I have two vectors and i want to know where these vectors will intersect independent from direction or length. So lets just say i would draw an infinite line in either direction and i want to know where those two lines will intersect and get the coordinates. See image below for clarification:
So i want to know the coordinates of the pink X. But i can only find formulas for calculating the intersection point of two lines with an stard and end point which i dont have :( So i am looking for some help on how to approach this properly.
I have calculated the normalized direction of the blue lines: like so:
PVector norm12 = new PVector(-dir12.y, dir12.x);
PVector norm23 = new PVector(dir23.y, -dir23.x);
Some context on why i want to do this:
I am trying to find the center point of a circle created from 3 points.
All this is in 2D
If extra information is needed i am happy to provide.
If you've a endless line which is defined by a point P and a normalized direction R and a second endless line, which is defined by a point Q and a direction S, then the intersection point of the endless lines X is:
alpha ... angle between Q-P and R
beta ... angle between R and S
gamma = 180° - alpha - beta
h = | Q - P | * sin(alpha)
u = h / sin(beta)
t = | Q - P | * sin(gamma) / sin(beta)
t = dot(Q-P, (S.y, -S.x)) / dot(R, (S.y, -S.x)) = determinant(mat2(Q-P, S)) / determinant(mat2(R, S))
u = dot(Q-P, (R.y, -R.x)) / dot(R, (S.y, -S.x)) = determinant(mat2(Q-P, R)) / determinant(mat2(R, S))
X = P + R * t = Q + S * u
This can be calculated by the use of PVector, as follows:
// Intersect 2 endless lines
// line 1: "P" is on endless line, the direction is "dir1" ("R")
// line 2: "Q" is on endless line, the direction is "dir2" ("S")
PVector Intersect( PVector P, PVector dir1, PVector Q, PVector dir2) {
PVector R = dir1.copy();
PVector S = dir2.copy();
R.normalize();
S.normalize();
PVector QP = PVector.sub(Q, P);
PVector SNV = new PVector(S.y, -S.x);
float t = QP.dot(SNV) / R.dot(SNV);
PVector X = PVector.add(P, PVector.mult(R, t));
return X;
}
See the example:
void setup() {
size(500,500);
}
void draw() {
background(0, 0, 0);
stroke(255);
fill(255, 0, 0);
PVector l1p1 = new PVector(250, 150);
PVector l1p2 = new PVector(300, 300);
PVector l2p1 = new PVector(200, 180);
PVector l2p2 = new PVector(300, 220);
PVector l3p1 = new PVector(200, 300);
PVector l3p2 = new PVector(250, 280);
line(l1p1.x, l1p1.y, l1p2.x, l1p2.y);
line(l2p1.x, l2p1.y, l2p2.x, l2p2.y);
line(l3p1.x, l3p1.y, l3p2.x, l3p2.y);
PVector dir1 = PVector.sub(l1p2, l1p1);
PVector dir2 = PVector.sub(l2p2, l2p1);
PVector dir3 = PVector.sub(l3p2, l3p1);
PVector x1 = Intersect(l1p1, dir1, l2p1, dir2);
circle(x1.x, x1.y, 10);
PVector x2 = Intersect(l1p1, dir1, l3p1, dir3);
circle(x2.x, x2.y, 10);
PVector x3 = Intersect(l2p1, dir2, l3p1, dir3);
circle(x3.x, x3.y, 10);
}
Note, if the lines are parallel then the scalars of the returned point (PVector object) are infinit. This can be evaluated by Float.isInfinite. e.g:
if (!Float.isInfinite(x1.x) || !Float.isInfinite(x1.y))
circle(x1.x, x1.y, 10);
I have two characters displayed in a game I am writing, the player and the enemy. defined as such:
public void player(Graphics g) {
g.drawImage(plimg, x, y, this);
}
public void enemy(Graphics g) {
g.drawImage(enemy, 200, 200, this);
}
Then called with:
player(g);
enemy(g);
I am able to move player() around with the keyboard, but I am at a loss when trying to detect a collision between the two. A lot of people have said to use Rectangles, but being a beginner I cannot see how I would link this into my existing code. Can anyone offer some advice for me?
I think your problem is that you are not using good OO design for your player and enemies. Create two classes:
public class Player
{
int X;
int Y;
int Width;
int Height;
// Getters and Setters
}
public class Enemy
{
int X;
int Y;
int Width;
int Height;
// Getters and Setters
}
Your Player should have X,Y,Width,and Height variables.
Your enemies should as well.
In your game loop, do something like this (C#):
foreach (Enemy e in EnemyCollection)
{
Rectangle r = new Rectangle(e.X,e.Y,e.Width,e.Height);
Rectangle p = new Rectangle(player.X,player.Y,player.Width,player.Height);
// Assuming there is an intersect method, otherwise just handcompare the values
if (r.Intersects(p))
{
// A Collision!
// we know which enemy (e), so we can call e.DoCollision();
e.DoCollision();
}
}
To speed things up, don't bother checking if the enemies coords are offscreen.
First, use the bounding boxes as described by Jonathan Holland to find if you may have a collision.
From the (multi-color) sprites, create black and white versions. You probably already have these if your sprites are transparent (i.e. there are places which are inside the bounding box but you can still see the background). These are "masks".
Use Image.getRGB() on the mask to get at the pixels. For each pixel which isn't transparent, set a bit in an integer array (playerArray and enemyArray below). The size of the array is height if width <= 32 pixels, (width+31)/32*height otherwise. The code below is for width <= 32.
If you have a collision of the bounding boxes, do this:
// Find the first line where the two sprites might overlap
int linePlayer, lineEnemy;
if (player.y <= enemy.y) {
linePlayer = enemy.y - player.y;
lineEnemy = 0;
} else {
linePlayer = 0;
lineEnemy = player.y - enemy.y;
}
int line = Math.max(linePlayer, lineEnemy);
// Get the shift between the two
x = player.x - enemy.x;
int maxLines = Math.max(player.height, enemy.height);
for ( line < maxLines; line ++) {
// if width > 32, then you need a second loop here
long playerMask = playerArray[linePlayer];
long enemyMask = enemyArray[lineEnemy];
// Reproduce the shift between the two sprites
if (x < 0) playerMask << (-x);
else enemyMask << x;
// If the two masks have common bits, binary AND will return != 0
if ((playerMask & enemyMask) != 0) {
// Contact!
}
}
Links: JGame, Framework for Small Java Games
You don't want to have the collision check code inside the painting code. The painting needs to be fast. Collision can go in the game loop. Therefore you need an internal representation of the objects independent of their sprites.
Here's the main class from my collision detection program.
You can see it run at: http://www.youtube.com/watch?v=JIXhCvXgjsQ
/**
*
* #author Tyler Griffin
*/
import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
import java.awt.GraphicsDevice.*;
import java.util.ArrayList;
import java.awt.Graphics;
import java.awt.geom.Line2D;
public class collision extends JFrame implements KeyListener, MouseMotionListener, MouseListener
{
ArrayList everything=new ArrayList<tile>();
int time=0, x, y, width, height, up=0, down=0, left=0, right=0, mouse1=0, mouse2=0;
int mouseX, mouseY;
GraphicsEnvironment environment = GraphicsEnvironment.getLocalGraphicsEnvironment();
GraphicsDevice screen = environment.getDefaultScreenDevice();
DisplayMode displayMode = screen.getDisplayMode();
//private BufferStrategy strategy;
JLayeredPane pane = new JLayeredPane();
tile Tile;
circle Circle;
rectangle Rectangle;
textPane text;
public collision()
{
setUndecorated(screen.isFullScreenSupported());
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
setLayout(null);
setResizable(false);
screen.setFullScreenWindow(this);
width=displayMode.getWidth();
height=displayMode.getHeight();
Circle=new circle(-(int)Math.round((double)height/7*2),-(int)Math.round((double)height/7*2),(int)Math.round((double)height/7*.85),this);
Rectangle=new rectangle(-(int)Math.round((double)height/7*1.5),-(int)Math.round((double)height/7*1.5),(int)Math.round((double)height/7*1.5),(int)Math.round((double)height/7*1.5),this);
Tile=Circle;
Tile.move(mouseX-Tile.width/2, mouseY-Tile.height/2);
text=new textPane(0,0,width,height,this);
everything.add(new circle((int)Math.round((double)width/100*75),(int)Math.round((double)height/100*15),(int)Math.round((double)width/100*10),this));
everything.add(new rectangle((int)Math.round((double)width/100*70),(int)Math.round((double)height/100*60),(int)Math.round((double)width/100*20),(int)Math.round((double)height/100*20),this));
//everything.add(new line(750,250,750,750,this));
/*everything.add(new line(width/700*419,height/700*68,width/700*495,height/700*345,this));
everything.add(new line(width/700*495,height/700*345,width/700*749,height/700*350,this));
everything.add(new line(width/700*749,height/700*350,width/700*549,height/700*519,this));
everything.add(new line(width/700*549,height/700*519,width/700*624,height/700*800,this));
everything.add(new line(width/700*624,height/700*800,width/700*419,height/700*638,this));
everything.add(new line(width/700*419,height/700*638,width/700*203,height/700*800,this));
everything.add(new line(width/700*203,height/700*800,width/700*279,height/700*519,this));
everything.add(new line(width/700*279,height/700*519,width/700*76,height/700*350,this));
everything.add(new line(width/700*76,height/700*350,width/700*333,height/700*345,this));
everything.add(new line(width/700*333,height/700*345,width/700*419,height/700*68,this));
everything.add(new line(width/950*419,height/700*68,width/950*624,height/700*800,this));
everything.add(new line(width/950*419,height/700*68,width/950*203,height/700*800,this));
everything.add(new line(width/950*76,height/700*350,width/950*624,height/700*800,this));
everything.add(new line(width/950*203,height/700*800,width/950*749,height/700*350,this));
everything.add(new rectangle(width/950*76,height/700*350,width/950*673,1,this));*/
everything.add(new line((int)Math.round((double)width/1350*419),(int)Math.round((double)height/1000*68),(int)Math.round((double)width/1350*624),(int)Math.round((double)height/1000*800),this));
everything.add(new line((int)Math.round((double)width/1350*419),(int)Math.round((double)height/1000*68),(int)Math.round((double)width/1350*203),(int)Math.round((double)height/1000*800),this));
everything.add(new line((int)Math.round((double)width/1350*76),(int)Math.round((double)height/1000*350),(int)Math.round((double)width/1350*624),(int)Math.round((double)height/1000*800),this));
everything.add(new line((int)Math.round((double)width/1350*203),(int)Math.round((double)height/1000*800),(int)Math.round((double)width/1350*749),(int)Math.round((double)height/1000*350),this));
everything.add(new rectangle((int)Math.round((double)width/1350*76),(int)Math.round((double)height/1000*350),(int)Math.round((double)width/1350*673),1,this));
addKeyListener(this);
addMouseMotionListener(this);
addMouseListener(this);
}
public void keyReleased(KeyEvent e)
{
Object source=e.getSource();
int released=e.getKeyCode();
if (released==KeyEvent.VK_A){left=0;}
if (released==KeyEvent.VK_W){up=0;}
if (released==KeyEvent.VK_D){right=0;}
if (released==KeyEvent.VK_S){down=0;}
}//end keyReleased
public void keyPressed(KeyEvent e)
{
Object source=e.getSource();
int pressed=e.getKeyCode();
if (pressed==KeyEvent.VK_A){left=1;}
if (pressed==KeyEvent.VK_W){up=1;}
if (pressed==KeyEvent.VK_D){right=1;}
if (pressed==KeyEvent.VK_S){down=1;}
if (pressed==KeyEvent.VK_PAUSE&&pressed==KeyEvent.VK_P)
{
//if (paused==0){paused=1;}
//else paused=0;
}
}//end keyPressed
public void keyTyped(KeyEvent e){}
//***********************************************************************************************
public void mouseDragged(MouseEvent e)
{
mouseX=(e.getX());
mouseY=(e.getY());
//run();
}
public void mouseMoved(MouseEvent e)
{
mouseX=(e.getX());
mouseY=(e.getY());
//run();
}
//***********************************************************************************************
public void mousePressed(MouseEvent e)
{
if(e.getX()==0 && e.getY()==0){System.exit(0);}
mouseX=(e.getX()+x);
mouseY=(e.getY()+y);
if(Tile instanceof circle)
{
Circle.move(0-Circle.width, 0-Circle.height);
Circle.setBounds(Circle.x, Circle.y, Circle.width, Circle.height);
Tile=Rectangle;
}
else
{
Rectangle.move(0-Rectangle.width, 0-Rectangle.height);
Rectangle.setBounds(Rectangle.x, Rectangle.y, Rectangle.width, Rectangle.height);
Tile=Circle;
}
Tile.move(mouseX-Tile.width/2, mouseY-Tile.height/2);
}
public void mouseReleased(MouseEvent e)
{
//run();
}
public void mouseEntered(MouseEvent e){}
public void mouseExited(MouseEvent e){}
public void mouseClicked(MouseEvent e){}
//***********************************************************************************************
public void run()//run collision detection
{
while (this == this)
{
Tile.move(Tile.x + ((mouseX - (Tile.x + (Tile.width / 2))) / 10), Tile.y + ((mouseY - (Tile.y + (Tile.height / 2))) / 10));
//Tile.move((mouseX - Tile.width / 2), mouseY - (Tile.height / 2));
for (int i = 0; i < everything.size(); i++)
{
tile Temp = (tile) everything.get(i);
if (Temp.x < (Tile.x + Tile.width) && (Temp.x + Temp.width) > Tile.x && Temp.y < (Tile.y + Tile.height) && (Temp.y + Temp.height) > Tile.y)//rectangles collided
{
if (Temp instanceof rectangle)
{
if (Tile instanceof rectangle){rectangleRectangle(Temp);}
else {circleRectangle(Temp);}//Tile instanceof circle
}
else
{
if (Temp instanceof circle)
{
if (Tile instanceof rectangle) {rectangleCircle(Temp);}
else {circleCircle(Temp);}
}
else//line
{
if (Tile instanceof rectangle){rectangleLine(Temp);}
else{circleLine(Temp);}
}
}
}//end if
}//end for
try {Thread.sleep(16L);}
catch (Exception e) {}
Tile.setBounds(Tile.x, Tile.y, Tile.width, Tile.height);
//Rectangle.setBounds(x, y, width, height);
//Circle.setBounds(x, y, width, height);
repaint();
text.out=" ";
}//end while loop
}//end run
//***************************************special collision detection/handling functions************************************************
void rectangleRectangle(tile Temp)
{
int lapTop, lapBot, lapLeft, lapRight, small, scootX=0, scootY=0;
lapTop=(Temp.y+Temp.height)-Tile.y;
lapBot=(Tile.y+Tile.height)-Temp.y;
lapLeft=(Temp.x+Temp.width)-Tile.x;
lapRight=(Tile.x+Tile.width)-Temp.x;
small=999999999;
if (lapTop<small){small=lapTop; scootX=0; scootY=lapTop;}
if (lapBot<small){small=lapBot; scootX=0; scootY=lapBot*-1;}
if (lapLeft<small){small=lapLeft; scootX=lapLeft; scootY=0;}
if (lapRight<small){small=lapRight; scootX=lapRight*-1; scootY=0;}
Tile.move(Tile.x+scootX, Tile.y+scootY);text.out="collision detected!";
}
void circleRectangle(tile Temp)
{
if((Tile.x+Tile.width/2<=Temp.x+Temp.width && Tile.x+Tile.width/2>=Temp.x)||(Tile.y+Tile.height/2>=Temp.y && Tile.y+Tile.height/2<=Temp.y+Temp.height))
{
rectangleRectangle(Temp);
}
else//push from nearest corner
{
int x,y;
if(Tile.x+Tile.width/2>Temp.x+Temp.width && Tile.y+Tile.height/2<Temp.y){x=Temp.x+Temp.width; y=Temp.y;}
else if(Tile.x+Tile.width/2<Temp.x && Tile.y+Tile.height/2<Temp.y){x=Temp.x; y=Temp.y;}
else if(Tile.x+Tile.width/2>Temp.x+Temp.width && Tile.y+Tile.height/2>Temp.y+Temp.height){x=Temp.x+Temp.width; y=Temp.y+Temp.height;}
else {x=Temp.x; y=Temp.y+Temp.height;}
double distance = Math.sqrt(Math.pow(Tile.x+(Tile.width/2) - x, 2) + Math.pow(Tile.y+(Tile.height/2) - y, 2));
if((int)Math.round(distance)<Tile.height/2)
{
double normY = ((Tile.y+(Tile.height/2) - y) / distance);
double normX = ((Tile.x+(Tile.width/2) - x) / distance);
Tile.move(x-Tile.width/2+(int)Math.round(normX*((Tile.width/2))) , y-Tile.height/2+(int)Math.round(normY*((Tile.height/2))));text.out="collision detected!";
}
}
}
void rectangleCircle(tile Temp)
{
if((Temp.x+Temp.width/2<=Tile.x+Tile.width && Temp.x+Temp.width/2>=Tile.x)||(Temp.y+Temp.height/2>=Tile.y && Temp.y+Temp.height/2<=Tile.y+Tile.height))
{
rectangleRectangle(Temp);
}
else//push from nearest corner
{
int x,y;
if(Temp.x+Temp.width/2>Tile.x+Tile.width && Temp.y+Temp.height/2<Tile.y){x=Tile.x+Tile.width; y=Tile.y;}
else if(Temp.x+Temp.width/2<Tile.x && Temp.y+Temp.height/2<Tile.y){x=Tile.x; y=Tile.y;}
else if(Temp.x+Temp.width/2>Tile.x+Tile.width && Temp.y+Temp.height/2>Tile.y+Tile.height){x=Tile.x+Tile.width; y=Tile.y+Tile.height;}
else {x=Tile.x; y=Tile.y+Tile.height;}
double distance = Math.sqrt(Math.pow(Temp.x+(Temp.width/2) - x, 2) + Math.pow(Temp.y+(Temp.height/2) - y, 2));
if((int)Math.round(distance)<Temp.height/2)
{
double normY = ((Temp.y+(Temp.height/2) - y) / distance);
double normX = ((Temp.x+(Temp.width/2) - x) / distance);
if(Temp.x+Temp.width/2>Tile.x+Tile.width && Temp.y+Temp.height/2<Tile.y){Tile.move((Temp.x+Temp.width/2)-(int)Math.round(normX*((Temp.width/2)))-Tile.width,(Temp.y+Temp.height/2)-(int)Math.round(normY*((Temp.height/2))));text.out="collision detected!";}
else if(Temp.x+Temp.width/2<Tile.x && Temp.y+Temp.height/2<Tile.y){Tile.move((Temp.x+Temp.width/2)-(int)Math.round(normX*((Temp.width/2))),(Temp.y+Temp.height/2)-(int)Math.round(normY*((Temp.height/2))));text.out="collision detected!";}
else if(Temp.x+Temp.width/2>Tile.x+Tile.width && Temp.y+Temp.height/2>Tile.y+Tile.height){Tile.move((Temp.x+Temp.width/2)-(int)Math.round(normX*((Temp.width/2)))-Tile.width,(Temp.y+Temp.height/2)-(int)Math.round(normY*((Temp.height/2)))-Tile.height);text.out="collision detected!";}
else {Tile.move((Temp.x+Temp.width/2)-(int)Math.round(normX*((Temp.width/2))),(Temp.y+Temp.height/2)-(int)Math.round(normY*((Temp.height/2)))-Tile.height);text.out="collision detected!";}
}
}
}
void circleCircle(tile Temp)
{
double distance = Math.sqrt(Math.pow((Tile.x+(Tile.width/2)) - (Temp.x+(Temp.width/2)),2) + Math.pow((Tile.y+(Tile.height/2)) - (Temp.y+(Temp.height/2)), 2));
if((int)distance<(Tile.width/2+Temp.width/2))
{
double normX = ((Tile.x+(Tile.width/2)) - (Temp.x+(Temp.width/2))) / distance;
double normY = ((Tile.y+(Tile.height/2)) - (Temp.y+(Temp.height/2))) / distance;
Tile.move((Temp.x+(Temp.width/2))+(int)Math.round(normX*(Tile.width/2+Temp.width/2))-(Tile.width/2) , (Temp.y+(Temp.height/2))+(int)Math.round(normY*(Tile.height/2+Temp.height/2))-(Tile.height/2));text.out="collision detected!";
}
}
void circleLine(tile Temp)
{
line Line=(line)Temp;
if (Line.x1 < (Tile.x + Tile.width) && (Line.x1) > Tile.x && Line.y1 < (Tile.y + Tile.height) && Line.y1 > Tile.y)//circle may be hitting one of the end points
{
rectangle rec=new rectangle(Line.x1, Line.y1, 1, 1, this);
circleRectangle(rec);
remove(rec);
}
if (Line.x2 < (Tile.x + Tile.width) && (Line.x2) > Tile.x && Line.y2 < (Tile.y + Tile.height) && Line.y2 > Tile.y)//circle may be hitting one of the end points
{
rectangle rec=new rectangle(Line.x2, Line.y2, 1, 1, this);
circleRectangle(rec);
remove(rec);
}
int x1=0, y1=0, x2=Tile.x+(Tile.width/2), y2=Tile.y+(Tile.height/2);
x1=Tile.x+(Tile.width/2)-Line.height;//(int)Math.round(Line.xNorm*1000);
x2=Tile.x+(Tile.width/2)+Line.height;
if(Line.posSlope)
{
y1=Tile.y+(Tile.height/2)-Line.width;
y2=Tile.y+(Tile.height/2)+Line.width;
}
else
{
y1=Tile.y+(Tile.height/2)+Line.width;
y2=Tile.y+(Tile.height/2)-Line.width;
}
Point point=intersection((double)x1,(double)y1,(double)x2,(double)y2,(double)Line.x1,(double)Line.y1,(double)Line.x2,(double)Line.y2);//find intersection
if (point.x < (Line.x + Line.width) && point.x > Line.x && point.y < (Line.y + Line.height) && point.y > Line.y)//line intersects within line segment
{
//if(point!=null){System.out.println(point.x+","+point.y);}
double distance = Math.sqrt(Math.pow((Tile.x+(Tile.width/2)) - point.x,2) + Math.pow((Tile.y+(Tile.width/2)) - point.y, 2));
if((int)distance<Tile.width/2)
{
//System.out.println("hit");
double normX = ((Tile.x+(Tile.width/2)) - point.x) / distance;
double normY = ((Tile.y+(Tile.height/2)) - point.y) / distance;
Tile.move((point.x)+(int)Math.round(normX*(Tile.width/2))-(Tile.width/2) , (point.y)+(int)Math.round(normY*(Tile.height/2))-(Tile.height/2));text.out="collision detected!";
//System.out.println(point.x+","+point.y);
}
}
//new bullet(this, (int)Math.round(tryX), (int)Math.round(tryY));
}
void rectangleLine(tile Temp)
{
line Line=(line)Temp;
if(new Line2D.Double(Line.x1,Line.y1,Line.x2,Line.y2).intersects(new Rectangle(Tile.x,Tile.y,Tile.width,Tile.height)))
{
if (Line.x1 < (Tile.x + Tile.width) && (Line.x1) > Tile.x && Line.y1 < (Tile.y + Tile.height) && Line.y1 > Tile.y)//circle may be hitting one of the end points
{
rectangle rec=new rectangle(Line.x1, Line.y1, 1, 1, this);
rectangleRectangle(rec);
remove(rec);
}
if (Line.x2 < (Tile.x + Tile.width) && (Line.x2) > Tile.x && Line.y2 < (Tile.y + Tile.height) && Line.y2 > Tile.y)//circle may be hitting one of the end points
{
rectangle rec=new rectangle(Line.x2, Line.y2, 1, 1, this);
rectangleRectangle(rec);
remove(rec);
}
if(Line.posSlope)//positive sloped line
{
//first we'll do the top left corner
int x1=Tile.x-Line.height;
int x2=Tile.x+Line.height;
int y1=Tile.y-Line.width;
int y2=Tile.y+Line.width;
Point topPoint=new Point(-99,-99), botPoint=new Point(-99,-99);
double topDistance=0, botDistance=0;
topPoint=intersection((double)x1,(double)y1,(double)x2,(double)y2,(double)Line.x1,(double)Line.y1,(double)Line.x2,(double)Line.y2);//find intersection
topDistance = Math.sqrt(Math.pow(Tile.x - topPoint.x,2) + Math.pow(Tile.y - topPoint.y, 2));
//new let's do the bottom right corner
x1=Tile.x+Tile.width-Line.height;
x2=Tile.x+Tile.width+Line.height;
y1=Tile.y+Tile.height-Line.width;
y2=Tile.y+Tile.height+Line.width;
botPoint=intersection((double)x1,(double)y1,(double)x2,(double)y2,(double)Line.x1,(double)Line.y1,(double)Line.x2,(double)Line.y2);//find intersection
botDistance = Math.sqrt(Math.pow((Tile.x+Tile.width) - botPoint.x,2) + Math.pow((Tile.y+Tile.height) - botPoint.y, 2));
if(topDistance<botDistance)
{
if(new Rectangle(Tile.x,Tile.y,Tile.width,Tile.height).contains(topPoint) && new Rectangle(Line.x,Line.y,Line.width,Line.height).contains(topPoint))
{
Tile.move(topPoint.x,topPoint.y);text.out="collision detected!";
}
}
else
{
if(new Rectangle(Tile.x,Tile.y,Tile.width,Tile.height).contains(botPoint) && new Rectangle(Line.x,Line.y,Line.width,Line.height).contains(botPoint))
{
Tile.move(botPoint.x-Tile.width,botPoint.y-Tile.height);text.out="collision detected!";
}
}
}
else//negative sloped lne
{
//first we'll do the top right corner
int x1=Tile.x+Tile.width-Line.height;
int x2=Tile.x+Tile.width+Line.height;
int y1=Tile.y+Line.width;
int y2=Tile.y-Line.width;
Point topPoint=new Point(-99,-99), botPoint=new Point(-99,-99);
double topDistance=0, botDistance=0;
topPoint=intersection((double)x1,(double)y1,(double)x2,(double)y2,(double)Line.x1,(double)Line.y1,(double)Line.x2,(double)Line.y2);//find intersection
topDistance = Math.sqrt(Math.pow(Tile.x + Tile.width - topPoint.x,2) + Math.pow(Tile.y - topPoint.y, 2));
//new let's do the bottom left corner
x1=Tile.x-Line.height;
x2=Tile.x+Line.height;
y1=Tile.y+Tile.height+Line.width;
y2=Tile.y+Tile.height-Line.width;
botPoint=intersection((double)x1,(double)y1,(double)x2,(double)y2,(double)Line.x1,(double)Line.y1,(double)Line.x2,(double)Line.y2);//find intersection
botDistance = Math.sqrt(Math.pow(Tile.x - botPoint.x,2) + Math.pow((Tile.y+Tile.height) - botPoint.y, 2));
if(topDistance<botDistance)
{
if(new Rectangle(Tile.x,Tile.y,Tile.width,Tile.height).contains(topPoint) && new Rectangle(Line.x,Line.y,Line.width,Line.height).contains(topPoint))
{
Tile.move(topPoint.x-Tile.width,topPoint.y);text.out="collision detected!";
}
}
else
{
if(new Rectangle(Tile.x,Tile.y,Tile.width,Tile.height).contains(botPoint) && new Rectangle(Line.x,Line.y,Line.width,Line.height).contains(botPoint))
{
Tile.move(botPoint.x,botPoint.y-Tile.height);text.out="collision detected!";
}
}
}
}
}
public Point intersection(double x1, double y1, double x2, double y2,double x3, double y3, double x4, double y4)//I didn't write this. got it from http://www.ahristov.com/tutorial/geometry-games/intersection-lines.html (I altered it)
{
double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
double xi = ((x3 - x4) * (x1 * y2 - y1 * x2) - (x1 - x2) * (x3 * y4 - y3 * x4)) / d;
double yi = ((y3 - y4) * (x1 * y2 - y1 * x2) - (y1 - y2) * (x3 * y4 - y3 * x4)) / d;
int x=(int)Math.round(xi);
int y=(int)Math.round(yi);
return new Point(x, y);
}
//***************************************************************************************
public static void main(String[] args)
{
final collision Collision=new collision();
Collision.run();
}//end main
}//end class
Since Java doesn't have an intersect function (really!?) you can do collision detection by simply comparying the X and Y, Width and Height values of the bounding boxes (rectangle) for each of the objects that could potentially collide.
So... in the base object of each colliding object... i.e. if your player and enemy have a common base you can put a simple Rectangle object called something like BoundingBox. If the common base is a built in Java class then you'll need to create a class that extends the build in class and have the player and enemy objects extend your new class or are instances of that class.
At creation (and each tick or update) you'll need to set the BoundingBox paremeters for both your player and enemy. I don't have the Rectangle class infront of me but its most likely something like X, Y, Width and finally Height. X and Y are that objects location in your game world. The width and height are self explanatory I think. They'll most likely come out from the right of the players location though so, if the X and Y were bothe at 0 and your Width and Height were both at 256 you wouldn't see anything because the character would be at the top left outside of the screen.
Anyways... to detect a collision, you'll want to compare the attributes of the player and enemy BoundingBoxes. So something like this...
if( Player.BoundingBox.X = Enemy.BoundingBox.X && If( Player.BoundingBox.Y = Enemy.BoundingBox.Y )
{
//Oh noes! The enemy and player are on top of eachother.
}
The logic can get sort of complicated but you'll need to compare the distances between each BoundingBox and compare locations.
Here's a useful of an open source game that uses a lot of collisions: http://robocode.sourceforge.net/
You may take a look at the code and complement with the answers written here.
is there a problem with:
Rectangle box1 = new Rectangle(100,100,100,100);
Rectangle box2 = new Rectangle(200,200,100,100);
// what this means is if any pixel in box2 enters (hits) box1
if (box1.contains(box2))
{
// collision occurred
}
// your code for moving the boxes
this can also be applied to circles:
Ellipse2D.Double ball1 = new Ellipse2D.Double(100,100,200,200);
Ellipse2D.Double ball2 = new Ellipse2D.Double(400,100,200,200);
// what this means is if any pixel on the circumference in ball2 touches (hits)
// ball1
if (ball1.contains(ball2))
{
// collision occurred
}
// your code for moving the balls
to check whether youve hit the edge of a screen you could use the following:
Rectangle screenBounds = jpanel.getBounds();
Ellipse2D.Double ball = new Ellipse2D.Double(100,100,200,200); // diameter 200
Rectangle ballBounds = ball.getBounds();
if (!screenBounds.contains(ballBounds))
{
// the ball touched the edge of the screen
}
Use a rectangle to surround each player and enemy, the height and width of the rectangles should correspond to the object you're surrounding, imagine it being in a box only big enough to fit it.
Now, you move these rectangles the same as you do the objects, so they have a 'bounding box'
I'm not sure if Java has this, but it might have a method on the rectangle object called .intersects() so you'd do if(rectangle1.intersectS(rectangle2) to check to see if an object has collided with another.
Otherwise you can get the x and y co-ordinates of the boxes and using the height/width of them detect whether they've intersected yourself.
Anyway, you can use that to either do an event on intersection (make one explode, or whatever) or prevent the movement from being drawn. (revert to previous co-ordinates)
edit: here we go
boolean
intersects(Rectangle r)
Determines whether or not this Rectangle and the specified
Rectangle intersect.
So I would do (and don't paste this code, it most likely won't work, not done java for a long time and I didn't do graphics when I did use it.)
Rectangle rect1 = new Rectangle(player.x, player.y, player.width, player.height);
Rectangle rect2 = new Rectangle(enemy.x, enemy.y, enemy.width, enemy.height);
//detects when the two rectangles hit
if(rect1.intersects(rect2))
{
System.out.println("game over, g");
}
obviously you'd need to fit that in somewhere.
No need to use rectangles ... compare the coordinates of 2 players constantly.
like
if(x1===x&&y1==y)
remember to increase the range of x when ur comparing.
if ur rectangle width is 30 take as if (x1>x&&x2>x+30)..likewise y
It's Java code for collision of two or more ImageViews not rectangles or other,use ImageViews Instead.
1.This code of Collision works every where in any views or layouts.
2.Add a timer to repeat it and to detect collision repeatedly.
3.It only works with views and layout.
if ((getLocationX(_v1) > (getLocationX(_v2) - ((_w2*3) + 40))) && (getLocationX(_v1) < (getLocationX(_v2) + ((_w2*3) +40)))){
if ((getLocationY(_v1) > (getLocationY(_v2) - ((_h2*3) + 40))) && (getLocationY(_v1) < (getLocationY(_v2) + ((_h2*3) +40)))){
showMessage("Collided");
}
}
My final goal is to have a method, lets say:
Rectangle snapRects(Rectangle rec1, Rectangle rec2);
Imagine a Rectangle having info on position, size and angle.
Dragging and dropping the ABDE rectangle close to the BCGF rectangle would call the method with ABDE as first argument and BCGF as second argument, and the resulting rectangle is a rectangle lined up with BCGF's edge.
The vertices do not have to match (and preferrably won't so the snapping isn't so restrictive).
I can only understand easily how to give the same angle, but the position change is quite confusing to me. Also, i believe even if i reached a solution it would be quite badly optimized (excessive resource cost), so I would appreciate guidance on this.
(This has already been asked but no satisfatory answer was given and the question forgotten.)
------------------------------------------------------------------
Edit: It seems my explanation was insufficient so I will try to clarify my wishes:
The following image shows the goal of the method in a nutshell:
Forget about "closest rectangle", imagine there are just two rectangles. The lines inside the rectangles represent the direction they are facing (visual aid for the angle).
There is a static rectangle, which is not to be moved and has an angle (0->360), and a rectangle (also with an angle) which I want to Snap to the closest edge of the static rectangle. By this, i mean, i want the least transformations possible for the "snap to edge" to happen.
This brings many possible cases, depending on the rotation of the rectangles and their position relative to each other.
The next image shows the static rectangle and how the position of the "To Snap" rectangle changes the snapping result:
The final rotations might not be perfect since it was done by eye, but you get the point, it matters the relative position and also both angles.
Now, in my point of view, which may be completely naive, I see this problem solved on two important and distinct steps on transforming the "To Snap" rectangle: Positioning and Rotation
Position: The objective of the new position is to stick to the closest edge, but since we want it to stick paralell to the static rectangle, the angle of the static rectangle matters. The next image shows examples of positioning:
In this case, the static rectangle has no angle, so its easy to determine up, down, left and right. But with angle, there are alot more possibilities:
As for the rotation, the goal is for the "to snap" rectangle to rotate the minimum needed to become paralell with the static rectangle:
As a final note, in regard of implementation input, the goal is to actually drag the "to snap" rectangle to wherever position i wish around the static rectangle and by pressing a keyboard key, the snap happens.
Also, it appears i have exagerated a little when i asked for optimization, to be honest i do not need or require optimization, I do prefer an easy to read, step by step clear code (if its the case), rather than any optimization at all.
I hope i was clear this time, sorry for the lack of clarity in the first place, if you have any more doubts please do ask.
The problem is obviously underspecified: What does "line up" for the edges mean? A common start point (but not necessarily a common end point)? A common center point for both edges? (That's what I assumed now). Should ALL edges match? What is the criterion for deciding WHICH edge of the first rectangle should be "matched" with WHICH edge of the second rectangle? That is, imagine one square consists exactly of the center points of the edges of the other square - how should it be aligned then?
(Secondary question: In how far is optimization (or "low resource cost") important?)
However, I wrote a few first lines, maybe this can be used to point out more clearly what the intended behavior should be - namely by saying in how far the intended behavior differs from the actual behavior:
EDIT: Old code omitted, update based on the clarification:
The conditions for the "snapping" are still not unambiguous. For example, it is not clear whether the change in position or the change in the angle should be preferred. But admittedly, I did not figure out in detail all possible cases where this question could arise. In any case, based on the updated question, this might be closer to what you are looking for.
NOTE: This code is neither "clean" nor particularly elegant or efficient. The goal until now was to find a method that delivers "satisfactory" results. Optimizations and beautifications are possible.
The basic idea:
Given are the static rectangle r1, and the rectangle to be snapped, r0
Compute the edges that should be snapped together. This is divided in two steps:
The method computeCandidateEdgeIndices1 computes the "candidate edges" (resp. their indices) of the static rectangle that the moving rectangle may be snapped to. This is based on the folowing criterion: It checks how many vertices (corners) of the moving rectangle are right of the particular edge. For example, if all 4 vertices of the moving rectangle are right of edge 2, then edge 2 will be a candidate for snapping the rectangle to.
Since there may be multiple edges for which the same number of vertices may be "right", the method computeBestEdgeIndices computes the candidate edge whose center has the least distance to the center of any edge of the moving rectangle. The indices of the respective edges are returned
Given the indices of the edges to be snapped, the angle between these edges is computed. The resulting rectangle will be the original rectangle, rotated by this angle.
The rotated rectangle will be moved so that the centers of the snapped edges are at the same point
I tested this with several configurations, and the results at least seem "feasible" for me. Of course, this does not mean that it works satisfactory in all cases, but maybe it can serve as a starting point.
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.event.MouseEvent;
import java.awt.event.MouseMotionListener;
import java.awt.geom.AffineTransform;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Line2D;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.util.ArrayList;
import java.util.List;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.SwingUtilities;
public class RectangleSnap
{
public static void main(String[] args)
{
SwingUtilities.invokeLater(new Runnable()
{
#Override
public void run()
{
createAndShowGUI();
}
});
}
private static void createAndShowGUI()
{
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
RectangleSnapPanel panel = new RectangleSnapPanel();
f.getContentPane().add(panel);
f.setSize(1000,1000);
f.setLocationRelativeTo(null);
f.setVisible(true);
}
}
class SnapRectangle
{
private Point2D position;
private double sizeX;
private double sizeY;
private double angleRad;
private AffineTransform at;
SnapRectangle(
double x, double y,
double sizeX, double sizeY, double angleRad)
{
this.position = new Point2D.Double(x,y);
this.sizeX = sizeX;
this.sizeY = sizeY;
this.angleRad = angleRad;
at = AffineTransform.getRotateInstance(
angleRad, position.getX(), position.getY());
}
double getAngleRad()
{
return angleRad;
}
double getSizeX()
{
return sizeX;
}
double getSizeY()
{
return sizeY;
}
Point2D getPosition()
{
return position;
}
void draw(Graphics2D g)
{
Color oldColor = g.getColor();
Rectangle2D r = new Rectangle2D.Double(
position.getX(), position.getY(), sizeX, sizeY);
AffineTransform at = AffineTransform.getRotateInstance(
angleRad, position.getX(), position.getY());
g.draw(at.createTransformedShape(r));
g.setColor(Color.RED);
for (int i=0; i<4; i++)
{
Point2D c = getCorner(i);
Ellipse2D e = new Ellipse2D.Double(c.getX()-3, c.getY()-3, 6, 6);
g.fill(e);
g.drawString(""+i, (int)c.getX(), (int)c.getY()+15);
}
g.setColor(Color.GREEN);
for (int i=0; i<4; i++)
{
Point2D c = getEdgeCenter(i);
Ellipse2D e = new Ellipse2D.Double(c.getX()-3, c.getY()-3, 6, 6);
g.fill(e);
g.drawString(""+i, (int)c.getX(), (int)c.getY()+15);
}
g.setColor(oldColor);
}
Point2D getCorner(int i)
{
switch (i)
{
case 0:
return new Point2D.Double(position.getX(), position.getY());
case 1:
{
Point2D.Double result = new Point2D.Double(
position.getX(), position.getY()+sizeY);
return at.transform(result, null);
}
case 2:
{
Point2D.Double result = new Point2D.Double
(position.getX()+sizeX, position.getY()+sizeY);
return at.transform(result, null);
}
case 3:
{
Point2D.Double result = new Point2D.Double(
position.getX()+sizeX, position.getY());
return at.transform(result, null);
}
}
return null;
}
Line2D getEdge(int i)
{
Point2D p0 = getCorner(i);
Point2D p1 = getCorner((i+1)%4);
return new Line2D.Double(p0, p1);
}
Point2D getEdgeCenter(int i)
{
Point2D p0 = getCorner(i);
Point2D p1 = getCorner((i+1)%4);
Point2D c = new Point2D.Double(
p0.getX() + 0.5 * (p1.getX() - p0.getX()),
p0.getY() + 0.5 * (p1.getY() - p0.getY()));
return c;
}
void setPosition(double x, double y)
{
this.position.setLocation(x, y);
at = AffineTransform.getRotateInstance(
angleRad, position.getX(), position.getY());
}
}
class RectangleSnapPanel extends JPanel implements MouseMotionListener
{
private final SnapRectangle rectangle0;
private final SnapRectangle rectangle1;
private SnapRectangle snappedRectangle0;
RectangleSnapPanel()
{
this.rectangle0 = new SnapRectangle(
200, 300, 250, 200, Math.toRadians(-21));
this.rectangle1 = new SnapRectangle(
500, 300, 200, 150, Math.toRadians(36));
addMouseMotionListener(this);
}
#Override
protected void paintComponent(Graphics gr)
{
super.paintComponent(gr);
Graphics2D g = (Graphics2D)gr;
g.setColor(Color.BLACK);
rectangle0.draw(g);
rectangle1.draw(g);
if (snappedRectangle0 != null)
{
g.setColor(Color.BLUE);
snappedRectangle0.draw(g);
}
}
#Override
public void mouseDragged(MouseEvent e)
{
rectangle0.setPosition(e.getX(), e.getY());
snappedRectangle0 = snapRects(rectangle0, rectangle1);
repaint();
}
#Override
public void mouseMoved(MouseEvent e)
{
}
private static SnapRectangle snapRects(
SnapRectangle r0, SnapRectangle r1)
{
List<Integer> candidateEdgeIndices1 =
computeCandidateEdgeIndices1(r0, r1);
int bestEdgeIndices[] = computeBestEdgeIndices(
r0, r1, candidateEdgeIndices1);
int bestEdgeIndex0 = bestEdgeIndices[0];
int bestEdgeIndex1 = bestEdgeIndices[1];
System.out.println("Best to snap "+bestEdgeIndex0+" to "+bestEdgeIndex1);
Line2D bestEdge0 = r0.getEdge(bestEdgeIndex0);
Line2D bestEdge1 = r1.getEdge(bestEdgeIndex1);
double edgeAngle = angleRad(bestEdge0, bestEdge1);
double rotationAngle = edgeAngle;
if (rotationAngle <= Math.PI)
{
rotationAngle = Math.PI + rotationAngle;
}
else if (rotationAngle <= -Math.PI / 2)
{
rotationAngle = Math.PI + rotationAngle;
}
else if (rotationAngle >= Math.PI)
{
rotationAngle = -Math.PI + rotationAngle;
}
SnapRectangle result = new SnapRectangle(
r0.getPosition().getX(), r0.getPosition().getY(),
r0.getSizeX(), r0.getSizeY(), r0.getAngleRad()-rotationAngle);
Point2D edgeCenter0 = result.getEdgeCenter(bestEdgeIndex0);
Point2D edgeCenter1 = r1.getEdgeCenter(bestEdgeIndex1);
double dx = edgeCenter1.getX() - edgeCenter0.getX();
double dy = edgeCenter1.getY() - edgeCenter0.getY();
result.setPosition(
r0.getPosition().getX()+dx,
r0.getPosition().getY()+dy);
return result;
}
// Compute for the edge indices for r1 in the given list
// the one that has the smallest distance to any edge
// of r0, and return this pair of indices
private static int[] computeBestEdgeIndices(
SnapRectangle r0, SnapRectangle r1,
List<Integer> candidateEdgeIndices1)
{
int bestEdgeIndex0 = -1;
int bestEdgeIndex1 = -1;
double minCenterDistance = Double.MAX_VALUE;
for (int i=0; i<candidateEdgeIndices1.size(); i++)
{
int edgeIndex1 = candidateEdgeIndices1.get(i);
for (int edgeIndex0=0; edgeIndex0<4; edgeIndex0++)
{
Point2D p0 = r0.getEdgeCenter(edgeIndex0);
Point2D p1 = r1.getEdgeCenter(edgeIndex1);
double distance = p0.distance(p1);
if (distance < minCenterDistance)
{
minCenterDistance = distance;
bestEdgeIndex0 = edgeIndex0;
bestEdgeIndex1 = edgeIndex1;
}
}
}
return new int[]{ bestEdgeIndex0, bestEdgeIndex1 };
}
// Compute the angle, in radians, between the given lines,
// in the range (-2*PI, 2*PI)
private static double angleRad(Line2D line0, Line2D line1)
{
double dx0 = line0.getX2() - line0.getX1();
double dy0 = line0.getY2() - line0.getY1();
double dx1 = line1.getX2() - line1.getX1();
double dy1 = line1.getY2() - line1.getY1();
double a0 = Math.atan2(dy0, dx0);
double a1 = Math.atan2(dy1, dx1);
return (a0 - a1) % (2 * Math.PI);
}
// In these methods, "right" refers to screen coordinates, which
// unfortunately are upside down in Swing. Mathematically,
// these relation is "left"
// Compute the "candidate" edges of r1 to which r0 may
// be snapped. These are the edges to which the maximum
// number of corners of r0 are right of
private static List<Integer> computeCandidateEdgeIndices1(
SnapRectangle r0, SnapRectangle r1)
{
List<Integer> bestEdgeIndices = new ArrayList<Integer>();
int maxRight = 0;
for (int i=0; i<4; i++)
{
Line2D e1 = r1.getEdge(i);
int right = countRightOf(e1, r0);
if (right > maxRight)
{
maxRight = right;
bestEdgeIndices.clear();
bestEdgeIndices.add(i);
}
else if (right == maxRight)
{
bestEdgeIndices.add(i);
}
}
//System.out.println("Candidate edges "+bestEdgeIndices);
return bestEdgeIndices;
}
// Count the number of corners of the given rectangle
// that are right of the given line
private static int countRightOf(Line2D line, SnapRectangle r)
{
int count = 0;
for (int i=0; i<4; i++)
{
if (isRightOf(line, r.getCorner(i)))
{
count++;
}
}
return count;
}
// Returns whether the given point is right of the given line
// (referring to the actual line *direction* - not in terms
// of coordinates in 2D!)
private static boolean isRightOf(Line2D line, Point2D point)
{
double d00 = line.getX1() - point.getX();
double d01 = line.getY1() - point.getY();
double d10 = line.getX2() - point.getX();
double d11 = line.getY2() - point.getY();
return d00 * d11 - d10 * d01 > 0;
}
}