seen, an animal can move and eat, so your Animal class can implement the interfaces Mover and Eater for example. Automatically, Dog, Cat and Mouse will inherit these interfaces, but a mouse will eat cheese while dogs and cats will eat meat. This is where you can #Override (understand morph) the implementation behavior to declare what each class can eat.
If another animal can climb (a monkey), you will implement the Climber interface directly on the Monkey class. Making it slightly more evolved than a standard Animal.
For your tailwagging issue, you have to implement the Tailwagger interface in Dog and Cat, not in Animal (all animals are not tailwaggers). Of course you do not want to repeat the code, so you will also create another Class called StandardTailwag and use it as a field in Dog and Cat (composition). You then have to redirect the implementation to this class' methods, but this is the way to go if you want your code easier to maintain in the future.
You could also morph the StandardTailwag to DogTailwag and CatTailwag, and easily implement them with the same Tailwagger interface
Note that you can write default code and methods in Java 8's interfaces, but it is not recommended.
This is a very broad and subjective question, so I can give you my opinion and no more.
My personal principle is: "The less code you write, the better", but to be truthful achieving simplicity is exceedingly difficult.
I try to make inheritance as shallow as I can, because deep inheritance tends to become a problem later on when your model changes.
I then use interface with handlers so instead of having a method waggleTail I have a stateless TailWaggler class which does the waggling thing.
I don't think there is a recipe for every possible situation, I try keep it as simple as I can, as testable as possible, then you will have (sooner or later) to refactor your code, if test are good, it will not be too painful.
Short answer to a long question, so don't accept this until others that have more energy chime in. BUT how I would do that would be to have an abstract Dog class that implements the TailWagger interface, and has a concrete tailWag function.
Next have all your dogs inherit from Dog, including the one that doesn't actually wag. Then in that particular dog implementation, create a new concrete function called tailWag that throws an exception along the lines of InvalidStateException("This type of dog does not wag its tail") .
Using this methodology, you have one concrete "tailWag" that wags the tail, and one exceptional case that behaves differently.

What is the advantage of using interfaces [duplicate]

This question already has answers here:
Interfaces in Java - what are they for? [duplicate]
(9 answers)
Closed 9 years ago.
Let's say you have an interface
public interface Change {
void updateUser();
void deleteUser();
void helpUser();
}
I've read that interfaces are Java's way to implement multiple inheritance. You implement an interface, then you have access to its methods. What I don't understand is, the methods don't have any body in the interface, so you need to give them a body in your class. So if you an interface is implemented by more than one class, you need to give the method a body in more than one class. Why is this better than just having individual methods in your classes, and not implementing an interface?
My professor in college once gave a great anecdote to describe polymorphism and encapsulation. It went like this.
Does anyone here know how a soda machine works? (Cue confused glances about why we'd even talk about this.) No? Let me tell you.
You drop in your change, and inside the machine is a little monkey who counts all your change to make sure you put in enough money. When you press the button for your soda, a little light comes on telling the monkey which button you pressed, and if you entered the right amount of change, he grabs your choice and throws it into the little hole for you to grab your soda.
This is the concept of encapsulation. We hide the implementation of the soda machine. Unless it's got one of those fancy, clear windows to let you see the inside, you honestly have no idea how it really works. All you know is that you put in some cash, you press a button, and if you put in enough, you get your drink.
To add to that, you know how to use a soda machine's interface, so therefore as long as the machine's interface follows the usual soda machine interface, you can use it. This is called the interface contract. The machine can be bringing the drinks from Antarctica on a conveyor belt for all you care, as long as you get your drink, it's cold, and you get change back.
Polymorphism is the idea that when you use the soda machine interface, it could be doing different things. This is why encapsulation and polymorphism are closely related. In polymorphism, all you know is that you're using a SodaMachine implementation, which can be changed, and as a result, different things can be done behind the scenes. This leads to the driving concept of polymorphism, which is the ability of one object, the SodaMachine, to actually act as both a MonkeySodaMachine and a ConveyorSodaMachine depending on the machine actually behind the interface.
Probably not word-for-word, but close enough. Essentially it boils down to two concepts: polymorphism and encapsulation. Let me know if you want clarification.
Why is this better than just having individual methods in your classes, and not implementing an interface?
Because if a class C implements an interface I, you can use a C whenever an I is expected. If you do not implement the interface, you could not do this (even if you provided all of the appropriate methods as mandated by the interface):
interface I {
void foo();
}
class C1 implements I {
public void foo() {
System.out.println("C1");
}
}
class C2 { // C2 has a 'foo' method, but does not implement I
public void foo() {
System.out.println("C2");
}
}
...
class Test {
public static void main(String[] args) {
I eye1 = new C1(); // works
I eye2 = new C2(); // error!
}
}
It separates what the caller expects from the implementation. You have a pure set of methods you can call without any knowledge of the implementation. In fact some libraries like JMS and JDBC provide interfaces without any implementations.
This separation means you don't need to know the class of any actual implementation.
An interface allows you to guarantee that certain methods exist and return the required types. When the compiler knows this, it can use that assumption to work with unknown classes as if they had certain known behavior. For example, the comparable interface guarantees that an implementing class will be able to compareTo() some similar object and will return an int.
This means that you can compare anything that implements this interface - so you can sort anything that is Comparable instead of writing one method to sort Strings and another to sort Integers and another to sort LabelledBoxesOfBooks
The interface essentially guarentees that all the methods that inherit it will have its methods, so that you can safely call a method in the interface for anything that inherits it.
It makes it easier to define APIs using interfaces, so that all concrete implementations of the interfaces provide the expected methods in each class.
It also provides a way to implement multiple inheritance, which is not possible (in Java) with straight class inheritance.

Achieving multiple inheritance via interface

I am a beginner in interface concept.
when I surfing for the information about "Achieving multiple inheritance via interface", I came across this link.. Multiple inheritance
I have a same doubt as the programstudent had.
hi, Good Explanation very much helpful In the uml diagram for java
there is no connection to Animal from Bird and horse why? Is it
necessary to use the implement the same method in the derived class
and why
void birdNoise();
void horseNoise();
why in the Peagus class
public void horseNoise()
{
System.out.println("Horse Noise!");
}
public void birdNoise()
{
System.out.println("Bird Noise!");
}
why this must be there? Why "Remember, we must write each class's own implementation for each method in the interface. reason? Thank for this good explanation Thank you
In that post, they have used multiple inheritance in c++ and converted to interfaces in java.
1.what I thought about inheritance is having some methods in parent class, and whenever the same methods are needed in other class(es) too, then those class(es) will inherit the parent class and use it.
But in interface concept if each derived class(es) has to define its own implementation then what is the use of inheriting it?
2.If we have to provide own implementation then why not we define that method in the derived class(es) itself. What is the use of inheriting it?
Someone please explain.
Thanks in advance.
When I switched from c++ to java I had this same feeling but now that I been working with java for a while it all kinda makes sense.
1.what I thought about inheritance is having some methods in parent
class, and whenever the same methods are needed in other class(es)
too, then those class(es) will inherit the parent class and use it.
Like the original author did, you can still do multiple inheritance in java you just must use interfaces. Interfaces are like pure virtual classes in c++.
But in interface concept if each derived class(es) has to define its
own implementation then what is the use of inheriting it?
The reason you implement an interface in java is so that you guarantee that class has those methods. That way you can have a specific class implement a generic interface and then treat every specific class that implements that generic interface the same.
Java Design is a bit different then c++ design but after doing several java program's you will become just as good at using multiple interfaces as you are at using multiple inheritance.
Each subclass has to define it's own implementation because each subclass may perform the operation slightly differently. Consider the following example:
public interface animal {
//All implementers must define this method
void speak();
}
This interface states that any Animal MUST have a way to speak. Basically, any type of animal is going to be able to make a noise. We then have 2 subclass, or 2 different types of animals that we create.
public class Dog implements animal {
//Define how a Dog speaks
public void speak() {
System.out.println( "woof" );
}
}
We then define another animal, cat
public class Cat implements animal {
//Define how a Cat speaks
public void speak() {
System.out.println( "meow" );
}
}
In this example, both Cat and Dog are animals, and therefore must be able to speak due to our interface. However, everybody knows that cats and dogs make different sounds. By allowing each subclass to define how it 'speaks', we can give Dog and Cat their own respective sound when the speak() method is called, while ensuring they are both Animals.
In answer to your question more specifically, inheritance forces it's subclasses to have a specific method. In other words, an interface states that "all my subclasses will define each of these methods". What this allows us to do is to write code that deals with the methods in an interface without knowing the specific subclass. We can safely do that because we know that each subclass MUST have defined the method in the interface class. If only the subclasses that use the method defined it, then we would have no way of knowing for sure whether it is safe to call the method on all subclasses.
Just a note: If you do not want a subclass to define the method, you can simply define an empty method like this:
public class MuteAnimal implements animal {
//A MuteAnimal can't speak!
public void speak() { }
}
Inheritance is often useless without polymorphism. It is really not easy to explain it all just in few sentences. My advices would be to look at interfaces for defining behavior (something like can-do relationship), and concrete inheritence for is-a relationships.
In the center of everything as you may learn is something called Single Responsibility Principle. This means that one class has one responsibility, if you are having more of them, you separate the class.
If you take your example, even the Pegasus isn't both horse and bird at the same time 100% percent. It would inherit the horse, but implement specific characteristics of the birds, which would be defined in interfaces, like Flyable for instance. You can say that birds have one way of flying common to them all, so inherit them from Bird. Pegasus is a little different, so that custom logic can be defined after you implement the Flyable interface with method Fly.
Also, the example with horseNoise and birdNoise is little unrealistic, you want one method speak() which will due to internal class alhorithm perform certain action. What if that pegasus could talk? Would you have a method for each word?
Back to Flyable example, say you now have a video-game. Now you can have polimorphism for this: Lets say that in game earthquake happens. You want for each animal that can fly to go and fly. You have a collection of animals currently in game, so you write this:
foreach(Flyable flyableAnimal in animals)
flyableAnimal.Fly();
You just rely on polimorphism ...
These were just some random thoughts, you can find far better examples online, hope this helps ...
If class A inherits from class B, that effectively means two things:
Class A can implicitly use all methods and properties of class B, and need only define that functionality which is in fact unique to class A.
Code which expects an object of type B will accept an object of type A.
Those two features of inheritance are in some sense orthogonal; one can imagine places where either could be useful without the other. Although derived classes can only have one parent class from which they gain implicit access to methods and properties, they may define an arbitrary number of interfaces for which they are substitutable.
Note that while some people insist that interfaces form a "has-a" rather than "is-a" relationship, I think it's better to think of them as saying something "is __able" or "is a __er", the point being that interfaces don't just define abilities, but define substitutability (i.e. "is a") in terms of ability.

why we need interface instead of class and what we are achieving from interface

As we know that we can declare only the method signature and also can not create the instance of a Interface. then why we need interface. Unnecessary its loading into JVM. This is also one performance degradation. We are creating the interface and several classes implementing that interface and defining all the methods of the interface. Actually what we achieved from this interface. Could you please give me some example.
Interface is you are forcing your client to implement some specified thing, implementation will be remain to the client.Also java doesn't support multiple inheritance by extending multiple classes you can have multiple interface implemented.
For example : List declares add(..) method all the implementation of List provides it implementations.
Simpler would be.
You define an Interface Animal and a method speak() it means all Animal must will have to speak with different different implementation. Man will speak,Dog will bark,Lion will roar.
Why should we go for create class Animal extra. We can declare the speak() in every class. What is befit we will get from Animal class and implementing speak() in all the sub classes. Still I did not get this concept
Main advantage is inheritance and polymorphism [core concepts of OOP]
You are specifying Animal's behavior here also.
You can have
Animal obj = new Man();
Animal obj = getAnimalForThisCriteria(something here);//this will return some animal at runtime so you can catch instance using Animal.
You might have Three different Class Ma,Dog,Lion with same method but there is no way to tell they all are animal unless they extends or implements common class or interface, here comes the concept of structure
Having interfaces separate from classes allows for clear separation between, well, the interface of an object and its implementation. Without them you would have no standard way to indicate that some class should not contain implementation details at all.
Second, since Java does not support multiple inheritance, interfaces are a partial workaround, by allowing inheritance on the outward features of the class.
Interfaces are for when you care only about an object's capabilities, not how it achieves them.
Suppose you are writing the high level control code for a robot. You don't care about how the robot actually works, you only want to be able to tell it to go forward, backward, turn left or right, etc. Without interfaces, you would implement a abstract class called AbstractRobot that has all methods as abstract methods. At this point you have basically created an interface,but in the form of an abstract class, but one that is 'heavier' than required.
Lastly, a class can conform to multiple interfaces, but can only inherit from one class. This allows some design patterns which rely on multiple inheritance.
I'll try to explain this in simple words.
Consider your favorite Computer Game, say Counter Strike.
In this game, the players (terrorists or counter-terrorists) use weapons.
If we teach the player how to use weapon (analogous to Interface), it can use any weapon like AK47, Maverick, Shotgun, Sniper (analogous to classes which inherit Weapon interface).
The advantage of this is consider Bazooka (which implements Weapon) is developed in future versions. Then the current player will be able to use it without any modifications - as it knows how to use Weapon interface :-)
This is just a simple example. There are many other reasons for using interfaces.
An analogy for an interface is to think of a class using an interface as being like an electric wall outlet, and think of the implementation as the plug. The outlet doesn't care what's behind the plug, as long as it fits in the outlet. In psuedocode terms it could be written like this:
public interface ElectricOutlet {
public void powerUp();
}
And a class that implements ElectricOutlet might look like this:
public class Appliance implements ElectricOutlet {
//member variables
public void powerUp() {
//Draw power from the wall
}
...
}
So how do you use that interface? Like this:
//lots of other code
ElectricOutlet out = new Appliance(); //plug the appliance into the outlet
out.powerUp; //power it up!
Of course, it doesn't have to be an appliance that you plug into an outlet. It could be a TV, or a laptop, or a lawn mower, but they all behave the same way from the outlet's point of view. So how does this apply to programming? In exactly the same way:
List<String> list = new ArrayList<String>(); // create a new List of Strings
I just created a new (empty) List of Strings. If it turns out that ArrayList doesn't provide the right performance, and LinkedList works better, I can go back and change that line to this:
List<String> = new LinkedList<String>(); //should work better now
I can do this because both ArrayList and LinkedList implement the List interface, and thus they provide the same behavior (API), even though the internal implementations may be different. From the List's point of view, however, it doesn't matter what the internal workings are, just as long as the interface is there. This allows a lot of independence between classes, and allows more reuse.
Simple. I think Interfaces and Abstract classes are for the same purpose. The difference is If you extend an Abstract Class, you could not extend no other class in Java. Reason: Java does not support Multiple Inheritance. At the same time, You can implement any number of Interface for a class.
The most important use of interfaces as i see it is passing code(anonymous inner class or lambda) to a method as parameter.
Example:
Suppose we want to make a method which can return the execution time required to run a piece of code. We want to pass our code as a parameter to this method.
interface Code{
public void run();
}
long getExectutionTime(Code code){
long startTime = System.nanoTime();
code.run();
return System.nanoTime() - startTime;
}
getExecutionTime(new Code(){
public void run(){
//the code to be executed
}
});
In java 8,
getExecutionTime(()->{
//the code to be executed
});
Interface is nothing but its a guide line for the new implementation
it provides some instructions for new implementation and categorize the functionality of the object .In details like if we create an interface then we create an instruction for the implementation .

Categories