Java EE and application servers - What can i do? - java

I decided that it is time for me to dig into the whole Java EE stuff. I am using EE some techniques whithin Java SE like JPA or JMS, but i still messing around with Java SE and i believe Java EE and an application server will solve some of my problems i have.
BUT: I have still some questions after reading some articles on the web.
1st: Am i limited to request-response applications? I have an application which serves XML documents via HTTP. All delivered objects are added to a queue which will be dispatched in a different thread. Some validation is made for this objectes, including the opening of sockets to a remote machine (I heard EJ-Beans are not allowed to do this, is this true?). So, is is possible to do this within an application server?
2nd: I know there are Message driven beans, is it possible to send JMS messages to a MDB from outside of the application server? I have a service which sends JMS messages, but runs, as a legacy system, not inside the same application server.
3rd: How can the System Adminstrator or User configure my application? I know that some things like database connections are configured within the application server and my application can lookup them via JNDI or get them via DI. But what about application specific configuration?
Yeah, these are quite noobish questions, but maybe someone has the time to explain me how all this stuff is working. :)
regards,
Posix
PS:
4th: It seems EJBs are not allowed to do anything with files, so Java EE seems to be no option for a Service which receives Files, pushes them around to different systems and want them to write to a Socket (see question 1)?

I can say that Java EE can be used without any doubts in your case. Let me drill a little bit more into your specific questions:
You can open socket connection from your EJB. There is nothing that prevents you from doing that. However this kind of operation is not advised for Java EE applications. In my opinion the better option is to implement Java EE Connector (JCA) that would manage pool of socket connections to your proprietary system. This is the model way to implement such a integration as per specification.
Yes! It is perfectly possible to receive messages send from external application/system (outside the AS). This is main idea of integration using messaging :) In many cases your application being Java EE application receives messages via MDB from JMS channel, but JMS is only an API and can be implemented by any messaging system e.g. IBM MQ. In this architecture the external system puts an MQ message onto the queue and your Java EE application that listens to the very queue receives the message via JMS API!
Generally speaking Application Server gives the Administrator great tools to manage Java EE resources i.e. data sources, JMS connection factories, JMS destinations, JTA transaction manager, etc. If you require the ability to change your specific Java EE application the best options seems to be JMX. Just implement a few MBeans, export those to the JMX server embedded within your Application Server and you are done. This task is really trivial in, say, JBoss, but most of the modern Application Servers offer extensive JMX capabilities these days.
For the first glance, EJB doesn't seem to be the best for dealing with files. But remember that implementation of your EJBs is still written in pure Java, so nothing prevents you from reading/streaming files and so on. I have experience with large Java EE applications that are handling large files as input files and can assure you that Java EE is is a good technology choice :)

Here are the restrictions on EJB 1.1 spec.
Here's my take on your questions:
I believe an EJB can open a socket on a remote machine, but I would say that opening sockets is too low level an operation. I'd think about exposing whatever that socket is doing for you as another EJB.
An MDB is just a listener that's registered with a particular topic or queue. It doesn't say anything about sending. If your client knows how to get a message to the queue it's possible. They just have to know the queue URL and be able to create a connection.
The admin sets up connection pools, JNDI names, etc. - everything. They do it using the admin console for the app server.

It's a violation of the EE spec to do anything with files (to ensure that an EE app is portable and distributable). However since it's all just plain Java code, yopu can choose to do anything that you want. As long as you know how your target environment looks (eg the system is for internal use) I wouldn't hesitate modifying files just because the spec says so.

In an application server like Tomcat (others too, probably, but I've never worked with them) you can not only execute things upon receiving a request, but also do things (including starting long running threads) on server startup. Basically you can do anything that you can with "normal" Java. In fact, you could put a normal Java app in application server if you just include a piece of code which calls the appropriate main() on server startup.

I would suggest applying each technology to the appropriate points where you are currently feeling pain. Regarding your specific points,
In an EE context, you would add the messages to a JMS queue, that has MDBs which would do the actual processing. Regarding the management of the HTTP request/response lifecycle, you would manage this the same way you do now, or use an existing library to do if for you. By moving to an EE app server, you would allow the app server to manage the threading, transactions, etc. instead of having to manage it manually.
As duffymo stated, MDBs are responsible for receiving messages, they do not care where the message originated from.
The system administrator can configure the app server as duffymo stated. Additionally, you can expose JMX beans to other systems or to the end user to allow them to configure services if you so desire.

Related

Non-container based java remoting?

We're trying to design a new addition to our application. Basically we need to submit very basic queries to various remote databases accessed over the internet and not owned or controlled by us.
Our proposal is to install a small client app on each of the foreign systems, tiered in 2 basic layers, 1 that is tailored to the particular database its talking to, to handle the actual query in SQL or whatever, the other tier would be the communication tier to handle incoming requests and send back responses. This communication interface would be the same over all of the foreign systems, ie all requests and responses have the same structure.
In terms of java remoting I guess this small client app would be the 'server' and our webapp (normally referred to as the server) is the 'client'.
I've looked at various java remoting solutions (Hessian, Burlap, RMI, SOAP/REST WebServices). However am I correct in thinking that with all of these the 'server' must run in a container, ie in a tomcat/jetty etc instance?
I was really hoping to avoid having to battle all the IT departments controlling the foreign systems to get them to install very much. The whole idea is that its thin/small/easy to install/pain free. Are there any solutions that do not require running in a container / webserver?
The communication really is the smallest part of this design, no more than 10 string input params (that have no meaning other than to the db) and one true/false output. There are no complex object models required. The only complexity would be from security/encryption etc.
I wamly suggest somethig based on Jetty, the embedded HTTP server. You package a simple runnable JAR with dependency JARs into a ZIP file, add a startup script, and you have your product. See for example here.
I often use Sprint-Remoting in my projects and here you find a description how to use without a container. The guy is starting the jetty from within his application:
http://forum.springsource.org/showthread.php?12852-HttpInvoker-without-web-container
http://static.springsource.org/spring/docs/2.0.x/reference/remoting.html
Regards,
Boskop
Yes, most of them runs a standard servlet container. But containers like Jetty have very low footprint and you may configure and run Jetty completely out of your code while you stay with servlet standards.
Do not fail to estimate initial minimal requirements that may grow with project enhancement over time. Then have a standard container makes things much more easier.
As you have tagged this question with [rmi], RMI does not require any form of container. All you need is the appropriate TCP ports to be open.

Integration of Java server application into Application Server like TomCat, GlassFish, etc

I am working on a server application that does the following:
Read data from a measuring device that is being addressed via a serial interface (javax.comm, RXTX) or sockets.
Exchange data (read and write) with another server application using sockets.
Insert data from (1) and (2) into a database using JDBC.
Offer the data from steps (1) to (3) to a JavaScript-based web app.
My current prototype is a stand-alone Java application and implements task (4) by writing the data to an XML file that is being delivered to the client via a web server (Apache), but I consider this to be a hack, not a clean solution.
This server application needs to start up and work also without any web clients being present.
I would like to integrate this server application into a Java application server, but I do not have much experience with these technologies and don't know where to start. I have tried some simple examples for TomCat and GlassFish, but that did not bring me any further because they are all built around serving web requests synchronously and stop where it would be getting interesting for me.
Is this possible to run such an app within TomCat or GlassFish?
If yes, where would be a good point to start (examples, which base classes, ...)?
Would it make any sense to split the application and implement only task (4) in a servlet, the rest in an ordinary application, communication via sockets, etc.?
Would other servers, e.g JBoss, be a better choice and if yes, why?
Edit:
The reasons I want to use a Java EE container are:
I would like to have a clean external interface for step (4).
On the long run, the application will need to scale to a huge number of simultaneous clients (at least several 10.000), so a want a standard way of scalability and application management.
In general, it's not a good idea to implement all of this in a servlet container such as Tomcat.
A servlet container is designed to service requests from a client. It sounds like you have a process which will be running all the time or at least periodically. You can do this in Tomcat, but it's probably easier to do it outside. Leave Tomcat to do what it's good at, servicing requests from browsers. It's happiest when the requests are short lived.
So I would do as you suggest, and only have step 4 in the container. You can easily interrogate the database populated in step 3, so there is no need to create web services to populate the servlet container.
For step 4, you will need to expose some services from Tomcat, either through rest, soap, whatever you like. The javascript clients can then interrogate these services. This is all completely doable with Tomcat.
For scalability, there shouldn't be a problem using Tomcat. If all it's doing is pumping data from the database to the client, there probably isn't a reason to choose a J2EE container. If you don't have need of complex transaction management or security, try using something open source. It sounds like you can get what you want from Tomcat (& hibernate & spring security if necessary). If you start to have performance problems, then the fix will probably be the same for JBoss & Tomcat: you need more servers.
My advice: stick to the simple open source solutions and move to an application server only if you find it to be necessary.
I would loosely couple the solution and not try to do everything on the Java EE/Servlet container as exchanging data using sockets (managed by the application itself) is not something you typically want to do from a Java EE/Servlet container.
Running this on a Java EE container might also be overkill as this doesn't sound like a typical enterprise application where stuff like security and transaction management is important and the app could benefit from services provided by the Java EE/Servlet container.

What is Java Message Service (JMS) for?

I am currently evaluating JMS and I don't get what I could use it for.
Currently, I believe this would be a Usecase: I want to create a SalesInvoice PDF and print it when an SalesOrder leaves the Warehouse, so during the Delivery transaction I could send a transactional print request which just begins when the SalesOrder transaction completes successfully.
Now I found out most JMS products are standalone server.
Why would a need a Standalone Server for Message Processing, vs. e.g. some simple inproc processing with Quartz scheduler?
How does it interact with my application?
Isn't it much too slow?
What are Usecases you already implemented successfully?
JMS is an amazingly useful system, but not for every purpose.
It's essentially a high-level framework for sending messages between nodes, with options for discovery, robustness, etc.
One useful use case is when you want a client and a server to talk to one another, but without the client actually having the server's address (E.g., you may have more than one server). The client only needs to know the broker and the queue/topic name, and the server can connect as well.
JMS also adds robustness. For instance, you can configure it so that if the server dies while the client sends messages or the other way around, you can still send messages from the client or poll messages from the server. If you ever tried implementing this directly with sockets - it's a nightmare.
The scenario you describe sounds like a classic J2EE problem, why are you not using a J2EE framework? JMS is often used inside J2EE for communications, but you got all the other benefits.
What ist Java Message Service (JMS) for
JMS is a messaging standard that allows Java EE applications to create, send, receive, and consume messages in a loosely coupled, reliable, and asynchronous way. I'd suggest to read the Java Message Service API Overview for more details.
Why would a need a Standalone Server for Message Processing, vs. e.g. some simple inproc processing with Quartz scheduler?
Sure, in your case, Quartz is an option. But what if the invoice system is a remote system? What if you don't want to wait for the answer? What if the remote system is down when you want to communicate with it? What if the network is not always available? This is where JMS comes in. JMS allows to send a message guaranteed to be delivered and to consume it in a transactional way (sending or consuming a message can be part of a global transaction).
How does it interact with my application?
JMS supports two communication modes: point-to-point and publish/subscribe (if this answers the question).
Isn't it much too slow?
The MOMs I've been working with were blazing fast.
What are Usecases you already implemented successfully?
Used in system such as a reservation application, a banking back-office (processing market data), or more simply to send emails.
See also
EJB Message-Driven Beans
Why would a need a Standalone Server
for Message Processing, vs. e.g. some
simple inproc processing with Quartz
scheduler?
The strength of JMS lies in the fact that you can have multiple producers and multiple consumers for the same queue, and the JMS broker manages the load.
If you have multiple producers but a single consumer, you can use other approaches as well, such as a quartz scheduler and a database table. But as soon as you have multiple consumer, the locking scheme become very hard to design; better go for already approved messaging solution. See these other answers from me for a few more details: Why choosing JMS for asynchronous solution ? and Producer/consumer system using database
The other points are just too vague to be answered.
I've used it on a number of projects. It can help with scalability, decoupling of services, high availability. Here's a description of how I used it on a project several years ago:
http://coders-log.blogspot.com/2008/12/favorite-projects-series-installment-2.html
The description explains what JMS brought to the table for this particular project, but other projects will use messaging systems for a variety of reasons.
Messaging is usually used to interconnect different systems and send requests/commands asynchronously. A common example is a bank client application requesting an approval for a transaction. The server is located in another bank's system. Both systems are connected in an Enterprise Service Bus. The request goes into the messaging bus, which instantly acknowledges the reception of the message. The client can go on with processing. Whenever the server system becomes available, the bus forwards the message to it. Of course there needs to be a second path, for the server to inform the client that the transaction executed successfully or failed. This again can be implemented with JMS.
Please note that the two systems need not to implement JMS. One can use JMS and the other one MSMQ. The bus will take care of the interconnection.
JMS is a message-oriented middleware.
Why would a need a Standalone Server for Message Processing, vs. e.g. some simple inproc processing with Quartz scheduler?
It depends on what other components you may have. I guess. But I don't know anything about Quartz
How does it interact with my application?
You send messages to the broker.
Isn't it much too slow?
Compare to what ?
What are Usecases you already implemented successfully?
I've used JMS to implement a SIP application server, to communicate between the various components.
From the Javadoc:
The Java Message Service (JMS) API provides a common way for Java programs to create, send, receive and read an enterprise messaging system's messages.
In other words, and contrary to every other answer here, JMS is nothing more than an API, which wraps access to third-party Message Brokers, via 'JMS Providers' implemented by the vendor. Those Message Brokers, such as IBM MQ and dozens of others, have the features of reliability, asynchronicity, etc. that have been mentioned in other answers. JMS itself provides exactly none of them. It is to Message Brokers what JDBC is to SQL databases, or JNDI is to LDAP servers (among other things).
I have found a very good explanation of JMS with an example.
That is a simple chat application with JMS queues are used to communicate messages between users and messages stay in the queue if the receiver is offline.
In this example implementation they have used
XSD to generate domain classes.
Eclipse EE as IDE.
JBoss as web/application server.
HTML/JavaScript/JQuery for UI.
Servlet as controller.
MySQL as DB.
The JBoss configuration step for queue is explained nicely
Its available at http://coder2design.com/messaging-service/
Even the downloadable code is also available there.

Best Java supported server/client protocol?

I'm in the process of writing a client/server application which should work message based. I would like re-use as much as possible instead of writing another implementation and curious what others are using.
Features the library should offer:
client and server side functionality
should work message based
support multi-threading
should work behind load balancer / firewalls
I did several tests with HTTPCore, but the bottom line is that one has to implement both client and server, only the transport layer would be covered. RMI is not an option either due to the network related requirements.
Any ideas are highly appreciated.
Details
My idea is to implement a client/server wrapper which handles the client communication (including user/password validation) and writes incoming requests to a JMS queue:
#1 User --> Wrapper (Check for user/password) --> JMS --> "Server"
#2 User polls Wrapper which polls JMS
Separate processes will handle the requests and can reply via wrapper to the clients. I'd like to use JMS because:
it handles persistence quite well
load balancing - it's easy to handle peaks by adding additional servers as consumer
JMSTimeToLive comes in handy too
Unfortunately I don't see a way to use JMS on it's own, because clients should only have access to their messages and the setup of different users on JMS side doesn't sound feasible either.
Well, HTTP is probably the best supported in terms of client and server code implementing it - but it may well be completely inappropriate based on your requirements. We'll need to actually see some requirements (or at least a vague idea of what the application is like) before we can really advise you properly.
RMI works nicely for us. There are limitations, such as not being able to call back to the client unless you can connect directly to that computer (does not work if client is behind a firewall). You can also easily wrap your communication in SSL or tunnel it over HTTP which can be wrapped in SSL.
If you do end up using this remember to always set the serial version of a class that is distributed to the client. You can set it to 1L when you create it, or if the client already has the class use serialver.exe to discover the existing class's serial. Otherwise as soon as you change or add a public method or variable compatibility with existing clients will break.
static final long serialVersionUID = 1L
EDIT: Each RMI request that comes into the server gets its own thread. You don't have to handle this yourself.
EDIT: I think some details were added later in the question. You can tunnel RMI over HTTP, then you could use a load balancer with it.
I've recently started playing with Hessian and it shows a lot of promise. It natively uses HTTP which makes it simpler than RMI over HTTP and it's a binary protocol which means it's faster than all the XML-based protocols. It's very easy to get Hessian going. I recently did this by embedding Jetty in our app, configuring the Hessian Servlet and making it implement our API interface. The great thing about Hessian is it's simplicity... nothing like JMS or RMI over HTTP. There are also libraries for Hessian in other languages.
I'd say the best-supported, if not best-implemented, client/server communications package for Java is Sun's RMI (Remote Method Invocation). It's included with the standard Java class library, and gets the job done, even if it's not the fastest option out there. And, of course, it's supported by Sun. I implemented a turn-based gaming framework with it several years ago, and it was quite stable.
It is difficult to make a suggestion based on the information given but possibly the use of TemporaryQueues e.g. dynamically created PTP destinations on a per client basis might fit the problem?
Here is a reasonable overview.
Did you tried RMI or CORBA? With both of them you can distribute your logic and create Sessions
Use Spring....Then pick and choose the protocol.
We're standardizing on Adobe's AMF as we're using Adobe Flex/AIR in the client-tier and Java6/Tomcat6/BlazeDS/Spring-Framework2.5/iBATIS2.3.4/ActiveMQ-JMS5.2 in our middle-tier stack (Oracle 10g back-end).
Because we're standardizing on Flex client-side development, AMF and BlazeDS (now better coupled to Spring thanks to Adobe and SpringSource cooperating on the integration), are the most efficient and convenient means we can employ to interact with the server-side.
We also heavily build on JMS messaging in the data center - BlazeDS enables us to bridge our Flex clients as JMS topic subscribers. That is extremely powerful and effective.
Our Flex .swf and Java .class code is bundled into the same .jar file for deployment. That way the correct version of the client code will be deployed to interact with the corresponding middle-tier java code that will process client service calls (or messaging operations). That has always been a bane of client-server computing - making sure the correct versions of the respective tiers are hooked up to each other. We've effectively solved that age-old problem with our particular approach to packaging and deployment.
All of our client-server interactions work over HTTP/HTTPS ports 80 and 443. Even the server-side messaging push we do with BlazeDS bridged to our ActiveMQ JMS message broker.

Multiple instances of a java web application sharing a resource

I have a web service, that takes an input xml message, transforms it, and then forwards it to another web service.
The application is deployed to two web logic app servers for performance, and resilience reasons.
I would like a single website monitoring page that allows two things
ability to stop/ start forwarding of messages
ability to monitor throughput of number of messages in the last hour etc. Number of different senders into the webservice etc.
I was wondering what the best way to implement this was.
My current idea is to have an in memory database (eg Debry or HSQL) replicating data to share the information between the two (or more) instances of my application that are running in different instances of the app server. I imagine I would have to setup some sort of master/ slave configuration.
I would love a link to an article that discusses how to solve this problem.
(Note, this is a simple spring application using spring MVC)
thanks,
David.
This sounds like a good match for Java Management Extensions (JMX)
JMX allows you to expose certain operations (eg: start/stop forwarding messages)
JMX allows you to monitor certain performance indicators (eg: moving average of messages processed)
Spring has good support for exposing beans as JMX MBeans. See here for more information.
Then you could use an open-source web-based JMX console, such as jManage
Hope this helps.
Sounds like you are looking for a Message Queue, some MDBs and a configurable design would let you do all these. Spring has support for JMS Queues if I'm not wrong
I think you are looking for a message queue. If you need additional monitoring, using a web service as the end point may not suffice - with regards to stop/start or forwarding of messages; monitoring http requests to web service is more cumbersome than tracking messages to a queue (even though you can do it).
If you are exposing this service to third party, then the web service will sit on top of the message queue and delegate to to it.
In my experience, RabbitMQ is a fine messaging queue service with a relatively simple learning curve.

Categories