Related
I have a BlockingQueue of Runnable - I can simply execute all tasks using one of TaskExecutor implementations, and all will be run in parallel.
However some Runnable depends on others, it means they need to wait when Runnable finish, then they can be executed.
Rule is quite simple: every Runnable has a code. Two Runnable with the same code cannot be run simultanously, but if the code differ they should be run in parallel.
In other words all running Runnable need to have different code, all "duplicates" should wait.
The problem is that there's no event/method/whatsoever when thread ends.
I can built such notification into every Runnable, but I don't like this approach, because it will be done just before thread ends, not after it's ended
java.util.concurrent.ThreadPoolExecutor has method afterExecute, but it needs to be implemented - Spring use only default implementation, and this method is ignored.
Even if I do that, it's getting complicated, because I need to track two additional collections: with Runnables already executing (no implementation gives access to this information) and with those postponed because they have duplicated code.
I like the BlockingQueue approach because there's no polling, thread simply activate when something new is in the queue. But maybe there's a better approach to manage such dependencies between Runnables, so I should give up with BlockingQueue and use different strategy?
If the number of different codes is not that large, the approach with a separate single thread executor for each possible code, offered by BarrySW19, is fine.
If the whole number of threads become unacceptable, then, instead of single thread executor, we can use an actor (from Akka or another similar library):
public class WorkerActor extends UntypedActor {
public void onReceive(Object message) {
if (message instanceof Runnable) {
Runnable work = (Runnable) message;
work.run();
} else {
// report an error
}
}
}
As in the original solution, ActorRefs for WorkerActors are collected in a HashMap. When an ActorRef workerActorRef corresponding to the given code is obtained (retrieved or created), the Runnable job is submitted to execution with workerActorRef.tell(job).
If you don't want to have a dependency to the actor library, you can program WorkerActor from scratch:
public class WorkerActor implements Runnable, Executor {
Executor executor=ForkJoinPool.commonPool(); // or can by assigned in constructor
LinkedBlockingQueue<Runnable> queue = new LinkedBlockingQueu<>();
boolean running = false;
public synchronized void execute(Runnable job) {
queue.put(job);
if (!running) {
executor.execute(this); // execute this worker, not job!
running=true;
}
public void run() {
for (;;) {
Runnable work=null;
synchronized (this) {
work = queue.poll();
if (work==null) {
running = false;
return;
}
}
work.run();
}
}
}
When a WorkerActor worker corresponding to the given code is obtained (retrieved or created), the Runnable job is submitted to execution with worker.execute(job).
One alternate strategy which springs to mind is to have a separate single thread executor for each possible code. Then, when you want to submit a new Runnable you simply lookup the correct executor to use for its code and submit the job.
This may, or may not be a good solution depending on how many different codes you have. The main thing to consider would be that the number of concurrent threads running could be as high as the number of different codes you have. If you have many different codes this could be a problem.
Of course, you could use a Semaphore to restrict the number of concurrently running jobs; you would still create one thread per code, but only a limited number could actually execute at the same time. For example, this would serialise jobs by code, allowing up to three different codes to run concurrently:
public class MultiPoolExecutor {
private final Semaphore semaphore = new Semaphore(3);
private final ConcurrentMap<String, ExecutorService> serviceMap
= new ConcurrentHashMap<>();
public void submit(String code, Runnable job) {
ExecutorService executorService = serviceMap.computeIfAbsent(
code, (k) -> Executors.newSingleThreadExecutor());
executorService.submit(() -> {
semaphore.acquireUninterruptibly();
try {
job.run();
} finally {
semaphore.release();
}
});
}
}
Another approach would be to modify the Runnable to release a lock and check for jobs which could be run upon completion (so avoiding polling) - something like this example, which keeps all the jobs in a list until they can be submitted. The boolean latch ensures only one job for each code has been submitted to the thread pool at any one time. Whenever a new job arrives or a running one completes the code checks again for new jobs which can be submitted (the CodedRunnable is simply an extension of Runnable which has a code property).
public class SubmissionService {
private final ExecutorService executorService = Executors.newFixedThreadPool(5);
private final ConcurrentMap<String, AtomicBoolean> locks = new ConcurrentHashMap<>();
private final List<CodedRunnable> jobs = new ArrayList<>();
public void submit(CodedRunnable codedRunnable) {
synchronized (jobs) {
jobs.add(codedRunnable);
}
submitWaitingJobs();
}
private void submitWaitingJobs() {
synchronized (jobs) {
for(Iterator<CodedRunnable> iter = jobs.iterator(); iter.hasNext(); ) {
CodedRunnable nextJob = iter.next();
AtomicBoolean latch = locks.computeIfAbsent(
nextJob.getCode(), (k) -> new AtomicBoolean(false));
if(latch.compareAndSet(false, true)) {
iter.remove();
executorService.submit(() -> {
try {
nextJob.run();
} finally {
latch.set(false);
submitWaitingJobs();
}
});
}
}
}
}
}
The downside of this approach is that the code needs to scan through the entire list of waiting jobs after each task completes. Of course, you could make this more efficient - a completing task would actually only need to check for other jobs with the same code, so the jobs could be stored in a Map<String, List<Runnable>> structure instead to allow for faster processing.
I am writing code where I need to make sure that no threads are currently running in a thread pool before I commit results (to avoid losing data I should have put in the commit). For that, I'm using:
while (_executor.getActiveCount() > 0)
{
try
{
Thread.sleep(10); // milliseconds
}
catch (InterruptedException e)
{
// OK do nothing
}
}
But a colleague pointed out in review that the doc for getActiveCount states:
Returns the approximate number of threads that are actively
executing tasks.
So, is there a risk I would get out of the while loop while there are still active threads in the pool? If so, what would be the correct way to wait for all my worker threads to be done?
Edit: To give some more context: this is an online system, where the task that contains the executor service is left running indefinitely. Work comes in via a messaging system, is put on a thread in the executor, which doesn't need any synchronization, and works come out into another queue for the messaging system. I don't want to kill the executor to wait for completion of tasks.
You might want to consider using a CompletionService (http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CompletionService.html).
A CompletionService wraps an ExecutorService and returns a Future when tasks are submitted. By maintaining a list of these Futures, you can see if the jobs that you're waiting on have completed. It also has the additional advantage that you can have others use the same ExecutorService since you have some means of accounting,
_executor.awaitTermination(); should do the job. Now, it won't actually wait for the threads to shutdown, but rather it would wait for all available tasks to terminate.
You could also provide keepAliveTime to a thread pool constructor to instantly terminate idle threads:
ExecutorService executor = new ThreadPoolExecutor(0, 10, 0L /* keepAlive */,
TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>());
To notify a thread that it should clean up and terminate, use the interrupt method.
t.interrupt();
and it is good to print or have log of your errors from catch block.
When tasks are submitted to the executor, they return Futures, which indicate when they complete. That is the preferred mechanism to use.
You can use JDK ExecutorService shutdown/awaitTermination.
Use case: need to cleanup thread-locals in pool threads upon their completion and this cleanup can take long (e.g. connection close). Only after that the main thread can continue.
A worker thread can register itself in some collection. For that override start() and run() and pass a custom thread factory to ThreadPoolExecutor:
class MyThreadFactory implements ThreadFactory {
#Override
public Thread newThread(final Runnable r) {
return new MyThread(r);
}
...
class Some {
void waitAllThreads() {
Thread worker;
while ((worker = workerThreads.poll()) != null) {
worker.join();
}
}
...
class MyThread extends Thread {
#Override
public synchronized void start() {
if (getState() == State.NEW) {
some.workerThreads.offer(this);
}
super.start();
}
#Override
public void run() {
try {
super.run();
} finally {
some.workerThreads.remove(this);
}
}
...
Is there a way to use ExecutorService to pause/resume a specific thread?
private static ExecutorService threadpool = Executors.newFixedThreadPool(5);
Imagine that I want to stop the thread which as the id=0 (assuming that to each one is assigned an incremental id until the size of the threadpool is reached).
After a while, by pressing a button let's say, I want to resume that specific thread and leave all the other threads with their current status, which can be paused or resumed.
I have found on Java documentation a uncompleted version of PausableThreadPoolExecutor. But it doesn't suit what I need because it resume all the threads in the pool.
If there's no way to do it with the default implementation of the ExecutorService can anyone point me to a Java implementation for this problem?
You are on the wrong track. The thread pool owns the threads and by sharing them with your code could mess things up.
You should focus on making your tasks (passed to the threads cancellable/interruptable) and not interact with the threads owned by the pool directly.
Additionally you would not know what job is being executed at the time you try to interrupt the thread, so I can't see why you would be interested in doing this
Update:
The proper way to cancel your task submitted in the thread pool is via the Future for the task returned by the executor.
1)This way you know for sure that the task you actually aim at is attempted to be cancelled
2)If your tasks are already designed to be cancellable then your are half way there
3) Do not use a flag to indicate cancellation but use Thread.currentThread().interrupt() instead
Update:
public class InterruptableTasks {
private static class InterruptableTask implements Runnable{
Object o = new Object();
private volatile boolean suspended = false;
public void suspend(){
suspended = true;
}
public void resume(){
suspended = false;
synchronized (o) {
o.notifyAll();
}
}
#Override
public void run() {
while(!Thread.currentThread().isInterrupted()){
if(!suspended){
//Do work here
}
else{
//Has been suspended
try {
while(suspended){
synchronized(o){
o.wait();
}
}
}
catch (InterruptedException e) {
}
}
}
System.out.println("Cancelled");
}
}
/**
* #param args
* #throws InterruptedException
*/
public static void main(String[] args) throws InterruptedException {
ExecutorService threadPool = Executors.newCachedThreadPool();
InterruptableTask task = new InterruptableTask();
Map<Integer, InterruptableTask> tasks = new HashMap<Integer, InterruptableTask>();
tasks.put(1, task);
//add the tasks and their ids
Future<?> f = threadPool.submit(task);
TimeUnit.SECONDS.sleep(2);
InterruptableTask theTask = tasks.get(1);//get task by id
theTask.suspend();
TimeUnit.SECONDS.sleep(2);
theTask.resume();
TimeUnit.SECONDS.sleep(4);
threadPool.shutdownNow();
}
Suggestion: Similarly to/instead of the flags you're using, create a semaphore with 1 permit (new Semaphore(1)) for each task you need to pause/unpause. At the beginning of the task's working cycle put a code like this:
semaphore.acquire();
semaphore.release();
This causes the task to acquire a semaphore permit and immediately release it. Now if you want to pause the thread (a button is pressed, for example), call semaphore.acquire() from another thread. Since the semaphore has 0 permits now, your working thread will pause at the beginning of the next cycle and wait until you call semaphore.release() from the other thread.
(The acquire() method throws InterruptedException, if your working thread gets interrupted while waiting. There is another method acquireUninterruptibly(), which also tries to acquire a permit, but doesn't get interrupted.)
One scenario could be, one wants to simulate a number of devices. Devices have functions. Altogether this collection of devices runs concurrently. And now if a thread represents a device ( or one thread for one function of a device ), one might want to control the life cycle of the device like start(), shutdown(), resume()
I want to create a ThreadPoolExecutor such that when it has reached its maximum size and the queue is full, the submit() method blocks when trying to add new tasks. Do I need to implement a custom RejectedExecutionHandler for that or is there an existing way to do this using a standard Java library?
One of the possible solutions I've just found:
public class BoundedExecutor {
private final Executor exec;
private final Semaphore semaphore;
public BoundedExecutor(Executor exec, int bound) {
this.exec = exec;
this.semaphore = new Semaphore(bound);
}
public void submitTask(final Runnable command)
throws InterruptedException, RejectedExecutionException {
semaphore.acquire();
try {
exec.execute(new Runnable() {
public void run() {
try {
command.run();
} finally {
semaphore.release();
}
}
});
} catch (RejectedExecutionException e) {
semaphore.release();
throw e;
}
}
}
Are there any other solutions? I'd prefer something based on RejectedExecutionHandler since it seems like a standard way to handle such situations.
You can use ThreadPoolExecutor and a blockingQueue:
public class ImageManager {
BlockingQueue<Runnable> blockingQueue = new ArrayBlockingQueue<Runnable>(blockQueueSize);
RejectedExecutionHandler rejectedExecutionHandler = new ThreadPoolExecutor.CallerRunsPolicy();
private ExecutorService executorService = new ThreadPoolExecutor(numOfThread, numOfThread,
0L, TimeUnit.MILLISECONDS, blockingQueue, rejectedExecutionHandler);
private int downloadThumbnail(String fileListPath){
executorService.submit(new yourRunnable());
}
}
You should use the CallerRunsPolicy, which executes the rejected task in the calling thread. This way, it can't submit any new tasks to the executor until that task is done, at which point there will be some free pool threads or the process will repeat.
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.CallerRunsPolicy.html
From the docs:
Rejected tasks
New tasks submitted in method execute(java.lang.Runnable) will be
rejected when the Executor has been
shut down, and also when the Executor
uses finite bounds for both maximum
threads and work queue capacity, and
is saturated. In either case, the
execute method invokes the
RejectedExecutionHandler.rejectedExecution(java.lang.Runnable,
java.util.concurrent.ThreadPoolExecutor)
method of its
RejectedExecutionHandler. Four
predefined handler policies are
provided:
In the default ThreadPoolExecutor.AbortPolicy, the
handler throws a runtime
RejectedExecutionException upon
rejection.
In ThreadPoolExecutor.CallerRunsPolicy,
the thread that invokes execute itself
runs the task. This provides a simple
feedback control mechanism that will
slow down the rate that new tasks are
submitted.
In ThreadPoolExecutor.DiscardPolicy, a
task that cannot be executed is simply
dropped.
In ThreadPoolExecutor.DiscardOldestPolicy,
if the executor is not shut down, the
task at the head of the work queue is
dropped, and then execution is retried
(which can fail again, causing this to
be repeated.)
Also, make sure to use a bounded queue, such as ArrayBlockingQueue, when calling the ThreadPoolExecutor constructor. Otherwise, nothing will get rejected.
Edit: in response to your comment, set the size of the ArrayBlockingQueue to be equal to the max size of the thread pool and use the AbortPolicy.
Edit 2: Ok, I see what you're getting at. What about this: override the beforeExecute() method to check that getActiveCount() doesn't exceed getMaximumPoolSize(), and if it does, sleep and try again?
I know, it is a hack, but in my opinion most clean hack between those offered here ;-)
Because ThreadPoolExecutor uses blocking queue "offer" instead of "put", lets override behaviour of "offer" of the blocking queue:
class BlockingQueueHack<T> extends ArrayBlockingQueue<T> {
BlockingQueueHack(int size) {
super(size);
}
public boolean offer(T task) {
try {
this.put(task);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
return true;
}
}
ThreadPoolExecutor tp = new ThreadPoolExecutor(1, 2, 1, TimeUnit.MINUTES, new BlockingQueueHack(5));
I tested it and it seems to work.
Implementing some timeout policy is left as a reader's exercise.
Hibernate has a BlockPolicy that is simple and may do what you want:
See: Executors.java
/**
* A handler for rejected tasks that will have the caller block until
* space is available.
*/
public static class BlockPolicy implements RejectedExecutionHandler {
/**
* Creates a <tt>BlockPolicy</tt>.
*/
public BlockPolicy() { }
/**
* Puts the Runnable to the blocking queue, effectively blocking
* the delegating thread until space is available.
* #param r the runnable task requested to be executed
* #param e the executor attempting to execute this task
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
try {
e.getQueue().put( r );
}
catch (InterruptedException e1) {
log.error( "Work discarded, thread was interrupted while waiting for space to schedule: {}", r );
}
}
}
The BoundedExecutor answer quoted above from Java Concurrency in Practice only works correctly if you use an unbounded queue for the Executor, or the semaphore bound is no greater than the queue size. The semaphore is state shared between the submitting thread and the threads in the pool, making it possible to saturate the executor even if queue size < bound <= (queue size + pool size).
Using CallerRunsPolicy is only valid if your tasks don't run forever, in which case your submitting thread will remain in rejectedExecution forever, and a bad idea if your tasks take a long time to run, because the submitting thread can't submit any new tasks or do anything else if it's running a task itself.
If that's not acceptable then I suggest checking the size of the executor's bounded queue before submitting a task. If the queue is full, then wait a short time before trying to submit again. The throughput will suffer, but I suggest it's a simpler solution than many of the other proposed solutions and you're guaranteed no tasks will get rejected.
The following class wraps around a ThreadPoolExecutor and uses a Semaphore to block then the work queue is full:
public final class BlockingExecutor {
private final Executor executor;
private final Semaphore semaphore;
public BlockingExecutor(int queueSize, int corePoolSize, int maxPoolSize, int keepAliveTime, TimeUnit unit, ThreadFactory factory) {
BlockingQueue<Runnable> queue = new LinkedBlockingQueue<Runnable>();
this.executor = new ThreadPoolExecutor(corePoolSize, maxPoolSize, keepAliveTime, unit, queue, factory);
this.semaphore = new Semaphore(queueSize + maxPoolSize);
}
private void execImpl (final Runnable command) throws InterruptedException {
semaphore.acquire();
try {
executor.execute(new Runnable() {
#Override
public void run() {
try {
command.run();
} finally {
semaphore.release();
}
}
});
} catch (RejectedExecutionException e) {
// will never be thrown with an unbounded buffer (LinkedBlockingQueue)
semaphore.release();
throw e;
}
}
public void execute (Runnable command) throws InterruptedException {
execImpl(command);
}
}
This wrapper class is based on a solution given in the book Java Concurrency in Practice by Brian Goetz. The solution in the book only takes two constructor parameters: an Executor and a bound used for the semaphore. This is shown in the answer given by Fixpoint. There is a problem with that approach: it can get in a state where the pool threads are busy, the queue is full, but the semaphore has just released a permit. (semaphore.release() in the finally block). In this state, a new task can grab the just released permit, but is rejected because the task queue is full. Of course this is not something you want; you want to block in this case.
To solve this, we must use an unbounded queue, as JCiP clearly mentions. The semaphore acts as a guard, giving the effect of a virtual queue size. This has the side effect that it is possible that the unit can contain maxPoolSize + virtualQueueSize + maxPoolSize tasks. Why is that? Because of the
semaphore.release() in the finally block. If all pool threads call this statement at the same time, then maxPoolSize permits are released, allowing the same number of tasks to enter the unit. If we were using a bounded queue, it would still be full, resulting in a rejected task. Now, because we know that this only occurs when a pool thread is almost done, this is not a problem. We know that the pool thread will not block, so a task will soon be taken from the queue.
You are able to use a bounded queue though. Just make sure that its size equals virtualQueueSize + maxPoolSize. Greater sizes are useless, the semaphore will prevent to let more items in. Smaller sizes will result in rejected tasks. The chance of tasks getting rejected increases as the size decreases. For example, say you want a bounded executor with maxPoolSize=2 and virtualQueueSize=5. Then take a semaphore with 5+2=7 permits and an actual queue size of 5+2=7. The real number of tasks that can be in the unit is then 2+5+2=9. When the executor is full (5 tasks in queue, 2 in thread pool, so 0 permits available) and ALL pool threads release their permits, then exactly 2 permits can be taken by tasks coming in.
Now the solution from JCiP is somewhat cumbersome to use as it doesn't enforce all these constraints (unbounded queue, or bounded with those math restrictions, etc.). I think that this only serves as a good example to demonstrate how you can build new thread safe classes based on the parts that are already available, but not as a full-grown, reusable class. I don't think that the latter was the author's intention.
you can use a custom RejectedExecutionHandler like this
ThreadPoolExecutor tp= new ThreadPoolExecutor(core_size, // core size
max_handlers, // max size
timeout_in_seconds, // idle timeout
TimeUnit.SECONDS, queue, new RejectedExecutionHandler() {
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
// This will block if the queue is full
try {
executor.getQueue().put(r);
} catch (InterruptedException e) {
System.err.println(e.getMessage());
}
}
});
I don't always like the CallerRunsPolicy, especially since it allows the rejected task to 'skip the queue' and get executed before tasks that were submitted earlier. Moreover, executing the task on the calling thread might take much longer than waiting for the first slot to become available.
I solved this problem using a custom RejectedExecutionHandler, which simply blocks the calling thread for a little while and then tries to submit the task again:
public class BlockWhenQueueFull implements RejectedExecutionHandler {
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
// The pool is full. Wait, then try again.
try {
long waitMs = 250;
Thread.sleep(waitMs);
} catch (InterruptedException interruptedException) {}
executor.execute(r);
}
}
This class can just be used in the thread-pool executor as a RejectedExecutinHandler like any other, for example:
executorPool = new ThreadPoolExecutor(1, 1, 10,
TimeUnit.SECONDS, new SynchronousQueue<Runnable>(),
new BlockWhenQueueFull());
The only downside I see is that the calling thread might get locked slightly longer than strictly necessary (up to 250ms). Moreover, since this executor is effectively being called recursively, very long waits for a thread to become available (hours) might result in a stack overflow.
Nevertheless, I personally like this method. It's compact, easy to understand, and works well.
Create your own blocking queue to be used by the Executor, with the blocking behavior you are looking for, while always returning available remaining capacity (ensuring the executor will not try to create more threads than its core pool, or trigger the rejection handler).
I believe this will get you the blocking behavior you are looking for. A rejection handler will never fit the bill, since that indicates the executor can not perform the task. What I could envision there is that you get some form of 'busy waiting' in the handler. That is not what you want, you want a queue for the executor that blocks the caller...
To avoid issues with #FixPoint solution. One could use ListeningExecutorService and release the semaphore onSuccess and onFailure inside FutureCallback.
Recently I found this question having the same problem. The OP does not say so explicitly, but we do not want to use the RejectedExecutionHandler which executes a task on the submitter's thread, because this will under-utilize the worker threads if this task is a long running one.
Reading all the answers and comments, in particular the flawed solution with the semaphore or using afterExecute I had a closer look at the code of the ThreadPoolExecutor to see if there is some way out. I was amazed to see that there are more than 2000 lines of (commented) code, some of which make me feel dizzy. Given the rather simple requirement I actually have --- one producer, several consumers, let the producer block when no consumers can take work --- I decided to roll my own solution. It is not an ExecutorService but just an Executor. And it does not adapt the number of threads to the work load, but holds a fixed number of threads only, which also fits my requirements. Here is the code. Feel free to rant about it :-)
package x;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.Executor;
import java.util.concurrent.RejectedExecutionException;
import java.util.concurrent.SynchronousQueue;
/**
* distributes {#code Runnable}s to a fixed number of threads. To keep the
* code lean, this is not an {#code ExecutorService}. In particular there is
* only very simple support to shut this executor down.
*/
public class ParallelExecutor implements Executor {
// other bounded queues work as well and are useful to buffer peak loads
private final BlockingQueue<Runnable> workQueue =
new SynchronousQueue<Runnable>();
private final Thread[] threads;
/*+**********************************************************************/
/**
* creates the requested number of threads and starts them to wait for
* incoming work
*/
public ParallelExecutor(int numThreads) {
this.threads = new Thread[numThreads];
for(int i=0; i<numThreads; i++) {
// could reuse the same Runner all over, but keep it simple
Thread t = new Thread(new Runner());
this.threads[i] = t;
t.start();
}
}
/*+**********************************************************************/
/**
* returns immediately without waiting for the task to be finished, but may
* block if all worker threads are busy.
*
* #throws RejectedExecutionException if we got interrupted while waiting
* for a free worker
*/
#Override
public void execute(Runnable task) {
try {
workQueue.put(task);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new RejectedExecutionException("interrupt while waiting for a free "
+ "worker.", e);
}
}
/*+**********************************************************************/
/**
* Interrupts all workers and joins them. Tasks susceptible to an interrupt
* will preempt their work. Blocks until the last thread surrendered.
*/
public void interruptAndJoinAll() throws InterruptedException {
for(Thread t : threads) {
t.interrupt();
}
for(Thread t : threads) {
t.join();
}
}
/*+**********************************************************************/
private final class Runner implements Runnable {
#Override
public void run() {
while (!Thread.currentThread().isInterrupted()) {
Runnable task;
try {
task = workQueue.take();
} catch (InterruptedException e) {
// canonical handling despite exiting right away
Thread.currentThread().interrupt();
return;
}
try {
task.run();
} catch (RuntimeException e) {
// production code to use a logging framework
e.printStackTrace();
}
}
}
}
}
I believe there is quite elegant way to solve this problem by using java.util.concurrent.Semaphore and delegating behavior of Executor.newFixedThreadPool.
The new executor service will only execute new task when there is a thread to do so. Blocking is managed by Semaphore with number of permits equal to number of threads. When a task is finished it returns a permit.
public class FixedThreadBlockingExecutorService extends AbstractExecutorService {
private final ExecutorService executor;
private final Semaphore blockExecution;
public FixedThreadBlockingExecutorService(int nTreads) {
this.executor = Executors.newFixedThreadPool(nTreads);
blockExecution = new Semaphore(nTreads);
}
#Override
public void shutdown() {
executor.shutdown();
}
#Override
public List<Runnable> shutdownNow() {
return executor.shutdownNow();
}
#Override
public boolean isShutdown() {
return executor.isShutdown();
}
#Override
public boolean isTerminated() {
return executor.isTerminated();
}
#Override
public boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException {
return executor.awaitTermination(timeout, unit);
}
#Override
public void execute(Runnable command) {
blockExecution.acquireUninterruptibly();
executor.execute(() -> {
try {
command.run();
} finally {
blockExecution.release();
}
});
}
I had the same need in the past: a kind of blocking queue with a fixed size for each client backed by a shared thread pool. I ended up writing my own kind of ThreadPoolExecutor:
UserThreadPoolExecutor
(blocking queue (per client) + threadpool (shared amongst all clients))
See: https://github.com/d4rxh4wx/UserThreadPoolExecutor
Each UserThreadPoolExecutor is given a maximum number of threads from a shared ThreadPoolExecutor
Each UserThreadPoolExecutor can:
submit a task to the shared thread pool executor if its quota is not reached. If its quota is reached, the job is queued (non-consumptive blocking waiting for CPU). Once one of its submitted task is completed, the quota is decremented, allowing another task waiting to be submitted to the ThreadPoolExecutor
wait for the remaining tasks to complete
I found this rejection policy in elastic search client. It blocks caller thread on blocking queue. Code below-
static class ForceQueuePolicy implements XRejectedExecutionHandler
{
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor)
{
try
{
executor.getQueue().put(r);
}
catch (InterruptedException e)
{
//should never happen since we never wait
throw new EsRejectedExecutionException(e);
}
}
#Override
public long rejected()
{
return 0;
}
}
I recently had a need to achieve something similar, but on a ScheduledExecutorService.
I had to also ensure that I handle the delay being passed on the method and ensure that either the task is submitted to execute at the time as the caller expects or just fails thus throwing a RejectedExecutionException.
Other methods from ScheduledThreadPoolExecutor to execute or submit a task internally call #schedule which will still in turn invoke the methods overridden.
import java.util.concurrent.*;
public class BlockingScheduler extends ScheduledThreadPoolExecutor {
private final Semaphore maxQueueSize;
public BlockingScheduler(int corePoolSize,
ThreadFactory threadFactory,
int maxQueueSize) {
super(corePoolSize, threadFactory, new AbortPolicy());
this.maxQueueSize = new Semaphore(maxQueueSize);
}
#Override
public ScheduledFuture<?> schedule(Runnable command,
long delay,
TimeUnit unit) {
final long newDelayInMs = beforeSchedule(command, unit.toMillis(delay));
return super.schedule(command, newDelayInMs, TimeUnit.MILLISECONDS);
}
#Override
public <V> ScheduledFuture<V> schedule(Callable<V> callable,
long delay,
TimeUnit unit) {
final long newDelayInMs = beforeSchedule(callable, unit.toMillis(delay));
return super.schedule(callable, newDelayInMs, TimeUnit.MILLISECONDS);
}
#Override
public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
long initialDelay,
long period,
TimeUnit unit) {
final long newDelayInMs = beforeSchedule(command, unit.toMillis(initialDelay));
return super.scheduleAtFixedRate(command, newDelayInMs, unit.toMillis(period), TimeUnit.MILLISECONDS);
}
#Override
public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,
long initialDelay,
long period,
TimeUnit unit) {
final long newDelayInMs = beforeSchedule(command, unit.toMillis(initialDelay));
return super.scheduleWithFixedDelay(command, newDelayInMs, unit.toMillis(period), TimeUnit.MILLISECONDS);
}
#Override
protected void afterExecute(Runnable runnable, Throwable t) {
super.afterExecute(runnable, t);
try {
if (t == null && runnable instanceof Future<?>) {
try {
((Future<?>) runnable).get();
} catch (CancellationException | ExecutionException e) {
t = e;
} catch (InterruptedException ie) {
Thread.currentThread().interrupt(); // ignore/reset
}
}
if (t != null) {
System.err.println(t);
}
} finally {
releaseQueueUsage();
}
}
private long beforeSchedule(Runnable runnable, long delay) {
try {
return getQueuePermitAndModifiedDelay(delay);
} catch (InterruptedException e) {
getRejectedExecutionHandler().rejectedExecution(runnable, this);
return 0;
}
}
private long beforeSchedule(Callable callable, long delay) {
try {
return getQueuePermitAndModifiedDelay(delay);
} catch (InterruptedException e) {
getRejectedExecutionHandler().rejectedExecution(new FutureTask(callable), this);
return 0;
}
}
private long getQueuePermitAndModifiedDelay(long delay) throws InterruptedException {
final long beforeAcquireTimeStamp = System.currentTimeMillis();
maxQueueSize.tryAcquire(delay, TimeUnit.MILLISECONDS);
final long afterAcquireTimeStamp = System.currentTimeMillis();
return afterAcquireTimeStamp - beforeAcquireTimeStamp;
}
private void releaseQueueUsage() {
maxQueueSize.release();
}
}
I have the code here, will appreciate any feedback.
https://github.com/AmitabhAwasthi/BlockingScheduler
I have an object with a method named StartDownload(), that starts three threads.
How do I get a notification when each thread has finished executing?
Is there a way to know if one (or all) of the thread is finished or is still executing?
There are a number of ways you can do this:
Use Thread.join() in your main thread to wait in a blocking fashion for each Thread to complete, or
Check Thread.isAlive() in a polling fashion -- generally discouraged -- to wait until each Thread has completed, or
Unorthodox, for each Thread in question, call setUncaughtExceptionHandler to call a method in your object, and program each Thread to throw an uncaught Exception when it completes, or
Use locks or synchronizers or mechanisms from java.util.concurrent, or
More orthodox, create a listener in your main Thread, and then program each of your Threads to tell the listener that they have completed.
How to implement Idea #5? Well, one way is to first create an interface:
public interface ThreadCompleteListener {
void notifyOfThreadComplete(final Thread thread);
}
then create the following class:
public abstract class NotifyingThread extends Thread {
private final Set<ThreadCompleteListener> listeners
= new CopyOnWriteArraySet<ThreadCompleteListener>();
public final void addListener(final ThreadCompleteListener listener) {
listeners.add(listener);
}
public final void removeListener(final ThreadCompleteListener listener) {
listeners.remove(listener);
}
private final void notifyListeners() {
for (ThreadCompleteListener listener : listeners) {
listener.notifyOfThreadComplete(this);
}
}
#Override
public final void run() {
try {
doRun();
} finally {
notifyListeners();
}
}
public abstract void doRun();
}
and then each of your Threads will extend NotifyingThread and instead of implementing run() it will implement doRun(). Thus when they complete, they will automatically notify anyone waiting for notification.
Finally, in your main class -- the one that starts all the Threads (or at least the object waiting for notification) -- modify that class to implement ThreadCompleteListener and immediately after creating each Thread add itself to the list of listeners:
NotifyingThread thread1 = new OneOfYourThreads();
thread1.addListener(this); // add ourselves as a listener
thread1.start(); // Start the Thread
then, as each Thread exits, your notifyOfThreadComplete method will be invoked with the Thread instance that just completed (or crashed).
Note that better would be to implements Runnable rather than extends Thread for NotifyingThread as extending Thread is usually discouraged in new code. But I'm coding to your question. If you change the NotifyingThread class to implement Runnable then you have to change some of your code that manages Threads, which is pretty straightforward to do.
Solution using CyclicBarrier
public class Downloader {
private CyclicBarrier barrier;
private final static int NUMBER_OF_DOWNLOADING_THREADS;
private DownloadingThread extends Thread {
private final String url;
public DownloadingThread(String url) {
super();
this.url = url;
}
#Override
public void run() {
barrier.await(); // label1
download(url);
barrier.await(); // label2
}
}
public void startDownload() {
// plus one for the main thread of execution
barrier = new CyclicBarrier(NUMBER_OF_DOWNLOADING_THREADS + 1); // label0
for (int i = 0; i < NUMBER_OF_DOWNLOADING_THREADS; i++) {
new DownloadingThread("http://www.flickr.com/someUser/pic" + i + ".jpg").start();
}
barrier.await(); // label3
displayMessage("Please wait...");
barrier.await(); // label4
displayMessage("Finished");
}
}
label0 - cyclic barrier is created with number of parties equal to the number of executing threads plus one for the main thread of execution (in which startDownload() is being executed)
label 1 - n-th DownloadingThread enters the waiting room
label 3 - NUMBER_OF_DOWNLOADING_THREADS have entered the waiting room. Main thread of execution releases them to start doing their downloading jobs in more or less the same time
label 4 - main thread of execution enters the waiting room. This is the 'trickiest' part of the code to understand. It doesn't matter which thread will enter the waiting room for the second time. It is important that whatever thread enters the room last ensures that all the other downloading threads have finished their downloading jobs.
label 2 - n-th DownloadingThread has finished its downloading job and enters the waiting room. If it is the last one i.e. already NUMBER_OF_DOWNLOADING_THREADS have entered it, including the main thread of execution, main thread will continue its execution only when all the other threads have finished downloading.
You should really prefer a solution that uses java.util.concurrent. Find and read Josh Bloch and/or Brian Goetz on the topic.
If you are not using java.util.concurrent.* and are taking responsibility for using Threads directly, then you should probably use join() to know when a thread is done. Here is a super simple Callback mechanism. First extend the Runnable interface to have a callback:
public interface CallbackRunnable extends Runnable {
public void callback();
}
Then make an Executor that will execute your runnable and call you back when it is done.
public class CallbackExecutor implements Executor {
#Override
public void execute(final Runnable r) {
final Thread runner = new Thread(r);
runner.start();
if ( r instanceof CallbackRunnable ) {
// create a thread to perform the callback
Thread callerbacker = new Thread(new Runnable() {
#Override
public void run() {
try {
// block until the running thread is done
runner.join();
((CallbackRunnable)r).callback();
}
catch ( InterruptedException e ) {
// someone doesn't want us running. ok, maybe we give up.
}
}
});
callerbacker.start();
}
}
}
The other sort-of obvious thing to add to your CallbackRunnable interface is a means to handle any exceptions, so maybe put a public void uncaughtException(Throwable e); line in there and in your executor, install a Thread.UncaughtExceptionHandler to send you to that interface method.
But doing all that really starts to smell like java.util.concurrent.Callable. You should really look at using java.util.concurrent if your project permits it.
Many things have been changed in last 6 years on multi-threading front.
Instead of using join() and lock API, you can use
1.ExecutorService invokeAll() API
Executes the given tasks, returning a list of Futures holding their status and results when all complete.
2.CountDownLatch
A synchronization aid that allows one or more threads to wait until a set of operations being performed in other threads completes.
A CountDownLatch is initialized with a given count. The await methods block until the current count reaches zero due to invocations of the countDown() method, after which all waiting threads are released and any subsequent invocations of await return immediately. This is a one-shot phenomenon -- the count cannot be reset. If you need a version that resets the count, consider using a CyclicBarrier.
3.ForkJoinPool or newWorkStealingPool() in Executors is other way
4.Iterate through all Future tasks from submit on ExecutorService and check the status with blocking call get() on Future object
Have a look at related SE questions:
How to wait for a thread that spawns it's own thread?
Executors: How to synchronously wait until all tasks have finished if tasks are created recursively?
Do you want to wait for them to finish? If so, use the Join method.
There is also the isAlive property if you just want to check it.
You can interrogate the thread instance with getState() which returns an instance of Thread.State enumeration with one of the following values:
* NEW
A thread that has not yet started is in this state.
* RUNNABLE
A thread executing in the Java virtual machine is in this state.
* BLOCKED
A thread that is blocked waiting for a monitor lock is in this state.
* WAITING
A thread that is waiting indefinitely for another thread to perform a particular action is in this state.
* TIMED_WAITING
A thread that is waiting for another thread to perform an action for up to a specified waiting time is in this state.
* TERMINATED
A thread that has exited is in this state.
However I think it would be a better design to have a master thread which waits for the 3 children to finish, the master would then continue execution when the other 3 have finished.
You could also use the Executors object to create an ExecutorService thread pool. Then use the invokeAll method to run each of your threads and retrieve Futures. This will block until all have finished execution. Your other option would be to execute each one using the pool and then call awaitTermination to block until the pool is finished executing. Just be sure to call shutdown() when you're done adding tasks.
I would suggest looking at the javadoc for Thread class.
You have multiple mechanisms for thread manipulation.
Your main thread could join() the three threads serially, and would then not proceed until all three are done.
Poll the thread state of the spawned threads at intervals.
Put all of the spawned threads into a separate ThreadGroup and poll the activeCount() on the ThreadGroup and wait for it to get to 0.
Setup a custom callback or listener type of interface for inter-thread communication.
I'm sure there are plenty of other ways I'm still missing.
I guess the easiest way is to use ThreadPoolExecutor class.
It has a queue and you can set how many threads should be working in parallel.
It has nice callback methods:
Hook methods
This class provides protected overridable beforeExecute(java.lang.Thread, java.lang.Runnable) and afterExecute(java.lang.Runnable, java.lang.Throwable) methods that are called before and after execution of each task. These can be used to manipulate the execution environment; for example, reinitializing ThreadLocals, gathering statistics, or adding log entries. Additionally, method terminated() can be overridden to perform any special processing that needs to be done once the Executor has fully terminated.
which is exactly what we need. We will override afterExecute() to get callbacks after each thread is done and will override terminated() to know when all threads are done.
So here is what you should do
Create an executor:
private ThreadPoolExecutor executor;
private int NUMBER_OF_CORES = Runtime.getRuntime().availableProcessors();
private void initExecutor() {
executor = new ThreadPoolExecutor(
NUMBER_OF_CORES * 2, //core pool size
NUMBER_OF_CORES * 2, //max pool size
60L, //keep aive time
TimeUnit.SECONDS,
new LinkedBlockingQueue<Runnable>()
) {
#Override
protected void afterExecute(Runnable r, Throwable t) {
super.afterExecute(r, t);
//Yet another thread is finished:
informUiAboutProgress(executor.getCompletedTaskCount(), listOfUrisToProcess.size());
}
}
};
#Override
protected void terminated() {
super.terminated();
informUiThatWeAreDone();
}
}
And start your threads:
private void startTheWork(){
for (Uri uri : listOfUrisToProcess) {
executor.execute(new Runnable() {
#Override
public void run() {
doSomeHeavyWork(uri);
}
});
}
executor.shutdown(); //call it when you won't add jobs anymore
}
Inside method informUiThatWeAreDone(); do whatever you need to do when all threads are done, for example, update UI.
NOTE: Don't forget about using synchronized methods since you do your work in parallel and BE VERY CAUTIOUS if you decide to call synchronized method from another synchronized method! This often leads to deadlocks
Hope this helps!
Here's a solution that is simple, short, easy to understand, and works perfectly for me. I needed to draw to the screen when another thread ends; but couldn't because the main thread has control of the screen. So:
(1) I created the global variable: boolean end1 = false; The thread sets it to true when ending. That is picked up in the mainthread by "postDelayed" loop, where it is responded to.
(2) My thread contains:
void myThread() {
end1 = false;
new CountDownTimer(((60000, 1000) { // milliseconds for onFinish, onTick
public void onFinish()
{
// do stuff here once at end of time.
end1 = true; // signal that the thread has ended.
}
public void onTick(long millisUntilFinished)
{
// do stuff here repeatedly.
}
}.start();
}
(3) Fortunately, "postDelayed" runs in the main thread, so that's where in check the other thread once each second. When the other thread ends, this can begin whatever we want to do next.
Handler h1 = new Handler();
private void checkThread() {
h1.postDelayed(new Runnable() {
public void run() {
if (end1)
// resond to the second thread ending here.
else
h1.postDelayed(this, 1000);
}
}, 1000);
}
(4) Finally, start the whole thing running somewhere in your code by calling:
void startThread()
{
myThread();
checkThread();
}
You could also use SwingWorker, which has built-in property change support. See addPropertyChangeListener() or the get() method for a state change listener example.
Look at the Java documentation for the Thread class. You can check the thread's state. If you put the three threads in member variables, then all three threads can read each other's states.
You have to be a bit careful, though, because you can cause race conditions between the threads. Just try to avoid complicated logic based on the state of the other threads. Definitely avoid multiple threads writing to the same variables.