BinaryTree postorder output not correct - java

I have to answer the following question as a working code:
Design an algorithm for the following operations for a binary tree BT, and show the worst-case running times for each implementation:
preorderNext(x): return the node visited after node x in a pre-order traversal of BT.
postorderNext(x): return the node visited after node x in a post-order traversal of BT.
inorderNext(x): return the node visited after node x in an in-order traversal of BT.
which I answered using the following code:
class Node {
public Node parent, left, right;
int data;
public Node(int data)
{
this.data = data;
}
public String toString() {
return "" + this.data;
}
}
public class BinaryTree {
Node root;
BinaryTree() {
root = null;
}
public static Node preorderNext(Node v){
if(v.left != null) {
return v.left;
}
if(v.right != null) {
return v.right;
}
Node k = v.parent;
while (k != null && (k.right == null || k.right.equals(v))) {
v = k;
k = k.parent;
}
if(k == null) {
return null;
}
return k.right;
}
public static Node postorderNext(Node v){
Node k = v.parent;
if(k == null) {
return null;
}
if (k.right != null && k.right.equals(v)) {
return k;
}
if(k.right == null) {
return k;
}
k = k.right;
while (k.left != null || k.right != null) {
if(k.left != null) {
k = k.left;
}
else {
k = k.right;
}
}
return k;
}
public static Node inorderNext(Node v) {
if(v.right != null) {
Node k = v.right;
while (k.left != null) {
k = k.left;
}
return k;
}
if(v.parent == null) {
return null;
}
Node k = v.parent;
if(k.left != null && k.left.equals(v)) {
return k;
}
while (k != null && (k.right == null || k.right.equals(v))) {
v = k;
k = k.parent;
}
return k;
}
public static void main(String[] args) {
Node[] n = new Node[9];
for (int i = 1; i <= 9; i++) {
n[i-1] = new Node(i);
}
n[0].left = n[1];
n[0].right = n[2];
n[1].left = n[3];
n[1].right = n[4];
n[3].right = n[8];
n[2].left = n[5];
n[5].left = n[6];
n[6].right = n[7];
for(int i=1; i<=9; i++){
System.out.print("inOrderNext("+i+") = " + BinaryTree.inorderNext(n[i - 1]) + "\t");
System.out.print("preOrderNext("+i+") = " + BinaryTree.preorderNext(n[i - 1]) + "\t");
System.out.print("postOrderNext("+i+") = " + BinaryTree.postorderNext(n[i - 1]) + "\n");
}
}
}
Not 100% confident about the main method and postorderNext() since the output is always null (which it shouldn't)
inOrderNext(1) = 7 preOrderNext(1) = 2 postOrderNext(1) = null
inOrderNext(2) = 5 preOrderNext(2) = 4 postOrderNext(2) = null
inOrderNext(3) = null preOrderNext(3) = 6 postOrderNext(3) = null
inOrderNext(4) = 9 preOrderNext(4) = 9 postOrderNext(4) = null
inOrderNext(5) = null preOrderNext(5) = null postOrderNext(5) = null
inOrderNext(6) = null preOrderNext(6) = 7 postOrderNext(6) = null
inOrderNext(7) = 8 preOrderNext(7) = 8 postOrderNext(7) = null
inOrderNext(8) = null preOrderNext(8) = null postOrderNext(8) = null
inOrderNext(9) = null preOrderNext(9) = null postOrderNext(9) = null
any ideas on what went wrong for postorderNext()

Related

Binary Tree Java Error

The error I believe starts on line 102: int treeDepth(Node Node) because when I run the code with a regular while loop with a count, it runs and displays a tree. But as soon as I change the while condition to while (treeDepth(this.root) <= 5) it runs but displays nothing, and I get no errors. Trying to make it so the tree that is created doesn't have a depth larger than 5.
import java.io.*;
import java.util.*;
class Node {
int value;
Node left;
Node right;
Node(int value) {
this.value = value;
right = null;
left = null;
}
}
public class treeStructureBinary{
Node root;
public static void main(String[] args) {
treeStructureBinary bn =new treeStructureBinary();
bn.appMain(args);
}
void appMain(String[] args) {
createBinaryTree();
}
private Node addRecursive(Node current, int value) {
if (current == null) {
return new Node(value);
}
if (value < current.value) {
current.left = addRecursive(current.left, value);
} else if (value > current.value) {
current.right = addRecursive(current.right, value);
} else {
return current;
}
return current;
}
public void add(int value) {
this.root = addRecursive(this.root, value);
}
public treeStructureBinary createBinaryTree() {
treeStructureBinary bt = new treeStructureBinary();
int [] array = new int[89];
int counter = 0;
boolean check = true;
while (treeDepth(this.root) <= 5)
{
Random rand = new Random();
int n = rand.nextInt(89) + 10;
for(int z = 0; z <= counter; z++)
{
if ( n == array[z])
{
check = false;
break;
}
}
if (check == true)
{
bt.add(n);
array[counter] = n;
counter++;
}
check = true;
}
bt.traverseLevelOrder();
return bt;
}
public void traverseLevelOrder() {
if (this.root == null) {
return;
}
Queue<Node> nodes = new LinkedList<>();
nodes.add(this.root);
while (!nodes.isEmpty()) {
Node node = nodes.remove();
System.out.print(" " + node.value);
if (node.left != null) {
nodes.add(node.left);
}
if (node.right != null) {
nodes.add(node.right);
}
}
}
int treeDepth(Node Node){
if (Node == null) {
return 0;
}else {
int lDepth = treeDepth(Node.left);
int rDepth = treeDepth(Node.right);
if (lDepth > rDepth) {
System.out.println("lDepth" + "\n");
return (lDepth + 1);
}else {
System.out.println("rDepth" + "\n");
return (rDepth + 1);
}
}
}
}
I think your addRecursive never actually adds the node to the tree--or always adds it? Anyway it looks funky. I'd focus on that for a bit.
This code in particular:
if (value < current.value) {
current.left = addRecursive(current.left, value);
} else if (value > current.value) {
current.right = addRecursive(current.right, value);
} else {
return current;
}
always forces an assign (even if it's not a leaf) and the final else will only execute when value == current.value which is probably not what you want.
I don't really want to go much further because it looks homeworky and you'll gain more figuring it out yourself.
It might work anyway (You just may be re-assigning every node at every level) but I'm not sure without running it.
Anyway, if this is a homework assignment I'd really like to commend you on your style, it's one of the best I've seen posted here for a homework-like question.
Main problem here is that you are working on two different trees.
First you create one tree in main function:
public static void main(String[] args) {
treeStructureBinary bn =new treeStructureBinary();
bn.appMain(args);
}
Then you create another one in createBinaryTree method:
public SthApplication createBinaryTree() {
treeStructureBinary bt = new treeStructureBinary();
See, you used new keyword twice, so there will be two objects.
Later in your app you refer to this.root (which is the one from main), but some methods use local variable bt.
In example, treeDepth(this.root) operates on different tree then the bt.add(n), so it goes into infinite loop.
If you solve that problem, you will know how to finish the rest.
Thanks guys I figured it out!
import java.io.*;
import java.util.*;
class Node {
int value;
int balancefactor;
int nodex;
Node left;
Node right;
Node(int value, int balancefactor, int nodex) {
this.value = value;
this.balancefactor = balancefactor;
this.nodex = nodex;
this.right = null;
this.left = null;
}
}
public class treeStructureBinary{
Node root;
public static void main(String[] args) {
treeStructureBinary bn =new treeStructureBinary();
bn.appMain(args);
}
void appMain(String[] args) {
int count = args.length;
if (count >1) {
count = 1;
}
String [] cmdln = {""};
for (int i=0;i<count;i++) {
cmdln[i]=args[i];
}
if (cmdln[0].equals("BT")){
createBinaryTree();
} else if (cmdln[0].equals("AVL")) {
} else {
System.out.println("Please enter BT or AVL to choose the type of
tree.");
}
}
private Node addRecursive(Node current, int value, int balancefactor, int
nodex) {
if (current == null) {
return new Node(value, balancefactor, nodex);
} if (value < current.value) {
balancefactor++;
nodex=(nodex*2);
current.left = addRecursive(current.left, value, balancefactor,
nodex);
} else if (value > current.value) {
balancefactor++;
nodex=(nodex*2)+1;
current.right = addRecursive(current.right, value, balancefactor,
nodex);
} else {
return current;
}
return current;
}
public void add(int value) {
int balancefactor=1;
int nodex=0;
this.root = addRecursive(this.root, value, balancefactor, nodex);
}
public treeStructureBinary createBinaryTree() {
treeStructureBinary bt = new treeStructureBinary();
int [] array = new int[89];
int counter = 0;
boolean check = true;
int temp = 0;
while (temp < 5) {
Random rand = new Random();
int n = rand.nextInt(89) + 10;
for(int z = 0; z <= counter; z++) {
if ( n == array[z]) {
check = false;
break;
}
}
if (check == true) {
bt.add(n);
array[counter] = n;
counter++;
}
check = true;
temp = bt.treeDepth();
}
bt.traverseLevelOrder();
Scanner reader =new Scanner(System.in);
System.out.println("\n\nEnter a number to delete or 0 to exit");
int input = reader.nextInt();
Boolean isMatch = true;
while (input!=0) {
for(int p = 0; p < counter; p++)
{
//System.out.println(array[p]);
if (input != array[p])
{
isMatch = false;
}
else
{
isMatch = true;
array[p] = 0;
break;
}
}
if (isMatch == false )
{
System.out.println("Error, number not found.");
}
bt.nodeDelete(input);
bt.traverseLevelOrder();
System.out.println("\n\nEnter a number to delete or 0 to exit");
input = reader.nextInt();
}
return bt;
}
public void traverseLevelOrder() {
int count = 0;
int outer = 31;
int inner = 30;
int lastnode= 0;
int check = 0;
if (this.root == null) {
return;
}
Queue<Node> nodes = new LinkedList<>();
nodes.add(this.root);
while (!nodes.isEmpty()) {
Node node = nodes.remove();
if (count < node.balancefactor) {
System.out.print("\n");
for (int i=0; i<outer; i++) {
System.out.print(" ");
}
inner=outer;
outer=outer/2;
count++;
lastnode=0;
check=0;
}
check=((node.nodex-lastnode));
for (int i=0; i<(inner*check*2);i++) {
System.out.print(" ");
}
if (check >1) {
for (int j=0;j<check;j++) {
System.out.print(" ");
}
}
lastnode=node.nodex;
System.out.print(node.value);
if (node.left != null) {
nodes.add(node.left);
}
if (node.right != null) {
if (node.right==null &&lastnode == 0) {
if (count==5) {
break;
}
System.out.print(" ");
}
nodes.add(node.right);
}
}
}
int treeDepth(){
int temp = treeDepthRecursive(this.root);
return temp;
}
int treeDepthRecursive(Node current) {
if (current == null) {
return 0;
} else {
int lDepth = treeDepthRecursive(current.left);
int rDepth = treeDepthRecursive(current.right);
if (lDepth > rDepth) {
return (lDepth + 1);
} else {
return (rDepth + 1);
}
}
}
public void nodeDelete(int value) {
nodeDeleteRecursive(root, value);
}
public Node nodeDeleteRecursive(Node current, int value) {
if (current == null) {
return null;
}
if (value == current.value) {
if (current.left ==null && current.right==null) {
return null;
}
if (current.right==null) {
return current.left;
}
if (current.left==null) {
return current.right;
}
int sValue = findSmall(current.right);
current.value = sValue;
current.right = nodeDeleteRecursive(current.right, sValue);
return current;
}
if (value < current.value) {
current.left = nodeDeleteRecursive(current.left, value);
return current;
}
current.right =nodeDeleteRecursive(current.right, value);
return current;
}
public int findSmall(Node root) {
return root.left == null?(root.value):(findSmall(root.left));
}
}

Adding Number Represented by Linked List

I'm stuck on this problem:
You have two numbers represented by a linked list, where each node contains a single digit. The digits are stored in reverse order, such that the 1’s digit is at the head of the list. Write a function that adds the two numbers and returns the sum as a linked list.
EXAMPLE
Input: (3 -> 1 -> 5), (5 -> 9 -> 2)
Output: 8 -> 0 -> 8
The problem is that my result is 8 8 while the result should be 8 0 8.
I printed out the sum and it is 8 10 8 so it should work.
Any ideas?
Here is my code:
public Node addNumbers(Node number1, Node number2) {
if(number1 == null && number2 == null)
return null;
Node sumOf = null;
int sum = 0;
int carry = 0;
while(number1 != null && number2 != null) {
sum = number1.data + number2.data + carry;
System.out.println(sum);
// update carry for next operation
if(sum > 9)
carry = 1;
else
carry = 0;
if(sum > 9) {
if(sumOf == null) {
sumOf = new Node(sum % 10);
} else {
sumOf.next = new Node(sum % 10);
}
} else {
if(sumOf == null) {
sumOf = new Node(sum);
} else {
sumOf.next = new Node(sum);
}
}
number1 = number1.next;
number2 = number2.next;
}
return sumOf;
}
public void toString(Node node) {
System.out.println();
while (node != null) {
System.out.print(node.data + " ");
node = node.next;
}
}
public static void main(String[] args) {
AddTwoNumbers add = new AddTwoNumbers();
number1 = new Node(3);
number1.next = new Node(1);
number1.next.next = new Node(5);
number2 = new Node(5);
number2.next = new Node(9);
number2.next.next = new Node(2);
System.out.println("numbers: ");
add.toString(number1);
add.toString(number2);
System.out.println();
System.out.println("after adding: ");
add.toString(add.addNumbers(number1, number2));
}
}
You only ever set sumOf (if it is null) and sumOf.next (if sumOf is not null). Your resulting list therefore never has more than two elements. You need to track the current tail of your list and append there, instead of always appending to sumOf.
Additionally, you need to handle the cases where one input number has more digits than the other, and where you have non-zero carry after exhausting all the input digits. You do not presently handle either.
Here is the solution, do note that i carry forward when the sum of two integers is greater than 9 else i continue with the sum of next integers from both the list.
class Node {
private Object data;
private Node next;
public Object getData() { return data; }
public void setData(Object data) { this.data = data; }
public Node getNext() { return next; }
public void setNext(Node next) { this.next = next; }
public Node(final Object data, final Node next) {
this.data = data;
this.next = next;
}
#Override
public String toString() { return "Node:[Data=" + data + "]"; }
}
class SinglyLinkedList {
Node start;
public SinglyLinkedList() { start = null; }
public void addFront(final Object data) {
// create a reference to the start node with new data
Node node = new Node(data, start);
// assign our start to a new node
start = node;
}
public void addRear(final Object data) {
Node node = new Node(data, null);
Node current = start;
if (current != null) {
while (current.getNext() != null) {
current = current.getNext();
}
current.setNext(node);
} else {
addFront(data);
}
}
public void deleteNode(final Object data) {
Node previous = start;
if (previous == null) {
return;
}
Node current = previous.getNext();
if (previous != null && previous.getData().equals(data)) {
start = previous.getNext();
previous = current;
current = previous.getNext();
return;
}
while (current != null) {
if (current.getData().equals(data)) {
previous.setNext(current.getNext());
current = previous.getNext();
} else {
previous = previous.getNext();
current = previous.getNext();
}
}
}
public Object getFront() {
if (start != null) {
return start.getData();
} else {
return null;
}
}
public void print() {
Node current = start;
if (current == null) {
System.out.println("SingleLinkedList is Empty");
}
while (current != null) {
System.out.print(current);
current = current.getNext();
if (current != null) {
System.out.print(", ");
}
}
}
public int size() {
int size = 0;
Node current = start;
while (current != null) {
current = current.getNext();
size++;
}
return size;
}
public Node getStart() {
return this.start;
}
public Node getRear() {
Node current = start;
Node previous = current;
while (current != null) {
previous = current;
current = current.getNext();
}
return previous;
}
}
public class AddNumbersInSinglyLinkedList {
public static void main(String[] args) {
SinglyLinkedList listOne = new SinglyLinkedList();
SinglyLinkedList listTwo = new SinglyLinkedList();
listOne.addFront(5);
listOne.addFront(1);
listOne.addFront(3);
listOne.print();
System.out.println();
listTwo.addFront(2);
listTwo.addFront(9);
listTwo.addFront(5);
listTwo.print();
SinglyLinkedList listThree = add(listOne, listTwo);
System.out.println();
listThree.print();
}
private static SinglyLinkedList add(SinglyLinkedList listOne, SinglyLinkedList listTwo) {
SinglyLinkedList result = new SinglyLinkedList();
Node startOne = listOne.getStart();
Node startTwo = listTwo.getStart();
int carry = 0;
while (startOne != null || startTwo != null) {
int one = 0;
int two = 0;
if (startOne != null) {
one = (Integer) startOne.getData();
startOne = startOne.getNext();
}
if (startTwo != null) {
two = (Integer) startTwo.getData();
startTwo = startTwo.getNext();
}
int sum = carry + one + two;
carry = 0;
if (sum > 9) {
carry = sum / 10;
result.addRear(sum % 10);
} else {
result.addRear(sum);
}
}
return result;
}
}
Sample Run
Node:[Data=3], Node:[Data=1], Node:[Data=5]
Node:[Data=5], Node:[Data=9], Node:[Data=2]
Node:[Data=8], Node:[Data=0], Node:[Data=8]
**#In Python:-**
class Node():
def __init__(self,value):
self.value=value
self.nextnode=None
class LinkedList():
def __init__(self):
self.head=None
def add_element(self,value):
node=Node(value)
if self.head is None:
self.head =node
return
crnt_node=self.head
while crnt_node.nextnode is not None:
crnt_node=crnt_node.nextnode
crnt_node.nextnode=node
def reverse_llist(self):
crnt_node=self.head
if crnt_node == None:
print('Empty Linkned List')
return
old_node = None
while crnt_node:
temp_node = crnt_node.nextnode
crnt_node.nextnode = old_node
old_node = crnt_node
crnt_node = temp_node
self.head = old_node
def converted_llist(self):
crnt_node=self.head
carry_value=0
while True:
#print(crnt_node.value)
if (crnt_node.value+1)%10==0:
carry_value=1
crnt_node.value=0
print(crnt_node.value,end='->')
else:
print(crnt_node.value+carry_value,end='->')
if crnt_node.nextnode is None:
break
crnt_node=crnt_node.nextnode
print('None')
def print_llist(self):
crnt_node=self.head
while True:
print(crnt_node.value,end='->')
if crnt_node.nextnode is None:
break
crnt_node=crnt_node.nextnode
print('None')
list_convert=LinkedList()
list_convert.add_element(1)
list_convert.print_llist()
list_convert.add_element(9)
list_convert.print_llist()
list_convert.add_element(9)
list_convert.print_llist()
list_convert.add_element(9)
list_convert.print_llist()
list_convert.reverse_llist()
list_convert.print_llist()
list_convert.converted_llist()

Adding a Node to the beginning/start of list

I'm creating a method to add nodes into the list. The method will have the value and the position where the user wants the node. I'm able to add the node anywhere but the start of the list.
I have also added the toString method so there is an idea of how the it is to be displayed. At the bottom I added what main has.
//ADD A NODE
public boolean add(double val, int pos)
{
Node t = root;
Node n = new Node();
int count = 1;
if(pos-1 == 0)
{
n.next = t;
t = n;
n.val = val;
}
else
while(t != null)
{
if(pos-1 == count)
{
n.next = t.next;
t.next = n;
n.val = val;
}
t = t.next;
count++;
}
return true;
}
//toString Method
public String toString()
{
String s = "Contents of list: \n";
if( root == null )
s = s + "\tThe list is empty!";
Node t = root;
while(t != null)
{
s = s + t.val + "\t";
t = t.next;
}
return s;
}
//Main
//Add Node to list
list.add(105.0, 1);
System.out.println( list );
if(pos-1 == 0)
{
n.next = t;
root = n;
n.val = val;
}
Fix this so that root is modified.

AVL tree rotation in Java

I want to implement the Java AVL tree and to rotate the tree left and right. I am not getting this.
Can anybody by looking at the code below tell me how can I possibly rotate the tree left and right and then use fix up with those two functions to balance the AVL tree?
I hope someone here can guide me through this.
import java.util.Random;
import java.util.SortedSet;
import java.util.TreeSet;
public class AVLTree<T> extends
BinarySearchTree<AVLTree.Node<T>, T> implements SSet<T> {
Random rand;
public static class Node<T> extends BSTNode<Node<T>,T> {
int h; // the height of the node
}
public AVLTree() {
sampleNode = new Node<T>();
rand = new Random();
c = new DefaultComparator<T>();
}
public int height(Node<T> u) {
return (u == null) ? 0 : u.h;
}
public boolean add(T x) {
Node<T> u = new Node<T>();
u.x = x;
if (super.add(u)) {
for (Node<T> w = u; w != nil; w = w.parent) {
// walk back up to the root adjusting heights
w.h = Math.max(height(w.left), height(w.right)) + 1;
}
fixup(u);
return true;
}
return false;
}
public void splice(Node<T> u) {
Node<T> w = u.parent;
super.splice(u);
for (Node<T> z = u; z != nil; z = z.parent)
z.h = Math.max(height(z.left), height(z.right)) + 1;
fixup(w);
}
public void checkHeights(Node<T> u) {
if (u == nil) return;
checkHeights(u.left);
checkHeights(u.right);
if (height(u) != 1 + Math.max(height(u.left), height(u.right)))
throw new RuntimeException("Check heights shows incorrect heights");
int dif = height(u.left) - height(u.right);
if (dif < -1 || dif > 1)
throw new RuntimeException("Check heights found height difference of " + dif);
}
/**
* TODO: finish writing this method
* #param u
*/
public void fixup(Node<T> u) {
while (u != nil) {
int dif = height(u.left) - height(u.right);
if (dif > 1) {
// TODO: add code here to fix AVL condition
// on the path from u to the root, if necessary
} else if (dif < -1) {
// TODO: add code here to fix AVL condition
// on the path from u to the root, if necessary
}
u = u.parent;
}
}
public Node rotateLeft() {
return rotateLeft(u.parent);
}
public void rotateLeft(Node<T> u) {
// TODO: Recompute height values at u and u.parent
}
public void rotateRight(Node<T> u) {
// TODO: Recompute height values at u and u.parent
}
public static <T> T find(SortedSet<T> ss, T x) {
SortedSet<T> ts = ss.tailSet(x);
if (!ts.isEmpty()) {
return ts.first();
}
return null;
}
/**
* This just does some very basic correctness testing
* #param args
*/
public static void main(String[] args) {
AVLTree<Integer> t = new AVLTree<Integer>();
Random r = new Random(0);
System.out.print("Running AVL tests...");
int n = 1000;
for (int i = 0; i < n; i++) {
t.add(r.nextInt(2*n));
t.checkHeights(t.r);
}
for (int i = 0; i < n; i++) {
t.remove(r.nextInt(2*n));
t.checkHeights(t.r);
}
System.out.println("done");
t.clear();
System.out.print("Running correctness tests...");
n = 100000;
SortedSet<Integer> ss = new TreeSet<Integer>();
Random rand = new Random();
for (int i = 0; i < n; i++) {
Integer x = rand.nextInt(2*n);
boolean b1 = t.add(x);
boolean b2 = ss.add(x);
if (b1 != b2) {
throw new RuntimeException("Adding " + x + " gives " + b2
+ " in SortedSet and " + b1 + " in AVL Tree");
}
}
for (int i = 0; i < n; i++) {
Integer x = rand.nextInt(2*n);
Integer x1 = t.find(x);
Integer x2 = find(ss, x);
if (x1 != x2) {
throw new RuntimeException("Searching " + x + " gives " + x2
+ " in SortedSet and " + x1 + " in AVL Tree");
}
ss.headSet(x);
}
for (int i = 0; i < n; i++) {
Integer x = rand.nextInt(2*n);
boolean b1 = t.remove(x);
boolean b2 = ss.remove(x);
if (b1 != b2) {
throw new RuntimeException("Error (2): Removing " + x + " gives " + b2
+ " in SortedSet and " + b1 + " in AVL Tree");
}
}
for (int i = 0; i < n; i++) {
Integer x = rand.nextInt(2*n);
Integer x1 = t.find(x);
Integer x2 = find(ss, x);
if (x1 != x2) {
throw new RuntimeException("Error (3): Searching " + x + " gives " + x2
+ " in SortedSet and " + x1 + " in AVL Tree");
}
ss.headSet(x);
}
System.out.println("done");
}
}
Full AVL tree implementation:
public class AVLTree<T> {
private AVLNode<T> root;
private static class AVLNode<T> {
private T t;
private int height;
private AVLNode<T> left;
private AVLNode<T> right;
private AVLNode(T t) {
this.t = t;
height = 1;
}
}
public void insert(T value) {
root = insert(root, value);
}
private AVLNode<T> insert(AVLNode<T> n, T v) {
if (n == null) {
n = new AVLNode<T>(v);
return n;
} else {
int k = ((Comparable) n.t).compareTo(v);
if (k > 0) {
n.left = insert(n.left, v);
} else {
n.right = insert(n.right, v);
}
n.height = Math.max(height(n.left), height(n.right)) + 1;
int heightDiff = heightDiff(n);
if (heightDiff < -1) {
if (heightDiff(n.right) > 0) {
n.right = rightRotate(n.right);
return leftRotate(n);
} else {
return leftRotate(n);
}
} else if (heightDiff > 1) {
if (heightDiff(n.left) < 0) {
n.left = leftRotate(n.left);
return rightRotate(n);
} else {
return rightRotate(n);
}
} else;
}
return n;
}
private AVLNode<T> leftRotate(AVLNode<T> n) {
AVLNode<T> r = n.right;
n.right = r.left;
r.left = n;
n.height = Math.max(height(n.left), height(n.right)) + 1;
r.height = Math.max(height(r.left), height(r.right)) + 1;
return r;
}
private AVLNode<T> rightRotate(AVLNode<T> n) {
AVLNode<T> r = n.left;
n.left = r.right;
r.right = n;
n.height = Math.max(height(n.left), height(n.right)) + 1;
r.height = Math.max(height(r.left), height(r.right)) + 1;
return r;
}
private int heightDiff(AVLNode<T> a) {
if (a == null) {
return 0;
}
return height(a.left) - height(a.right);
}
private int height(AVLNode<T> a) {
if (a == null) {
return 0;
}
return a.height;
}
}
Here's a full implementation of AVL tree in Java
class Node {
int key;
Node left;
Node right;
int height;
Node(int value) {
key = value;
left = null;
right = null;
height = 1;
}
}
class AVLTree {
Node root;
int height(Node root) {
if (root == null)
return 0;
return root.height;
}
int findHeight() {
return height(root);
}
int findHeightFrom(int value) {
Node node = search(root, value);
if (node == null)
return -1;
return node.height;
}
Node search(Node root, int value) {
if (root == null)
return null;
else {
if (value == root.key)
return root;
else if (value < root.key)
return search(root.left, value);
else
return search(root.right, value);
}
}
boolean find(int value) {
Node node = search(root,value);
if (node == null)
return false;
return true;
}
int max(int one, int two) {
return (one > two) ? one : two;
}
Node rightRotate(Node root) {
Node rootLeftChild = root.left;
root.left = rootLeftChild.right;
rootLeftChild.right = root;
root.height = max(height(root.left), height(root.right)) + 1;
rootLeftChild.height = max(height(rootLeftChild.left), height(rootLeftChild.right)) + 1;
return rootLeftChild;
}
Node leftRotate(Node root) {
Node rootRightChild = root.right;
root.right = rootRightChild.left;
rootRightChild.left = root;
root.height = max(height(root.left), height(root.right)) + 1;
rootRightChild.height = max(height(rootRightChild.left), height(rootRightChild.right)) + 1;
return rootRightChild;
}
Node insertNode(Node root, int value) {
if (root == null)
root = new Node(value);
else {
if (value < root.key)
root.left = insertNode(root.left, value);
else
root.right = insertNode(root.right, value);
}
root.height = max(height(root.left), height(root.right)) + 1;
int balanceFactor = height(root.left) - height(root.right);
if (balanceFactor > 1) {
// either left-left case or left-right case
if (value < root.left.key) {
// left-left case
root = rightRotate(root);
} else {
// left-right case
root.left = leftRotate(root.left);
root = rightRotate(root);
}
} else if (balanceFactor < -1) {
// either right-right case or right-left case
if (value > root.right.key) {
// right-right case
root = leftRotate(root);
} else {
// right-left case
root.right = rightRotate(root.right);
root = leftRotate(root);
}
}
return root;
}
void insert(int value) {
root = insertNode(root, value);
}
void inorder(Node root) {
if (root != null) {
inorder(root.left);
System.out.print(root.key + " ");
inorder(root.right);
}
}
void inorderTraversal() {
inorder(root);
System.out.println();
}
void preorder(Node root) {
if (root != null) {
System.out.print(root.key + " ");
preorder(root.left);
preorder(root.right);
}
}
void preorderTraversal() {
preorder(root);
System.out.println();
}
}
public class AVLTreeExample {
public static void main(String[] args) {
AVLTree avl = new AVLTree();
avl.insert(10);
avl.insert(20);
avl.insert(30);
avl.insert(40);
avl.insert(50);
avl.insert(25);
System.out.print("Inorder Traversal : "); avl.inorderTraversal();
System.out.print("Preorder Traversal : "); avl.preorderTraversal();
System.out.println("Searching for 10 : " + avl.find(10));
System.out.println("Searching for 11 : " + avl.find(11));
System.out.println("Searching for 20 : " + avl.find(20));
System.out.println("Height of the tree : " + avl.findHeight());
System.out.println("Finding height from 10 : " + avl.findHeightFrom(10));
System.out.println("Finding height from 20 : " + avl.findHeightFrom(20));
System.out.println("Finding height from 25 : " + avl.findHeightFrom(25));
}
}
in order to rotate it right
you need to first check if the parent is not root
then if the parent is the right of the grand parent
if so, set the right of the grand parent to the child
else, set the left of the gran parent to the child
otherwise,
root is child

Binary Heap Implemented via a Binary Tree Structure

For an assignment, we were instructed to create a priority queue implemented via a binary heap, without using any built-in classes, and I have done so successfully by using an array to store the queued objects. However, I'm interested in learning how to implement another queue by using an actual tree structure, but in doing so I've run across a bit of a problem.
How would I keep track of the nodes on which I would perform insertion and deletion? I have tried using a linked list, which appends each node as it is inserted - new children are added starting from the first list node, and deleted from the opposite end. However, this falls apart when elements are rearranged in the tree, as children are added at the wrong position.
Edit: Perhaps I should clarify - I'm not sure how I would be able to find the last occupied and first unoccupied leaves. For example, I would always be able to tell the last inserted leaf, but if I were to delete it, how would I know which leaf to delete when I next remove the item? The same goes for inserting - how would I know which leaf to jump to next after the current leaf has both children accounted for?
A tree implementation of a binary heap uses a complete tree [or almost full tree: every level is full, except the deepest one].
You always 'know' which is the last occupied leaf - where you delete from [and modifying it is O(logn) after it changed so it is not a problem], and you always 'know' which is the first non-occupied leaf, in which you add elements to [and again, modifying it is also O(logn) after it changed].
The algorithm idea is simple:
insert: insert element to the first non-occupied leaf, and use heapify [sift up] to get this element to its correct place in the heap.
delete_min: replace the first element with the last occupied leaf, and remove the last occupied leaf. then, heapify [sift down] the heap.
EDIT: note that delete() can be done to any element, and not only the head, however - finding the element you want to replace with the last leaf will be O(n), which will make this op expensive. for this reason, the delete() method [besides the head], is usually not a part of the heap data structure.
I really wanted to do this for almost a decade.Finally sat down today and wrote it.Anyone who wants it can use it.I got inspired by Quora founder to relearn Heap.Apparently he was asked how would you find K near points in a set of n points in his Google phone screen.Apparently his answer was to use a Max Heap and to store K values and remove the maximum element after the size of the heap exceeds K.The approach is pretty simple and the worst case is nlog K which is better than n^2 in most sorting cases.Here is the code.
import java.util.ArrayList;
import java.util.List;
/**
* #author Harish R
*/
public class HeapPractise<T extends Comparable<T>> {
private List<T> heapList;
public List<T> getHeapList() {
return heapList;
}
public void setHeapList(List<T> heapList) {
this.heapList = heapList;
}
private int heapSize;
public HeapPractise() {
this.heapList = new ArrayList<>();
this.heapSize = heapList.size();
}
public void insert(T item) {
if (heapList.size() == 0) {
heapList.add(item);
} else {
siftUp(item);
}
}
public void siftUp(T item) {
heapList.add(item);
heapSize = heapList.size();
int currentIndex = heapSize - 1;
while (currentIndex > 0) {
int parentIndex = (int) Math.floor((currentIndex - 1) / 2);
T parentItem = heapList.get(parentIndex);
if (parentItem != null) {
if (item.compareTo(parentItem) > 0) {
heapList.set(parentIndex, item);
heapList.set(currentIndex, parentItem);
currentIndex = parentIndex;
continue;
}
}
break;
}
}
public T delete() {
if (heapList.size() == 0) {
return null;
}
if (heapList.size() == 1) {
T item = heapList.get(0);
heapList.remove(0);
return item;
}
return siftDown();
}
public T siftDown() {
T item = heapList.get(0);
T lastItem = heapList.get(heapList.size() - 1);
heapList.remove(heapList.size() - 1);
heapList.set(0, lastItem);
heapSize = heapList.size();
int currentIndex = 0;
while (currentIndex < heapSize) {
int leftIndex = (2 * currentIndex) + 1;
int rightIndex = (2 * currentIndex) + 2;
T leftItem = null;
T rightItem = null;
int currentLargestItemIndex = -1;
if (leftIndex <= heapSize - 1) {
leftItem = heapList.get(leftIndex);
}
if (rightIndex <= heapSize - 1) {
rightItem = heapList.get(rightIndex);
}
T currentLargestItem = null;
if (leftItem != null && rightItem != null) {
if (leftItem.compareTo(rightItem) >= 0) {
currentLargestItem = leftItem;
currentLargestItemIndex = leftIndex;
} else {
currentLargestItem = rightItem;
currentLargestItemIndex = rightIndex;
}
} else if (leftItem != null && rightItem == null) {
currentLargestItem = leftItem;
currentLargestItemIndex = leftIndex;
}
if (currentLargestItem != null) {
if (lastItem.compareTo(currentLargestItem) >= 0) {
break;
} else {
heapList.set(currentLargestItemIndex, lastItem);
heapList.set(currentIndex, currentLargestItem);
currentIndex = currentLargestItemIndex;
continue;
}
}
}
return item;
}
public static void main(String[] args) {
HeapPractise<Integer> heap = new HeapPractise<>();
for (int i = 0; i < 32; i++) {
heap.insert(i);
}
System.out.println(heap.getHeapList());
List<Node<Integer>> nodeArray = new ArrayList<>(heap.getHeapList()
.size());
for (int i = 0; i < heap.getHeapList().size(); i++) {
Integer heapElement = heap.getHeapList().get(i);
Node<Integer> node = new Node<Integer>(heapElement);
nodeArray.add(node);
}
for (int i = 0; i < nodeArray.size(); i++) {
int leftNodeIndex = (2 * i) + 1;
int rightNodeIndex = (2 * i) + 2;
Node<Integer> node = nodeArray.get(i);
if (leftNodeIndex <= heap.getHeapList().size() - 1) {
Node<Integer> leftNode = nodeArray.get(leftNodeIndex);
node.left = leftNode;
}
if (rightNodeIndex <= heap.getHeapList().size() - 1) {
Node<Integer> rightNode = nodeArray.get(rightNodeIndex);
node.right = rightNode;
}
}
BTreePrinter.printNode(nodeArray.get(0));
}
}
public class Node<T extends Comparable<?>> {
Node<T> left, right;
T data;
public Node(T data) {
this.data = data;
}
}
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
class BTreePrinter {
public static <T extends Comparable<?>> void printNode(Node<T> root) {
int maxLevel = BTreePrinter.maxLevel(root);
printNodeInternal(Collections.singletonList(root), 1, maxLevel);
}
private static <T extends Comparable<?>> void printNodeInternal(
List<Node<T>> nodes, int level, int maxLevel) {
if (nodes.isEmpty() || BTreePrinter.isAllElementsNull(nodes))
return;
int floor = maxLevel - level;
int endgeLines = (int) Math.pow(2, (Math.max(floor - 1, 0)));
int firstSpaces = (int) Math.pow(2, (floor)) - 1;
int betweenSpaces = (int) Math.pow(2, (floor + 1)) - 1;
BTreePrinter.printWhitespaces(firstSpaces);
List<Node<T>> newNodes = new ArrayList<Node<T>>();
for (Node<T> node : nodes) {
if (node != null) {
String nodeData = String.valueOf(node.data);
if (nodeData != null) {
if (nodeData.length() == 1) {
nodeData = "0" + nodeData;
}
}
System.out.print(nodeData);
newNodes.add(node.left);
newNodes.add(node.right);
} else {
newNodes.add(null);
newNodes.add(null);
System.out.print(" ");
}
BTreePrinter.printWhitespaces(betweenSpaces);
}
System.out.println("");
for (int i = 1; i <= endgeLines; i++) {
for (int j = 0; j < nodes.size(); j++) {
BTreePrinter.printWhitespaces(firstSpaces - i);
if (nodes.get(j) == null) {
BTreePrinter.printWhitespaces(endgeLines + endgeLines + i
+ 1);
continue;
}
if (nodes.get(j).left != null)
System.out.print("//");
else
BTreePrinter.printWhitespaces(1);
BTreePrinter.printWhitespaces(i + i - 1);
if (nodes.get(j).right != null)
System.out.print("\\\\");
else
BTreePrinter.printWhitespaces(1);
BTreePrinter.printWhitespaces(endgeLines + endgeLines - i);
}
System.out.println("");
}
printNodeInternal(newNodes, level + 1, maxLevel);
}
private static void printWhitespaces(int count) {
for (int i = 0; i < 2 * count; i++)
System.out.print(" ");
}
private static <T extends Comparable<?>> int maxLevel(Node<T> node) {
if (node == null)
return 0;
return Math.max(BTreePrinter.maxLevel(node.left),
BTreePrinter.maxLevel(node.right)) + 1;
}
private static <T> boolean isAllElementsNull(List<T> list) {
for (Object object : list) {
if (object != null)
return false;
}
return true;
}
}
Please note that BTreePrinter is a code I took somewhere in Stackoverflow long back and I modified to use with 2 digit numbers.It will be broken if we move to 3 digit numbers and it is only for simple understanding of how the Heap structure looks.A fix for 3 digit numbers is to keep everything as multiple of 3.
Also due credits to Sesh Venugopal for wonderful tutorial on Youtube on Heap data structure
public class PriorityQ<K extends Comparable<K>> {
private class TreeNode<T extends Comparable<T>> {
T val;
TreeNode<T> left, right, parent;
public String toString() {
return this.val.toString();
}
TreeNode(T v) {
this.val = v;
left = null;
right = null;
}
public TreeNode<T> insert(T val, int position) {
TreeNode<T> parent = findNode(position/2);
TreeNode<T> node = new TreeNode<T>(val);
if(position % 2 == 0) {
parent.left = node;
} else {
parent.right = node;
}
node.parent = parent;
heapify(node);
return node;
}
private void heapify(TreeNode<T> node) {
while(node.parent != null && (node.parent.val.compareTo(node.val) < 0)) {
T temp = node.val;
node.val = node.parent.val;
node.parent.val = temp;
node = node.parent;
}
}
private TreeNode<T> findNode(int pos) {
TreeNode<T> node = this;
int reversed = 1;
while(pos > 0) {
reversed <<= 1;
reversed |= (pos&1);
pos >>= 1;
}
reversed >>= 1;
while(reversed > 1) {
if((reversed & 1) == 0) {
node = node.left;
} else {
node = node.right;
}
reversed >>= 1;
}
return node;
}
public TreeNode<T> remove(int pos) {
if(pos <= 1) {
return null;
}
TreeNode<T> last = findNode(pos);
if(last.parent.right == last) {
last.parent.right = null;
} else {
last.parent.left = null;
}
this.val = last.val;
bubbleDown();
return null;
}
public void bubbleDown() {
TreeNode<T> node = this;
do {
TreeNode<T> left = node.left;
TreeNode<T> right = node.right;
if(left != null && right != null) {
T max = left.val.compareTo(right.val) > 0 ? left.val : right.val;
if(max.compareTo(node.val) > 0) {
if(left.val.equals(max)) {
left.val = node.val;
node.val = max;
node = left;
} else {
right.val = node.val;
node.val = max;
node = right;
}
} else {
break;
}
} else if(left != null) {
T max = left.val;
if(left.val.compareTo(node.val) > 0) {
left.val = node.val;
node.val = max;
node = left;
} else {
break;
}
} else {
break;
}
} while(true);
}
}
private TreeNode<K> root;
private int position;
PriorityQ(){
this.position = 1;
}
public void insert(K val) {
if(val == null) {
return;
}
if(root == null) {
this.position = 1;
root = new TreeNode<K>(val);
this.position++;
return ;
}
root.insert(val, position);
position++;
}
public K remove() {
if(root == null) {
return null;
}
K val = root.val;
root.remove(this.position-1);
this.position--;
if(position == 1) {
root = null;
}
return val;
}
public static void main(String[] args) {
PriorityQ<Integer> q = new PriorityQ<>();
System.out.println(q.remove());
q.insert(1);
q.insert(11);
q.insert(111);
q.insert(1111);
q.remove();
q.remove();
q.remove();
q.remove();
q.insert(2);
q.insert(4);
}
}

Categories