I have just found a static nested interface in our code-base.
class Foo {
public static interface Bar {
/* snip */
}
/* snip */
}
I have never seen this before. The original developer is out of reach. Therefore I have to ask SO:
What are the semantics behind a static interface? What would change, if I remove the static? Why would anyone do this?
The static keyword in the above example is redundant (a nested interface is automatically "static") and can be removed with no effect on semantics; I would recommend it be removed. The same goes for "public" on interface methods and "public final" on interface fields - the modifiers are redundant and just add clutter to the source code.
Either way, the developer is simply declaring an interface named Foo.Bar. There is no further association with the enclosing class, except that code which cannot access Foo will not be able to access Foo.Bar either. (From source code - bytecode or reflection can access Foo.Bar even if Foo is package-private!)
It is acceptable style to create a nested interface this way if you expect it to be used only from the outer class, so that you do not create a new top-level name. For example:
public class Foo {
public interface Bar {
void callback();
}
public static void registerCallback(Bar bar) {...}
}
// ...elsewhere...
Foo.registerCallback(new Foo.Bar() {
public void callback() {...}
});
The question has been answered, but one good reason to use a nested interface is if its function is directly related to the class it is in. A good example of this is a Listener. If you had a class Foo and you wanted other classes to be able to listen for events on it, you could declare an interface named FooListener, which is ok, but it would probably be more clear to declare a nested interface and have those other classes implement Foo.Listener (a nested class Foo.Event isn't bad along with this).
Member interfaces are implicitly static. The static modifier in your example can be removed without changing the semantics of the code. See also the the Java Language Specification 8.5.1. Static Member Type Declarations
An inner interface has to be static in order to be accessed. The interface isn't associated with instances of the class, but with the class itself, so it would be accessed with Foo.Bar, like so:
public class Baz implements Foo.Bar {
...
}
In most ways, this isn't different from a static inner class.
Jesse's answer is close, but I think that there is a better code to demonstrate why an inner interface may be useful. Look at the code below before you read on. Can you find why the inner interface is useful? The answer is that class DoSomethingAlready can be instantiated with any class that implements A and C; not just the concrete class Zoo. Of course, this can be achieved even if AC is not inner, but imagine concatenating longer names (not just A and C), and doing this for other combinations (say, A and B, C and B, etc.) and you easily see how things go out of control. Not to mention that people reviewing your source tree will be overwhelmed by interfaces that are meaningful only in one class.So to summarize, an inner interface enables the construction of custom types and improves their encapsulation.
class ConcreteA implements A {
:
}
class ConcreteB implements B {
:
}
class ConcreteC implements C {
:
}
class Zoo implements A, C {
:
}
class DoSomethingAlready {
interface AC extends A, C { }
private final AC ac;
DoSomethingAlready(AC ac) {
this.ac = ac;
}
}
To answer your question very directly, look at Map.Entry.
Map.Entry
also this may be useful
Static Nested Inerfaces blog Entry
Typically I see static inner classes. Static inner classes cannot reference the containing classes wherease non-static classes can. Unless you're running into some package collisions (there already is an interface called Bar in the same package as Foo) I think I'd make it it's own file. It could also be a design decision to enforce the logical connection between Foo and Bar. Perhaps the author intended Bar to only be used with Foo (though a static inner interface won't enforce this, just a logical connection)
If you will change class Foo into interface Foo the "public" keyword in the above example will be also redundant as well because
interface defined inside another interface will implicitly public
static.
In 1998, Philip Wadler suggested a difference between static interfaces and non-static interfaces.
So far as I can see, the only difference in making an
interface non-static is that it can now include non-static inner
classes; so the change would not render invalid any existing Java
programs.
For example, he proposed a solution to the Expression Problem, which is the mismatch between expression as "how much can your language express" on the one hand and expression as "the terms you are trying to represent in your language" on the other hand.
An example of the difference between static and non-static nested interfaces can be seen in his sample code:
// This code does NOT compile
class LangF<This extends LangF<This>> {
interface Visitor<R> {
public R forNum(int n);
}
interface Exp {
// since Exp is non-static, it can refer to the type bound to This
public <R> R visit(This.Visitor<R> v);
}
}
His suggestion never made it in Java 1.5.0. Hence, all other answers are correct: there is no difference to static and non-static nested interfaces.
In Java, the static interface/class allows the interface/class to be used like a top-level class, that is, it can be declared by other classes. So, you can do:
class Bob
{
void FuncA ()
{
Foo.Bar foobar;
}
}
Without the static, the above would fail to compile. The advantage to this is that you don't need a new source file just to declare the interface. It also visually associates the interface Bar to the class Foo since you have to write Foo.Bar and implies that the Foo class does something with instances of Foo.Bar.
A description of class types in Java.
Static means that any class part of the package(project) can acces it without using a pointer. This can be usefull or hindering depending on the situation.
The perfect example of the usefullnes of "static" methods is the Math class. All methods in Math are static. This means you don't have to go out of your way, make a new instance, declare variables and store them in even more variables, you can just enter your data and get a result.
Static isn't always that usefull. If you're doing case-comparison for instance, you might want to store data in several different ways. You can't create three static methods with identical signatures. You need 3 different instances, non-static, and then you can and compare, caus if it's static, the data won't change along with the input.
Static methods are good for one-time returns and quick calculations or easy obtained data.
Related
Why are interface variables static and final by default in Java?
From the Java interface design FAQ by Philip Shaw:
Interface variables are static because Java interfaces cannot be instantiated in their own right; the value of the variable must be assigned in a static context in which no instance exists. The final modifier ensures the value assigned to the interface variable is a true constant that cannot be re-assigned by program code.
source
public: for the accessibility across all the classes, just like the methods present in the interface
static: as interface cannot have an object, the interfaceName.variableName can be used to reference it or directly the variableName in the class implementing it.
final: to make them constants. If 2 classes implement the same interface and you give both of them the right to change the value, conflict will occur in the current value of the var, which is why only one time initialization is permitted.
Also all these modifiers are implicit for an interface, you dont really need to specify any of them.
Since interface doesn't have a direct object, the only way to access them is by using a class/interface and hence that is why if interface variable exists, it should be static otherwise it wont be accessible at all to outside world. Now since it is static, it can hold only one value and any classes that implements it can change it and hence it will be all mess.
Hence if at all there is an interface variable, it will be implicitly static, final and obviously public!!!
(This is not a philosophical answer but more of a practical one). The requirement for static modifier is obvious which has been answered by others. Basically, since the interfaces cannot be instantiated, the only way to access its fields are to make them a class field -- static.
The reason behind the interface fields automatically becoming final (constant) is to prevent different implementations accidentally changing the value of interface variable which can inadvertently affect the behavior of the other implementations. Imagine the scenario below where an interface property did not explicitly become final by Java:
public interface Actionable {
public static boolean isActionable = false;
public void performAction();
}
public NuclearAction implements Actionable {
public void performAction() {
// Code that depends on isActionable variable
if (isActionable) {
// Launch nuclear weapon!!!
}
}
}
Now, just think what would happen if another class that implements Actionable alters the state of the interface variable:
public CleanAction implements Actionable {
public void performAction() {
// Code that can alter isActionable state since it is not constant
isActionable = true;
}
}
If these classes are loaded within a single JVM by a classloader, then the behavior of NuclearAction can be affected by another class, CleanAction, when its performAction() is invoke after CleanAction's is executed (in the same thread or otherwise), which in this case can be disastrous (semantically that is).
Since we do not know how each implementation of an interface is going to use these variables, they must implicitly be final.
Because anything else is part of the implementation, and interfaces cannot contain any implementation.
public interface A{
int x=65;
}
public interface B{
int x=66;
}
public class D implements A,B {
public static void main(String[] a){
System.out.println(x); // which x?
}
}
Here is the solution.
System.out.println(A.x); // done
I think it is the one reason why interface variable are static.
Don't declare variables inside Interface.
because:
Static : as we can't have objects of interfaces so we should avoid using Object level member variables and should use class level variables i.e. static.
Final : so that we should not have ambiguous values for the variables(Diamond problem - Multiple Inheritance).
And as per the documentation interface is a contract and not an implementation.
reference: Abhishek Jain's answer on quora
static - because Interface cannot have any instance. and final - because we do not need to change it.
Interface : System requirement service.
In interface, variable are by default assign by public,static,final access modifier.
Because :
public : It happen some-times that interface might placed in some other package. So it need to access the variable from anywhere in project.
static : As such incomplete class can not create object. So in project we need to access the variable without object so we can access with the help of interface_filename.variable_name
final : Suppose one interface implements by many class and all classes try to access and update the interface variable. So it leads to inconsistent of changing data and affect every other class. So it need to declare access modifier with final.
Java does not allow abstract variables and/or constructor definitions in interfaces. Solution: Simply hang an abstract class between your interface and your implementation which only extends the abstract class like so:
public interface IMyClass {
void methodA();
String methodB();
Integer methodC();
}
public abstract class myAbstractClass implements IMyClass {
protected String varA, varB;
//Constructor
myAbstractClass(String varA, String varB) {
this.varA = varA;
this.varB = VarB;
}
//Implement (some) interface methods here or leave them for the concrete class
protected void methodA() {
//Do something
}
//Add additional methods here which must be implemented in the concrete class
protected abstract Long methodD();
//Write some completely new methods which can be used by all subclasses
protected Float methodE() {
return 42.0;
}
}
public class myConcreteClass extends myAbstractClass {
//Constructor must now be implemented!
myClass(String varA, String varB) {
super(varA, varB);
}
//All non-private variables from the abstract class are available here
//All methods not implemented in the abstract class must be implemented here
}
You can also use an abstract class without any interface if you are SURE that you don't want to implement it along with other interfaces later. Please note that you can't create an instance of an abstract class you MUST extend it first.
(The "protected" keyword means that only extended classes can access these methods and variables.)
spyro
An Interface is contract between two parties that is invariant, carved in the stone, hence final. See Design by Contract.
In Java, interface doesn't allow you to declare any instance variables. Using a variable declared in an interface as an instance variable will return a compile time error.
You can declare a constant variable, using static final which is different from an instance variable.
Interface can be implemented by any classes and what if that value got changed by one of there implementing class then there will be mislead for other implementing classes. Interface is basically a reference to combine two corelated but different entity.so for that reason the declaring variable inside the interface will implicitly be final and also static because interface can not be instantiate.
Think of a web application where you have interface defined and other classes implement it. As you cannot create an instance of interface to access the variables you need to have a static keyword. Since its static any change in the value will reflect to other instances which has implemented it. So in order to prevent it we define them as final.
Just tried in Eclipse, the variable in interface is default to be final, so you can't change it. Compared with parent class, the variables are definitely changeable. Why? From my point, variable in class is an attribute which will be inherited by children, and children can change it according to their actual need. On the contrary, interface only define behavior, not attribute. The only reason to put in variables in interface is to use them as consts which related to that interface. Though, this is not a good practice according to following excerpt:
"Placing constants in an interface was a popular technique in the early days of Java, but now many consider it a distasteful use of interfaces, since interfaces should deal with the services provided by an object, not its data. As well, the constants used by a class are typically an implementation detail, but placing them in an interface promotes them to the public API of the class."
I also tried either put static or not makes no difference at all. The code is as below:
public interface Addable {
static int count = 6;
public int add(int i);
}
public class Impl implements Addable {
#Override
public int add(int i) {
return i+count;
}
}
public class Test {
public static void main(String... args) {
Impl impl = new Impl();
System.out.println(impl.add(4));
}
}
I feel like all these answers missed the point of the OP's question.
The OP did not ask for confirmation of their statement, they wanted to know WHY their statement is the standard.
Answering the question requires a little bit of information.
First, lets talk about inheretence.
Lets assume there is a class called A with an instance variable named x.
When you create a class A, it inhereits all the properties of the Object class. Without your knowledge when you instantiate A, you are instantiating an Object object as well, and A points to it as it's parent.
Now lets say you make a class B that inherits from A.
When you create a class B, you are also creating a class A and a Object.
B has access to the variable x. that means that B.x is really just the same thing as B.A.x and Java just hides the magic of grabbing A for you.
Not lets talk about interfaces...
An interface is NOT inheretence. If B were to implmement the interface Comparable, B is not making a Comparable instance and calling it a parent. Instead, B is promising to have the things that Comparable has.
Not lets talk a little bit of theory here... An interface is a set of functions you can use to interact with something. It is not the thing itself. For example, you interface with your friends by talking to them, sharing food with them, dancing with them, being near them. You don't inheret from them though - you do not have a copy of them.
Interfaces are similar. There is only one interface and all the objects associate with it. Since the interface exists only one time as a Class (as opposed to an instance of itself) it is not possible for each object that implements the interface to have their own copy of the interface. That means there is only one instance of each variable. That means the variables are shared by all the classes that use the interface (a.k.a. static).
As for why we make them public...
Private would be useless. The functions are abstract and cannot have any code inside them to use teh private variable. It will always be unused. If the variable is marked as protected, then only an inheritor of the class will be able to use the variables. I don't think you can inhereit from interfaces. Public is the only viable option then.
The only design decision left is the 'final'. It is possible that you intend to change the shared variable between multiple instances of a class. (E.G. Maybe you have 5 players playing Monopoly and you want one board to exist so you have all the players meet the interface and a single shared Board - it might be that you want to actually make the board change based on the player functions...) [I recommend against this design]
For multithreaded applicatiosn though, if you don't make the variable static you will have a difficult time later, but I won't stop you. Do it and learn why that hurts <3
So there you go. final public static variables
I was going through some code and I saw this:
public class A {
public A(SomeObject obj) {
//Do something
}
//Some stuff
public static class B {
//Some other stuff
}
}
I was wondering since even the inner class is public why have it as nested and not a separate class?
Also, can I do this here: new A.B(SomeObject) ? I feel this defeats the purpose of a static class but I saw this implementation as well so wanted to know.
I was wondering since even the inner class is public why have it as nested and not a separate class?
That's really a matter to ask whoever wrote the class. It can allow the outer class to act as a "mini-namespace" though - if the nested class is only useful in the context of the outer class, it seems reasonable. It indicates deliberate tight coupling between the two classes. I most often see this in the context of the builder pattern:
Foo foo = new Foo.Builder().setBar(10).build();
Here it makes sense to me to have Foo.Builder nested within Foo rather than as a peer class which would presumably be called FooBuilder.
Note that it also gives some visibility differences compared with just unrelated classes.
Also, can I do this here: new A.B(SomeObject) ?
No, because B doesn't have a constructor with a SomeObject parameter - only A does (in the example you've given).
I feel this defeats the purpose of a static class
You should try to work out exactly what you deem the purpose of a static class to be, and in what way this defeats that purpose. Currently that's too vague a statement to be realistically discussed.
You would have an inner class like this so
you can keep an class which only exists to support the outer class encapsulated.
you want to be able to access private members of the outer class or other nested classes.
you want a nested class with static fields (a weak reason I know ;)
you have a class with a very generic name like Lock or Sync which you wouldn't want to be mixed with other classes of the same name used by classes in the same package.
can I do this here: new A.B(SomeObject) ?
You can.
I feel this defeats the purpose of a static class
It takes getting used to but once you start you may have trouble not turning your entire program into one file.java ;)
1. A static inner class is known as Top-Level Class.
2. This static class has direct access to the Its Outer class Static method and variables.
3. You will need to initialize the static Inner class in this way from Outside...
A a = new A();
A.B b = new A.B();
4. new A.B(SomeObject) won't work... because you don't have a constructor with SomeObject as parameter...
5. But when the Inner class is Non-static, then it have implicit reference to the Outer class.
6. The outer and inner class can extends to different classes.
7. An interface's method can be implemented more than once in different or same ways, using Inner Class.
This pattern is used very often with the builder pattern. It not only makes clear the relation between a class and its builder, but also hides the ugly builder constructor/factory and makes builder more readable. For example in case you need your built object to have optional and not optional properties.
public class AnObject {
public static class AnObjectBuilder {
private AnObject anObject;
private AnObjectBuilder() {
}
private void newAnObjectWithMandatory(String someMandatoryField, ...) {
anObject = new AnObject(someMandatoryField,...)
}
public AnObjectBuilder withSomeOptionalField(String opt) {
...
}
}
public static AnObjectBuilder fooObject() {
return (new AnObjectBuilder()).newAnObjectWithMandatory("foo")
}
public static AnObjectBuilder barObject() {
return (new AnObjectBuilder()).newAnObjectWithMandatory("bar")
}
}
This way the client code have to call first the static method on the AnObjectBuilder class and then to use the optional builder methods:
AnObject.fooObject("foo").withSomeOptionalField("xxx").build(); without creating the builder object.
Pretty readable :)
I was wondering since even the inner class is public why have it as nested and not a separate class?
Have a look at this thread: Why strange naming convention of "AlertDialog.Builder" instead of "AlertDialogBuilder" in Android
Also, can I do this here: new A.B(SomeObject) ?
(Update) No, you can't do this, since B doesn't have a constructor that asks for SomeObject.
I hope this helps.
I was wondering since even the inner class is public why have it as
nested and not a separate class?
The simple reason it is allowed is packaging convenience.
Static nested class in Java, why?
http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
yes, you can do new A.B(SomeObject). But you don't have to take my word for it, try it out.
I have a quite simple question:
I want to have a Java Class, which provides one public static method, which does something. This is just for encapsulating purposes (to have everything important within one separate class)...
This class should neither be instantiated, nor being extended. That made me write:
final abstract class MyClass {
static void myMethod() {
...
}
... // More private methods and fields...
}
(though I knew, it is forbidden).
I also know, that I can make this class solely final and override the standard constructor while making it private.
But this seems to me more like a "Workaround" and SHOULD more likely be done by final abstract class...
And I hate workarounds. So just for my own interest: Is there another, better way?
You can't get much simpler than using an enum with no instances.
public enum MyLib {;
public static void myHelperMethod() { }
}
This class is final, with explicitly no instances and a private constructor.
This is detected by the compiler rather than as a runtime error. (unlike throwing an exception)
Reference: Effective Java 2nd Edition Item 4 "Enforce noninstantiability with a private constructor"
public final class MyClass { //final not required but clearly states intention
//private default constructor ==> can't be instantiated
//side effect: class is final because it can't be subclassed:
//super() can't be called from subclasses
private MyClass() {
throw new AssertionError()
}
//...
public static void doSomething() {}
}
No, what you should do is create a private empty constructor that throws an exception in it's body. Java is an Object-Oriented language and a class that is never to be instantiated is itself a work-around! :)
final class MyLib{
private MyLib(){
throw new IllegalStateException( "Do not instantiate this class." );
}
// static methods go here
}
No, abstract classes are meant to be extended. Use private constructor, it is not a workaround - it is the way to do it!
Declare the constructor of the class to be private. That ensure noninstantiability and prevents subclassing.
The suggestions of assylias (all Java versions) and Peter Lawrey (>= Java5) are the standard way to go in this case.
However I'd like to bring to your attention that preventing a extension of a static utility class is a very final decision that may come to haunt you later, when you find that you have related functionality in a different project and you'd in fact want to extend it.
I suggest the following:
public abstract MyClass {
protected MyClass() {
}
abstract void noInstancesPlease();
void myMethod() {
...
}
... // More private methods and fields...
}
This goes against established practice since it allows extension of the class when needed, it still prevents accidental instantiation (you can't even create an anonymous subclass instance without getting a very clear compiler error).
It always pisses me that the JDK's utility classes (eg. java.util.Arrays) were in fact made final. If you want to have you own Arrays class with methods for lets say comparison, you can't, you have to make a separate class. This will distribute functionality that (IMO) belongs together and should be available through one class. That leaves you either with wildly distributed utility methods, or you'd have to duplicate every one of the methods to your own class.
I recommend to never make such utility classes final. The advantages do not outweight the disadvantages in my opinion.
You can't mark a class as both abstract and final. They have nearly opposite
meanings. An abstract class must be subclassed, whereas a final class must not be
subclassed. If you see this combination of abstract and final modifiers, used for a class or method declaration, the code will not compile.
This is very simple explanation in plain English.An abstract class cannot be instantiated and can only be extended.A final class cannot be extended.Now if you create an abstract class as a final class, how do you think you're gonna ever use that class, and what is,in reality, the rationale to put yourself in such a trap in the first place?
Check this Reference Site..
Not possible. An abstract class without being inherited is of no use and hence will result in compile time error.
Thanks..
Why are interface variables static and final by default in Java?
From the Java interface design FAQ by Philip Shaw:
Interface variables are static because Java interfaces cannot be instantiated in their own right; the value of the variable must be assigned in a static context in which no instance exists. The final modifier ensures the value assigned to the interface variable is a true constant that cannot be re-assigned by program code.
source
public: for the accessibility across all the classes, just like the methods present in the interface
static: as interface cannot have an object, the interfaceName.variableName can be used to reference it or directly the variableName in the class implementing it.
final: to make them constants. If 2 classes implement the same interface and you give both of them the right to change the value, conflict will occur in the current value of the var, which is why only one time initialization is permitted.
Also all these modifiers are implicit for an interface, you dont really need to specify any of them.
Since interface doesn't have a direct object, the only way to access them is by using a class/interface and hence that is why if interface variable exists, it should be static otherwise it wont be accessible at all to outside world. Now since it is static, it can hold only one value and any classes that implements it can change it and hence it will be all mess.
Hence if at all there is an interface variable, it will be implicitly static, final and obviously public!!!
(This is not a philosophical answer but more of a practical one). The requirement for static modifier is obvious which has been answered by others. Basically, since the interfaces cannot be instantiated, the only way to access its fields are to make them a class field -- static.
The reason behind the interface fields automatically becoming final (constant) is to prevent different implementations accidentally changing the value of interface variable which can inadvertently affect the behavior of the other implementations. Imagine the scenario below where an interface property did not explicitly become final by Java:
public interface Actionable {
public static boolean isActionable = false;
public void performAction();
}
public NuclearAction implements Actionable {
public void performAction() {
// Code that depends on isActionable variable
if (isActionable) {
// Launch nuclear weapon!!!
}
}
}
Now, just think what would happen if another class that implements Actionable alters the state of the interface variable:
public CleanAction implements Actionable {
public void performAction() {
// Code that can alter isActionable state since it is not constant
isActionable = true;
}
}
If these classes are loaded within a single JVM by a classloader, then the behavior of NuclearAction can be affected by another class, CleanAction, when its performAction() is invoke after CleanAction's is executed (in the same thread or otherwise), which in this case can be disastrous (semantically that is).
Since we do not know how each implementation of an interface is going to use these variables, they must implicitly be final.
Because anything else is part of the implementation, and interfaces cannot contain any implementation.
public interface A{
int x=65;
}
public interface B{
int x=66;
}
public class D implements A,B {
public static void main(String[] a){
System.out.println(x); // which x?
}
}
Here is the solution.
System.out.println(A.x); // done
I think it is the one reason why interface variable are static.
Don't declare variables inside Interface.
because:
Static : as we can't have objects of interfaces so we should avoid using Object level member variables and should use class level variables i.e. static.
Final : so that we should not have ambiguous values for the variables(Diamond problem - Multiple Inheritance).
And as per the documentation interface is a contract and not an implementation.
reference: Abhishek Jain's answer on quora
static - because Interface cannot have any instance. and final - because we do not need to change it.
Interface : System requirement service.
In interface, variable are by default assign by public,static,final access modifier.
Because :
public : It happen some-times that interface might placed in some other package. So it need to access the variable from anywhere in project.
static : As such incomplete class can not create object. So in project we need to access the variable without object so we can access with the help of interface_filename.variable_name
final : Suppose one interface implements by many class and all classes try to access and update the interface variable. So it leads to inconsistent of changing data and affect every other class. So it need to declare access modifier with final.
Java does not allow abstract variables and/or constructor definitions in interfaces. Solution: Simply hang an abstract class between your interface and your implementation which only extends the abstract class like so:
public interface IMyClass {
void methodA();
String methodB();
Integer methodC();
}
public abstract class myAbstractClass implements IMyClass {
protected String varA, varB;
//Constructor
myAbstractClass(String varA, String varB) {
this.varA = varA;
this.varB = VarB;
}
//Implement (some) interface methods here or leave them for the concrete class
protected void methodA() {
//Do something
}
//Add additional methods here which must be implemented in the concrete class
protected abstract Long methodD();
//Write some completely new methods which can be used by all subclasses
protected Float methodE() {
return 42.0;
}
}
public class myConcreteClass extends myAbstractClass {
//Constructor must now be implemented!
myClass(String varA, String varB) {
super(varA, varB);
}
//All non-private variables from the abstract class are available here
//All methods not implemented in the abstract class must be implemented here
}
You can also use an abstract class without any interface if you are SURE that you don't want to implement it along with other interfaces later. Please note that you can't create an instance of an abstract class you MUST extend it first.
(The "protected" keyword means that only extended classes can access these methods and variables.)
spyro
An Interface is contract between two parties that is invariant, carved in the stone, hence final. See Design by Contract.
In Java, interface doesn't allow you to declare any instance variables. Using a variable declared in an interface as an instance variable will return a compile time error.
You can declare a constant variable, using static final which is different from an instance variable.
Interface can be implemented by any classes and what if that value got changed by one of there implementing class then there will be mislead for other implementing classes. Interface is basically a reference to combine two corelated but different entity.so for that reason the declaring variable inside the interface will implicitly be final and also static because interface can not be instantiate.
Think of a web application where you have interface defined and other classes implement it. As you cannot create an instance of interface to access the variables you need to have a static keyword. Since its static any change in the value will reflect to other instances which has implemented it. So in order to prevent it we define them as final.
Just tried in Eclipse, the variable in interface is default to be final, so you can't change it. Compared with parent class, the variables are definitely changeable. Why? From my point, variable in class is an attribute which will be inherited by children, and children can change it according to their actual need. On the contrary, interface only define behavior, not attribute. The only reason to put in variables in interface is to use them as consts which related to that interface. Though, this is not a good practice according to following excerpt:
"Placing constants in an interface was a popular technique in the early days of Java, but now many consider it a distasteful use of interfaces, since interfaces should deal with the services provided by an object, not its data. As well, the constants used by a class are typically an implementation detail, but placing them in an interface promotes them to the public API of the class."
I also tried either put static or not makes no difference at all. The code is as below:
public interface Addable {
static int count = 6;
public int add(int i);
}
public class Impl implements Addable {
#Override
public int add(int i) {
return i+count;
}
}
public class Test {
public static void main(String... args) {
Impl impl = new Impl();
System.out.println(impl.add(4));
}
}
I feel like all these answers missed the point of the OP's question.
The OP did not ask for confirmation of their statement, they wanted to know WHY their statement is the standard.
Answering the question requires a little bit of information.
First, lets talk about inheretence.
Lets assume there is a class called A with an instance variable named x.
When you create a class A, it inhereits all the properties of the Object class. Without your knowledge when you instantiate A, you are instantiating an Object object as well, and A points to it as it's parent.
Now lets say you make a class B that inherits from A.
When you create a class B, you are also creating a class A and a Object.
B has access to the variable x. that means that B.x is really just the same thing as B.A.x and Java just hides the magic of grabbing A for you.
Not lets talk about interfaces...
An interface is NOT inheretence. If B were to implmement the interface Comparable, B is not making a Comparable instance and calling it a parent. Instead, B is promising to have the things that Comparable has.
Not lets talk a little bit of theory here... An interface is a set of functions you can use to interact with something. It is not the thing itself. For example, you interface with your friends by talking to them, sharing food with them, dancing with them, being near them. You don't inheret from them though - you do not have a copy of them.
Interfaces are similar. There is only one interface and all the objects associate with it. Since the interface exists only one time as a Class (as opposed to an instance of itself) it is not possible for each object that implements the interface to have their own copy of the interface. That means there is only one instance of each variable. That means the variables are shared by all the classes that use the interface (a.k.a. static).
As for why we make them public...
Private would be useless. The functions are abstract and cannot have any code inside them to use teh private variable. It will always be unused. If the variable is marked as protected, then only an inheritor of the class will be able to use the variables. I don't think you can inhereit from interfaces. Public is the only viable option then.
The only design decision left is the 'final'. It is possible that you intend to change the shared variable between multiple instances of a class. (E.G. Maybe you have 5 players playing Monopoly and you want one board to exist so you have all the players meet the interface and a single shared Board - it might be that you want to actually make the board change based on the player functions...) [I recommend against this design]
For multithreaded applicatiosn though, if you don't make the variable static you will have a difficult time later, but I won't stop you. Do it and learn why that hurts <3
So there you go. final public static variables
This question already has answers here:
Why can't I define a static method in a Java interface?
(24 answers)
Closed 3 years ago.
There have been a few questions asked here about why you can't define static methods within interfaces, but none of them address a basic inconsistency: why can you define static fields and static inner types within an interface, but not static methods?
Static inner types perhaps aren't a fair comparison, since that's just syntactic sugar that generates a new class, but why fields but not methods?
An argument against static methods within interfaces is that it breaks the virtual table resolution strategy used by the JVM, but shouldn't that apply equally to static fields, i.e. the compiler can just inline it?
Consistency is what I desire, and Java should have either supported no statics of any form within an interface, or it should be consistent and allow them.
An official proposal has been made to allow static methods in interfaces in Java 7. This proposal is being made under Project Coin.
My personal opinion is that it's a great idea. There is no technical difficulty in implementation, and it's a very logical, reasonable thing to do. There are several proposals in Project Coin that I hope will never become part of the Java language, but this is one that could clean up a lot of APIs. For example, the Collections class has static methods for manipulating any List implementation; those could be included in the List interface.
Update: In the Java Posse Podcast #234, Joe D'arcy mentioned the proposal briefly, saying that it was "complex" and probably would not make it in under Project Coin.
Update: While they didn't make it into Project Coin for Java 7, Java 8 does support static functions in interfaces.
I'm going to go with my pet theory with this one, which is that the lack of consistency in this case is a matter of convenience rather than design or necessity, since I've heard no convincing argument that it was either of those two.
Static fields are there (a) because they were there in JDK 1.0, and many dodgy decisions were made in JDK 1.0, and (b) static final fields in interfaces are the closest thing java had to constants at the time.
Static inner classes in interfaces were allowed because that's pure syntactic sugar - the inner class isn't actually anything to do with the parent class.
So static methods aren't allowed simply because there's no compelling reason to do so; consistency isn't sufficiently compelling to change the status quo.
Of course, this could be permitted in future JLS versions without breaking anything.
There is never a point to declaring a static method in an interface. They cannot be executed by the normal call MyInterface.staticMethod(). (EDIT:Since that last sentence confused some people, calling MyClass.staticMethod() executes precisely the implementation of staticMethod on MyClass, which if MyClass is an interface cannot exist!) If you call them by specifying the implementing class MyImplementor.staticMethod() then you must know the actual class, so it is irrelevant whether the interface contains it or not.
More importantly, static methods are never overridden, and if you try to do:
MyInterface var = new MyImplementingClass();
var.staticMethod();
the rules for static say that the method defined in the declared type of var must be executed. Since this is an interface, this is impossible.
You can of course always remove the static keyword from the method. Everything will work fine. You may have to suppress some warnings if it is called from an instance method.
To answer some of the comments below, the reason you can't execute "result=MyInterface.staticMethod()" is that it would have to execute the version of the method defined in MyInterface. But there can't be a version defined in MyInterface, because it's an interface. It doesn't have code by definition.
The purpose of interfaces is to define a contract without providing an implementation. Therefore, you can't have static methods, because they'd have to have an implementation already in the interface since you can't override static methods. As to fields, only static final fields are allowed, which are, essentially, constants (in 1.5+ you can also have enums in interfaces). The constants are there to help define the interface without magic numbers.
BTW, there's no need to explicitly specify static final modifiers for fields in interfaces, because only static final fields are allowed.
This is an old thread , but this is something very important question for all. Since i noticed this today only so i am trying to explain it in cleaner way:
The main purpose of interface is to provide something that is unimplementable, so if they provide
static methods to be allowed
then you can call that method using interfaceName.staticMethodName(), but this is unimplemented method and contains nothing. So it is useless to allow static methods. Therefore they do not provide this at all.
static fields are allowed
because fields are not implementable, by implementable i mean you can not perform any logical operation in field, you can do operation on field. So you are not changing behavior of field that is why they are allowed.
Inner classes are allowed
Inner classes are allowed because after compilation different class file of the Inner class is created say InterfaceName$InnerClassName.class , so basically you are providing implementation in different entity all together but not in interface. So implementation in Inner classes is provided.
I hope this would help.
Actually sometimes there are reasons someone can benefit from static methods. They can be used as factory methods for the classes that implement the interface. For example that's the reason we have Collection interface and the Collections class in openjdk now. So there are workarounds as always - provide another class with a private constructor which will serve as a "namespace" for the static methods.
Prior to Java 5, a common usage for static fields was:
interface HtmlConstants {
static String OPEN = "<";
static String SLASH_OPEN = "</";
static String CLOSE = ">";
static String SLASH_CLOSE = " />";
static String HTML = "html";
static String BODY = "body";
...
}
public class HtmlBuilder implements HtmlConstants { // implements ?!?
public String buildHtml() {
StringBuffer sb = new StringBuffer();
sb.append(OPEN).append(HTML).append(CLOSE);
sb.append(OPEN).append(BODY).append(CLOSE);
...
sb.append(SLASH_OPEN).append(BODY).append(CLOSE);
sb.append(SLASH_OPEN).append(HTML).append(CLOSE);
return sb.toString();
}
}
This meant HtmlBuilder would not have to qualify each constant, so it could use OPEN instead of HtmlConstants.OPEN
Using implements in this way is ultimately confusing.
Now with Java 5, we have the import static syntax to achieve the same effect:
private final class HtmlConstants {
...
private HtmlConstants() { /* empty */ }
}
import static HtmlConstants.*;
public class HtmlBuilder { // no longer uses implements
...
}
There is no real reason for not having static methods in interfaces except: the Java language designers did not want it like that.
From a technical standpoint it would make sense to allow them. After all an abstract class can have them as well. I assume but did not test it, that you can "hand craft" byte code where the interface has a static method and it should imho work with no problems to call the method and/or to use the interface as usually.
I often wonder why static methods at all? They do have their uses, but package/namespace level methods would probably cover 80 of what static methods are used for.
Two main reasons spring to mind:
Static methods in Java cannot be overridden by subclasses, and this is a much bigger deal for methods than static fields. In practice, I've never even wanted to override a field in a subclass, but I override methods all the time. So having static methods prevents a class implementing the interface from supplying its own implementation of that method, which largely defeats the purpose of using an interface.
Interfaces aren't supposed to have code; that's what abstract classes are for. The whole point of an interface is to let you talk about possibly-unrelated objects which happen to all have a certain set of methods. Actually providing an implementation of those methods is outside the bounds of what interfaces are intended to be.
Static methods are tied to a class. In Java, an interface is not technically a class, it is a type, but not a class (hence, the keyword implements, and interfaces do not extend Object). Because interfaces are not classes, they cannot have static methods, because there is no actual class to attach to.
You may call InterfaceName.class to get the Class Object corresponding to the interface, but the Class class specifically states that it represents classes and interfaces in a Java application. However, the interface itself is not treated as a class, and hence you cannot attach a static method.
Only static final fields may be declared in an interface (much like methods, which are public even if you don't include the "public" keyword, static fields are "final" with or without the keyword).
These are only values, and will be copied literally wherever they are used at compile time, so you never actually "call" static fields at runtime. Having a static method would not have the same semantics, since it would involve calling an interface without an implementation, which Java does not allow.
The reason is that all methods defined in an interface are abstract whether or not you explicitly declare that modifier. An abstract static method is not an allowable combination of modifiers since static methods are not able to be overridden.
As to why interfaces allow static fields. I have a feeling that should be considered a "feature". The only possibility I can think of would be to group constants that implementations of the interface would be interested in.
I agree that consistency would have been a better approach. No static members should be allowed in an interface.
I believe that static methods can be accessed without creating an object and the interface does not allow creating an object as to restrict the programmers from using the interface methods directly rather than from its implemented class.
But if you define a static method in an interface, you can access it directly without its implementation. Thus static methods are not allowed in interfaces.
I don't think that consistency should be a concern.
Java 1.8 interface static method is visible to interface methods only, if we remove the methodSta1() method from the InterfaceExample class,
we won’t be able to use it for the InterfaceExample object. However like other static methods, we can use interface static methods using class name.
For example, a valid statement will be:
exp1.methodSta1();
So after looking below example we can say :
1) Java interface static method is part of interface, we can’t use it for implementation class objects.
2) Java interface static methods are good for providing utility methods, for example null check, collection sorting ,log etc.
3) Java interface static method helps us in providing security by not allowing implementation classes (InterfaceExample) to override them.
4) We can’t define interface static method for Object class methods, we will get compiler error as “This static method cannot hide the instance method from Object”. This is because it’s not allowed in java, since Object is the base class for all the classes and we can’t have one class level static method and another instance method with same signature.
5) We can use java interface static methods to remove utility classes such as Collections and move all of it’s static methods to the corresponding interface,
that would be easy to find and use.
public class InterfaceExample implements exp1 {
#Override
public void method() {
System.out.println("From method()");
}
public static void main(String[] args) {
new InterfaceExample().method2();
InterfaceExample.methodSta2(); // <--------------------------- would not compile
// methodSta1(); // <--------------------------- would not compile
exp1.methodSta1();
}
static void methodSta2() { // <-- it compile successfully but it can't be overridden in child classes
System.out.println("========= InterfaceExample :: from methodSta2() ======");
}
}
interface exp1 {
void method();
//protected void method1(); // <-- error
//private void method2(); // <-- error
//static void methodSta1(); // <-- error it require body in java 1.8
static void methodSta1() { // <-- it compile successfully but it can't be overridden in child classes
System.out.println("========= exp1:: from methodSta1() ======");
}
static void methodSta2() { // <-- it compile successfully but it can't be overridden in child classes
System.out.println("========= exp1:: from methodSta2() ======");
}
default void method2() { System.out.println("--- exp1:: from method2() ---");}
//synchronized default void method3() { System.out.println("---");} // <-- Illegal modifier for the interface method method3; only public, abstract, default, static
// and strictfp are permitted
//final default void method3() { System.out.println("---");} // <-- error
}