problem with connecting multiple clients to a server - java

hey I'm writing a simple code with a server socket and multiple clients which the server gets every client's username and stores them in a hashmap.the server accepts a socket client and the client enters the username but again the server accept the same socket client and it wants its username and the code stops here.i want it to work for multiple clients not just one.
server class:
public class Server implements Serializable{
// [..]
public void serverConnect() throws IOException, ClassNotFoundException
{
listener = new ServerSocket(9090);
System.out.println("Server is running...");
while (true)
{
System.out.println("Waiting ...");
socket=listener.accept();
for (Socket socket:socketList.keySet())
{
if (this.socket==socket)
{
checkSocket=false;
}
}
if (checkSocket)
{
socketList.put(socket,socketNumber);
System.out.println("Client is connected");
inputReader = new InputStreamReader(socket.getInputStream());
reader = new BufferedReader(inputReader);
user = reader.readLine();
Server.userList.add(user);
socketNumber++;
}
checkSocket=true;
}
}
}
client class:
public class Client {
public Client() {
}
public void clientConnect() throws UnknownHostException, IOException {
System.out.println("enter your username");
Scanner scanner = new Scanner(System.in);
String msg = scanner.nextLine();
Socket socket = new Socket("localhost", 9090);
PrintWriter writer = new PrintWriter(socket.getOutputStream(), true);
writer.println(msg);
}
}

In principle you have the workings of single thread server (which means it can accept only one client connection at a time). The main issue is that you have over-complicated how you receive a connection.
You can simplify your current code by dealing by moving the client connection socket and readers into the local scope and dealing with the socket directly.
public void serverConnect() throws IOException {
listener = new ServerSocket(9090);
System.out.println("Server is running...");
while (true) {
System.out.println("Waiting ...");
Socket socket = listener.accept();
try (BufferedReader reader = new BufferedReader(new InputStreamReader(socket.getInputStream()))) {
String user = reader.readLine();
Server.userList.add(user);
} catch (IOException ignore) {
} finally {
socket.close();
}
}
}
As you can see you don't need to keep hold of the socket beyond reading the value sent. If you are only expecting the one line of data from the client, you should also close the socket otherwise the client can hold the server hostage by not sending any data until the socket timeout is reached.
Further to this you also want to wrap the code inside the while loop with a try/catch block to prevent an exception terminating the server.
As I mentioned in the opening paragraph this code works as a single threaded server and it can only respond to a single request at a time. If you want to accept and process multiple requests you will need to spawn a new thread to handle the response. I would recommend constructing your code as below but for the sake of brevity you could do something like below:
public void serverConnect() throws IOException {
int MAX_WORKERS = 100;
ExecutorService service = Executors.newFixedThreadPool(MAX_WORKERS);
ServerSocket listener = new ServerSocket(9090);
System.out.println("Server is running...");
while (true) {
System.out.println("Waiting ...");
Socket socket = listener.accept();
service.submit(() -> {
System.out.println("Client is connected");
try {
try (BufferedReader reader = new BufferedReader(new InputStreamReader(socket.getInputStream()))) {
String user = reader.readLine();
Server.userList.add(user);
} finally {
socket.close();
}
} catch (Throwable ignore) {
}
});
}
}
So all that is happening above is that we are creating a thread pool of 100 threads using the ExecutorService. This means in theory we can accept 100 concurrent connections.
When a connection is accepted, we submit the socket and worker code to a thread which means that the main thread can return to listening for a new connections.

Related

Writing Java Server to handle multiple client concurrently (simultaneously)

I am working on a program where I have a Server and Client class, but at the moment it only handles only one client at a time.
I need the server to be able to handle multiple clients concurrently (simultaneously), using multithreading.
Here is my Server code; how can I change it to handle multiple clients concurrently?
public static void main(String[] args) throws IOException {
ServerSocket socket = new ServerSocket(8945);
Server serverInstance = new Server();
System.out.println("Server is running. Waiting for client.");
while(true) {
server.socket = s.accept();
System.out.println("Client connected");
serverInstance.run();
System.out.println("Client disconnected. Waiting for new client.");
}
}
public void run() {
try {
try {
in = new Scanner(socket.getInputStream());
out = new PrintWriter(socket.getOutputStream());
RequestHandlingMethod();
} finally {
socket.close();
}
} catch (IOException e) {
System.err.println(e);
}
}
Create a separate class that handles the client. Make it implement Runnable so that you can just start a separate Thread with it.
public class ClientHandler implements Runnable {
private final Socket socket;
public ClientHandler(Socket socket) {
this.socket = socket;
}
public void run() {
try (Socket socket = this.socket;
Scanner in = new Scanner(socket.getInputStream();
PrintWriter out = new PrintWriter(socket.getOutputStream()) {
//todo: do whatever you need to do
} catch (IOException ex) {
ex.printStackTrace();
}
System.out.println("Client disconnected.");
}
}
Then in your server you do:
System.out.println("Waiting for new client connection");
Socket clientSocket = s.accept();
System.out.println("Client connected");
new Thread(new ClientHandler(clientSocket)).start();
If you don't want to create a lot of disposable Threads, you might want to consider using an ExecutorService with a cached thread pool (or another thread pool of your choice if you prefer).
You would just create a new ExecutorService with ExecutorService executor = ExecutorService.newCachedThreadPool() and then inside your loop you do:
System.out.println("Waiting for new client connection");
Socket clientSocket = s.accept();
System.out.println("Client connected");
executor.submit(new ClientHandler(clientSocket));
If you think you are going to have a lot of concurrent clients, you might want to look at using a non-blocking server with NIO instead. It will have 1 single event loop thread instead (doesn't block on the accept) and handles all I/O events in there, and you can have a pool of worker threads that do the client handling logic.

How to close a socket which is locked in an infinite loop?

I have created a server-client project where the server keeps listening and prints the information. However, when i shutdown the client, the server remains open. The problem is that I need to insert this into another application, and, if the server does not close at first, the application will not open unless i kill the process in that port (but this is not an option to me). What should I do to properly close the server once the client disconnects?
Here is the code:
Server:
public class Server {
public static void main(String[] args) {
Connection conn = new Connection();
new Thread(conn).start();
}
private static class Connection implements Runnable {
#Override
public void run() {
try (ServerSocket serverSocket = new ServerSocket(5005)) {
Socket socket = serverSocket.accept();
listener(socket);
} catch (IOException ex) {
ex.printStackTrace();
}
}
private void listener(Socket socket) throws IOException {
DataOutputStream outputStream = new DataOutputStream(socket.getOutputStream());
DataInputStream inputStream = new DataInputStream(socket.getInputStream());
boolean alive = true;
while (alive) {
try {
outputStream.writeUTF(new Scanner(System.in).nextLine());
System.out.println(inputStream.readUTF());
} catch (IOException ex) {
ex.printStackTrace();
alive = false;
}
}
}
}
}
Client:
public class Client {
public static void main(String[] args) {
try (Socket socket = new Socket("localhost", 5005)) {
DataInputStream inputStream = new DataInputStream(socket.getInputStream());
DataOutputStream outputStream = new DataOutputStream(socket.getOutputStream());
while (socket.isConnected()) {
System.out.println("Incoming data: " + inputStream.readUTF());
outputStream.writeUTF(new Scanner(System.in).nextLine());
outputStream.flush();
}
} catch (IOException ex) {
ex.printStackTrace();
}
}
}
Since now, thank you very much!
The thing that force the system wait and not close is this line at your Server.java :
outputStream.writeUTF(new Scanner(System.in).nextLine());
Once it starts waiting the user input, it waits forever along the life time of the instance although your client is disconnected.
So what you can do ? You can create another thread that makes periodic "ENTER" inputs (if you insist using new Scanner(System.in)) for example input per 5 seconds. After the enter, or any other meaningful input, if you decide this is not from your client, don't write it to the client and wait user input again (if your client still connected !). If your client is not connected, just finish your loop.
Please check Java Robot class and this example

MultiThreaded Server, which is a client to another server

I'm using a server socket to accept clients on the main thread, when a thread is accepted,the clients socket is given to a handler which is started in a new thread to process communications. However, before I start running my server to access clients, it connects to a second server which it must list to and be able to respond to and pass on the messages it gets to it's clients.
Hopefully this image illustrate what I mean:
The small server must be continuously listening for input from the big server, and also able to output responses.
//Default constructor
private smallServer(){}
//method to initialise and start the server
public static void StartServer(int port) throws IOException {
smallServer ss = new smallServer();
ss.bs= new bigServerClient(ss);
Thread nsc_Thread = new Thread(ss.bsc);
bsc_Thread.start();
//accepts clients and starts new thread for them
ss.ServerRun(port);
}
private void ServerRun(int port) throws IOException {
ServerSocket server = new ServerSocket(port);
server.setSoTimeout(50);
while (run) {
Socket client = null;
try {
client = server.accept();
} catch (SocketTimeoutException e) {
}
if (client != null) {
ClientHandler handler = new ClientHandler(client, this);
Thread handleThread = new Thread(handler);
handleThread.start();
}
}
if (!run) {
synchronized (ClientHandler.handlers) {
for (ClientHandler handler : ClientHandler.handlers) {
handler.terminateHandler();
}
}
System.exit(0);
}
}
public void processBigServerCommand(String toProcess) {
System.out.println("RESEAVED: " + toProcess);
}
The big server client(on the small server) then does this:
public class bigServerClient implements Runnable {
private smalsServer ss;
private PrintWriter printer;
private BufferedReader reader;
private Socket socket;
public bigServerClient(smallServer _ss) throws IOException {
ss = _ss;
socket = new Socket("Localhost", 5000);
printer = new PrintWriter(socket.getOutputStream());
reader = new BufferedReader(new InputStreamReader(socket.getInputStream()));
printer.flush();
SendBigServerMessage("Starting String");
}
private void SendBigServerMessage(String toSend) {
printer.print(toSend);
printer.flush();
}
#Override
public void run() {
try {
while (ss.state()) {
String inputLine;
while ((inputLine = reader.readLine()) != null) {
ss.processBigServerCommand(inputLine);
System.out.println(inputLine);
}
}
} catch (IOException e) {
} finally {
try {
socket.close();
} catch (IOException ex) {
}
}
}
}
From what's above, can anyone see why the big server client isn't responding to the big server when a message is sent? I'm guessing it's something to do with the main thread blocking the second thread, but I'm not sure... Any help would be greatly appreciated.
You lost me in your code...
Simplify it.
Your smallServer (see class names conventions) should have persistent connection to BigServer (effectively it is BigServer client) - you can implement it in your smallServer class, it should connect (once) and open I/O to BigServer (once) and close everything once the connection is terminated.
As your smallServer will handle multiple clients and pass their requests to BigServer there is no guarantee of the order of BigServer responses - you should do something to handle that (maybe pass UUID with requests?)
Simplify your smallServer and make sure that it runs...

Multiple non-simultaneous Java client-server connections using always the same port

I'm trying to test a scenario where one server accepts connections(one each time) from one client, using always the same ports (on the server and on the client side).
The purpose is to have 1 client application sending little pieces of data at a rate bigger than 100/min. The well obvious solution would be to have an always connected link between the client and the server, but this is production stuff, and that would require bigger changes in the code that is already implemented. With the solution we have implemented today, we always have +-1K of connections in TIME_WAIT, and I want to get rid of them.
I have implemented a simple tester, and the code is:
public class Server {
public static void main(String[] args) {
ServerSocket ssock = null;
try {
ssock = new ServerSocket();
ssock.bind(new InetSocketAddress(Common.SERVER_PORT));
} catch (IOException e) {
e.printStackTrace();
System.exit(-1);
}
while(true){
try{
Socket cSock = ssock.accept();
BufferedReader reader = new BufferedReader(new InputStreamReader(cSock.getInputStream()));
reader.readLine();
PrintWriter writer = new PrintWriter(cSock.getOutputStream());
writer.println(Common.SERVER_SEND);
writer.flush();
reader.close();
writer.close();
cSock.close();
}catch (Exception e) {
System.out.println(e.getClass().getName() + ": " + e.getMessage());
}
}
}
}
public class Client {
public static void main(String[] args) throws Exception {
InetSocketAddress cliAddr = new InetSocketAddress(
InetAddress.getByName(args[0]),
Common.CLIENT_PORT);
InetSocketAddress srvAddr = new InetSocketAddress(
InetAddress.getByName(args[1]),
Common.SERVER_PORT);
for(int j=1;j<=50;j++){
Socket sock = null;
try{
sock = new Socket();
sock.setReuseAddress(true);
sock.bind(cliAddr);
sock.connect(srvAddr);
PrintWriter writer =
new PrintWriter(
sock.getOutputStream());
writer.println(Common.CLIENT_SEND);
writer.flush();
BufferedReader reader =
new BufferedReader(
new InputStreamReader(
sock.getInputStream()));
reader.readLine();
}catch (Exception e) {
System.out.println(e.getClass().getName() + ": " + e.getMessage());
System.exit(-1);
}finally{
if(sock!=null) sock.close();
System.out.println("Done " + j);
}
}
}
}
public class Common {
public static final int SERVER_PORT = 9009;
public static final int CLIENT_PORT = 9010;
public static final String CLIENT_SEND = "Message";
public static final String SERVER_SEND = "OK";
}
When executing the client and server, on windows hosts, in one client execution I always get
java.net.ConnectException: Connection timed out
When executing the client and the server in linux hosts, on some client executions I get a
java.net.NoRouteToHostException: Cannot assign requested address
I've been killing my head over this behavior. Can someone please tell me if it is possible to do what I want, and what I am doing wrong?
If you want to get rid of the TIME_WAIT state, don't be the peer that receives the close. Be the peer that initiates the close. In this case, close the connection immediately after reading the response, and have the server cycle around looking for another request so that it reads the EOF rather than just closing the connection immediately after sending the response. However this will only make the problem worse, as all the TIME_WAIT states will accumulate at the server rather than at the client. On the other hand, the server is now structured to accept multiple requests per connection, so then all you have to do is adapt the clients to use a connection pool and all your problems are solved.

how to communicate between client and server in java

I have a chat program. Now the code works for communicate between client and server via command line. But it gives an exception (java.net.SocketException: Socket is closed) while running. Please help me to fix that problem.
In a java chat program,how will the communication be implemented between client and server?
ie.
client<-->server (between server and client)
or
client A<-->server<-->client B (server act as a bridge between two clients)
Is the 2 way communication can be implemented through a single socket?
Are there any other methods ?
How to communicate more than one client simultaneously?
server code
class Server
{
ServerSocket server;
Socket client;
public Server()
{
try
{
server = new ServerSocket(2000);
System.out.println("\tServer Started..........");
while (true)
{
client = server.accept();
Send objsend = new Send(client);
Recive objrecive = new Recive(client);
//client.close();
}
}
catch (Exception e)
{
System.out.println("Exception4 " + e);
}
}
public static void main(String arg[])
{
new Server();
}
}
class Recive implements Runnable
{
Socket client;
public Recive(Socket client1)
{
client=client1;
Thread trsend=new Thread(this);
trsend.start();
}
public void run()
{
ObjectInputStream ois;
Message M=new Message();
try
{
ois = new ObjectInputStream(client.getInputStream());
M = (Message)ois.readObject();
M.display();
ois.close();
}
catch (Exception e)
{
System.out.println("Exception1 " + e);
}
}
}
class Send implements Runnable
{
Socket client;
public Send(Socket client1)
{
client=client1;
Thread trrecive=new Thread(this);
trrecive.start();
}
public void run()
{
Message M=new Message();
InputStreamReader isr=new InputStreamReader(System.in);
BufferedReader br=new BufferedReader(isr);
try
{
System.out.println("Me(server)");
M.strmessage=br.readLine();
ObjectOutputStream oos=new ObjectOutputStream(cli ent.getOutputStream());
oos.writeObject((Message)M);
oos.flush();
oos.close();
}
catch (Exception e)
{
System.out.println("Exception " + e);
}
}
}
client code
class Client
{
public static void main(String arg[])
{
try
{
Send objsend=new Send();
Recive objrecive=new Recive();
}
catch(Exception e)
{
System.out.println("Exception "+e);
}
}
}
class Send implements Runnable
{
public Send()
{
Thread trsend=new Thread(this);
trsend.start();
}
public void run()
{
try
{
Message M=new Message();
InputStreamReader isr=new InputStreamReader(System.in);
BufferedReader br=new BufferedReader(isr);
while(true)
{
System.out.println("Me(client)");
M.strmessage=br.readLine();
Socket client=new Socket("localhost",2000);
ObjectOutputStream oos=new ObjectOutputStream(client.getOutputStream());
oos.writeObject((Message)M);
oos.flush();
oos.close();
}
}
catch(Exception e)
{
System.out.println("Exception "+e);
}
}
}
class Recive implements Runnable
{
public Recive()
{
Thread trrecive=new Thread(this);
trrecive.start();
}
public void run()
{
try
{
while(true)
{
Socket client=new Socket("localhost",2000);
ObjectInputStream ois=new ObjectInputStream(client.getInputStream());
Message CNE=(Message)ois.readObject();
CNE.display();
ois.close();
}
}
catch(Exception e)
{
System.out.println("Exception "+e);
}
}
}
First of all, don't close the streams in every run().
Secondly, check whether port for server which you are using is free.
This program makes your pc both host and server.
import java.io.IOException;
import java.net.*;
public class ClientServer {
static byte[] buffer = new byte[100];
private static void runClient() throws IOException {
byte buffer[] = new byte[100];
InetAddress address = InetAddress.getLocalHost();
DatagramSocket ds=new DatagramSocket();
int pos = 0;
while (pos<buffer.length) {
int c = System.in.read();
buffer[pos++]=(byte)c;
if ((char)c =='\n')
break;
}
System.out.println("Sending " + pos + " bytes");
ds.send(new DatagramPacket(buffer, pos, address, 3000));
}
private static void runServer() throws IOException {
InetAddress address = InetAddress.getLocalHost();
DatagramSocket ds = new DatagramSocket(3000, address);
DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
ds.receive(dp);
String s=new String(dp.getData(),0,dp.getLength());
System.out.print(s);
}
public static void main(String args[]) throws IOException {
if (args.length == 1) {
runClient();
} else {
runServer();
}
}
}
also follow this link
There could be multiple places where the exception could be thrown. Without a stack trace it is difficult to state so accurately, as to the cause of failure.
But the root cause, is essentially due to the fact that you are closing the InputStream of the socket in your Receiver threads after reading a message, and closing the OutputStream of the socket in your Sender threads after sending a message. Closing either of these streams will automatically close the socket, so you if attempt to perform any further operation on it, a SocketException will be thrown.
If you need to ensure that your server and client do not shutdown in such an abrupt manner, you'll have to keep reading the InputStream (until you get a special message to shutdown, for instance). At the same time, you'll also have to keep writing to the OutputStream. Two-way communication is definitely possible, and the posted code is capable of the same (if the socket remains open).
If you have to handle multiple clients, you'll need multiple reader and writer threads on the server, each listening on an instance of a Socket returned from ServerSocket.accept(); in simpler words, you need a reader-writer pair listening on a distinct socket on the server for each client. At the moment, multiple clients can connect to the Server, as each incoming connection is provided its own client Socket object on the Server, that is provided to individual reader and writer threads. The main Server thread can continue to receive incoming connections and delegate the actual work to the reader-writer pairs.
chat programms normaly have a server through which all communication goes. The reason is that other wise every client needs to know how to reach every other client. And that doesn't work in the general case.
So you'll have a server, every client registers and talks with the server, which will forward messages to other clients.
Mostly communication is done via HTTP cause this is likely to go through firewalls and proxies. You probably want to read up on long polling if you are planning for anything serious.

Categories