As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
It's a pretty open ended question. I'll be starting out a new project and am looking at different ORMs to integrate with database access.
Do you have any favorites?
Are there any you would advise staying clear of?
I have stopped using ORMs.
The reason is not any great flaw in the concept. Hibernate works well. Instead, I have found that queries have low overhead and I can fit lots of complex logic into large SQL queries, and shift a lot of my processing into the database.
So consider just using the JDBC package.
None, because having an ORM takes too much control away with small benefits. The time savings gained are easily blown away when you have to debug abnormalities resulting from the use of the ORM. Furthermore, ORMs discourage developers from learning SQL and how relational databases work and using this for their benefit.
Many ORM's are great, you need to know why you want to add abstraction on top of JDBC. I can recommend http://www.jooq.org to you (disclaimer: I'm the creator of jOOQ, so this answer is biased). jOOQ embraces the following paradigm:
SQL is a good thing. Many things can be expressed quite nicely in SQL. There is no need for complete abstraction of SQL.
The relational data model is a good thing. It has proven the best data model for the last 40 years. There is no need for XML databases or truly object oriented data models. Instead, your company runs several instances of Oracle, MySQL, MSSQL, DB2 or any other RDBMS.
SQL has a structure and syntax. It should not be expressed using "low-level" String concatenation in JDBC - or "high-level" String concatenation in HQL - both of which are prone to hold syntax errors.
Variable binding tends to be very complex when dealing with major queries. THAT is something that should be abstracted.
POJO's are great when writing Java code manipulating database data.
POJO's are a pain to write and maintain manually. Code generation is the way to go. You will have compile-safe queries including datatype-safety.
The database comes first. While the application on top of your database may change over time, the database itself is probably going to last longer.
Yes, you do have stored procedures and user defined types (UDT's) in your legacy database. Your database-tool should support that.
There are many other good ORM's. Especially Hibernate or iBATIS have a great community. But if you're looking for an intuitive, simple one, I'll say give jOOQ a try. You'll love it! :-)
Check out this example SQL:
// Select authors with books that are sold out
SELECT *
FROM T_AUTHOR a
WHERE EXISTS (SELECT 1
FROM T_BOOK
WHERE T_BOOK.STATUS = 'SOLD OUT'
AND T_BOOK.AUTHOR_ID = a.ID);
And how it can be expressed in jOOQ:
// Alias the author table
TAuthor a = T_AUTHOR.as("a");
// Use the aliased table in the select statement
create.selectFrom(a)
.whereExists(create.selectOne()
.from(T_BOOK)
.where(T_BOOK.STATUS.equal(TBookStatus.SOLD_OUT)
.and(T_BOOK.AUTHOR_ID.equal(a.ID))))));
Hibernate, because it's basically the defacto standard in Java and was one of the driving forces in the creation of the JPA. It's got excellent support in Spring, and almost every Java framework supports it. Finally, GORM is a really cool wrapper around it doing dynamic finders and so on using Groovy.
It's even been ported to .NET (NHibernate) so you can use it there too.
Hibernate, because it:
is stable - being around for so many years, it lacks any major problems
dictates the standards in the ORM field
implements the standard (JPA), in addition to dictating it.
has tons of information about it on the Internet. There are many tutorials, common problem solutions, etc
is powerful - you can translate a very complex object model into a relational model.
it has support for any major and medium RDBMS
is easy to work with, once you learn it well
A few points on why (and when) to use ORM:
you work with objects in your system (if your system has been designed well). Even if using JDBC, you will end up making some translation layer, so that you transfer your data to your objects. But my bets are that hibernate is better at translation than any custom-made solution.
it doesn't deprive you of control. You can control things in very small details, and if the API doesn't have some remote feature - execute a native query and you have it.
any medium-sized or bigger system can't afford having one ton of queries (be it at one place or scattered across), if it aims to be maintainable
if performance isn't critical. Hibernate adds performance overhead, which in some cases can't be ignored.
I would recommend using MyBatis. It is a thin layer on top of JDBC, it is very easy to map objects to tables and still use plain SQL, everything is under your control.
I had a really good experience with Avaje Ebean when I was writing a medium sized JavaSE application.
It uses standard JPA annotations to define entities, but exposes a much simpler API (No EntityManager or any of that attached/detached entities crap). It also lets you easily use SQL queries or event plain JDBC calls when necessary.
It also has a very nice fluid and type-safe API for queries. You can write things like:
List<Person> boys = Ebean.find(Person.class)
.where()
.eq("gender", "M")
.le("age", 18)
.orderBy("firstName")
.findList();
SimpleORM, because it is straight-forward and no-magic. It defines all meta data structures in Java code and is very flexible.
SimpleORM provides similar
functionality to Hibernate by mapping
data in a relational database to Java
objects in memory. Queries can be
specified in terms of Java objects,
object identity is aligned with
database keys, relationships between
objects are maintained and modified
objects are automatically flushed to
the database with optimistic locks.
But unlike Hibernate, SimpleORM uses a
very simple object structure and
architecture that avoids the need for
complex parsing, byte code processing
etc. SimpleORM is small and
transparent, packaged in two jars of
just 79K and 52K in size, with only
one small and optional dependency
(Slf4j). (Hibernate is over 2400K
plus about 2000K of dependent Jars.)
This makes SimpleORM easy to
understand and so greatly reduces
technical risk.
Eclipse Link, for many reasons, but notably I feel like it has less bloat than other main stream solutions (at least less in-your-face bloat).
Oh and Eclipse Link has been chosen to be the reference implementation for JPA 2.0
While I share the concerns regarding Java replacements for free-form SQL queries, I really do think people criticizing ORM are doing so because of a generally poor application design.
True OOD is driven by classes and relationships, and ORM gives you consistent mapping of different relationship types and objects.
If you use an ORM tool and end up coding query expressions in whatever query language the ORM framework supports (including, but not limited to Java expression trees, query methods, OQL etc.), you are definitely doing something wrong, i.e. your class model most likely doesn't support your requirements in the way it should. A clean application design doesn't really need queries on the application level. I've been refactoring many projects people started out using an ORM framework in the same way as they were used to embed SQL string constants in their code, and in the end everyone was suprised about how simple and maintainable the whole application gets once you match up your class model with the usage model. Granted, for things like search functionality etc. you need a query language, but even then queries are so much constrained that creating an even complex VIEW and mapping that to a read-only persistent class is much nicer to maintain and look at than building expressions in some query language in the code of your application. The VIEW approach also leverages database capabilities and, via materialization, can be much better performance-wise than any hand-written SQL in your Java source.
So, I don't see any reason for a non-trivial application NOT to use ORM.
Related
Jooq claims that there is no impedance mismatch when it comes to relational database schemas and object-oriented modelling of the data.
So, given a database schema that is asking to be wrapped in an application layer, does the DB schema have to be normalized to 3rd normal form in order for there to be optimal mapping between the DB schema, the ORM layer and the application?
You're probably referring to this jOOQ blog post here, which is a bit academic, not necessarily practical. It essentially says that what people call "impedance mismatch" may be caused by a lack of ORM features, not by the concept of ORMs per se.
This discussion has nothing to do with normalisation. As far as mapping is concerned, you can always map any table model to any object model if you correctly apply mapping rules and if you manually handle all the disadvantages of denormalisation (e.g. preventing inconsistencies in duplicate data). Having said so: the advantages of normalisation will make your life easier on all layers.
Note: if your schema is not normalised, chances are that it might have been designed for an analytic workload, not a transactional one, in case of which using an ORM might be overkill. Using a SQL based API like JDBC, jOOQ, etc. might be the better choice
I'm just reading the book here: http://www.amazon.com/Java-Architects-Handbook-Second-Edition/dp/0972954880/ trying to find a strategy about how to efficiently design a (generic) medium to large application (200 tables or more) - for instance a classic, multi-layered, corporate intranet. I'm trying to adapt my past experience (as a database designer, but also OOAD) in order to architect such a java application. From what I've read, if you define your entities first, there is no recommended way to infer your database directly (automatically).
The book says that you would build the entity/object model first (OOAD) and THEN there is the db admin/dev.(?) job to build/infer the database (schema, normalization etc.) based on the entity model already built. If this is the case, I'm afraid the architect/developer could lose control over important aspects - normalization, entity-attribute-value modeling etc.
Perhaps like many older developers (back-end developers, architects etc) I feel more comfortable defining the database schema first - and spending a good amount of time on aspects like normalization etc. While this would be certainly possible nowadays, I'm asking myself if this would become (pretty soon, if not already) the 'old fashioned way' and not the norm - as a classic/recommended approach when designing applications from scratch.
I know Entity Framework (.NET) already have these approaches explicitly defined - 'entities first', 'database first', 'code first' and and these could be mixed, if necessary. I surely know that they recommend 'entity first' for newly designed apps, and 'database first' if you have already defined database schema (which is the case for many older applications, when migrating etc. I'm just asking if there is something similar for the java world.
So, the questions are: (although I know there is no silver bullet etc.)
'Entities first' for newly built apps - this is the norm nowadays?
What tools do you use (if any) in order to assist inferring db schema process? - your experience, pros & cons with concrete UML
tools etc.
What if you have parts/older/sub-domain database schema (which you'd want to preserve, mainly)? In such case, you would infer entities model from
database and then refactor the model using your preferred UML tool?
From labor force perspective (let's say for db of 200-500 tables): what is the best approach: for instance, to have 2 different people
involved in designing OOAD/entities and database respectively,
working together with an architect?
As you expect - my answer is it depends.
The problem is that there are so many possible flavours and dimensions to a good design you really need to take the widest view possible first.
Ask yourself some of the big questions:
Where is the core of the system? Is the database really the core or is it actually just a persistence layer for the code. It could also perhaps be that the database is the core and the code is really just a snazzy UI on the data. There can also be a mix - where some of the tables are core along with some of the entities.
What do you see in the future? Remember that there are developments going on as we speak that are moving database technology rapidly forward. There are some databases that are all in-ram. Some are designed for a distributed architecture. Some are primarily cloud. If you build your schema first you risk locking yourself in to a certain technology.
What scale do you want to achieve? By insisting on a specific database you may be closing doors to perhaps hand-held presence.
I generally find entity first as the best initial approach because you can always derive a schema from the entities and some meta-data. It is certainly possible to go schema first and grow the entities out of the schema but that way you generally find the database influences the design too much.
1) I've done database first in the past but now I usually do Entity first but that's mainly because of the tools I'm using in creating the applications. Entity first has a few good advantages over trying to match your entities to your defined schema later. You're also not locking yourself to tightly to your schema. What your application is for matters alot as well, if it's just a basic CRUD application, write once read many or does it actually 'do' something that will inform your choice over how to architect your application.
2) I use hibernate a lot which encourages creating your model first, designing all your entities etc and then generating the schema from that, hibernate can generate your whole schema from the models you've created (though you may need to tweak them to make sure they're not crazy). If you have 200 entities in your model then you probably want to do a significant amount of UML modelling ahead of time to ensure your model is consistent.
3) If you're working with partially legacy database then it can sometimes be good to fall into line with the schema design for that so your entities and schema are consistent. It can be a bit of a pain but then so it trying to explain why part of your app is just different to other parts. So yes I would probably infer my entities from the schema in that case. But again if it was totally crazy then it may be to do some very specific DAO code to hide that part of the schema from that app and pretend it's not there.
4) I can't really give you a good answer on this as I'm not sure what you're driving at really. Once you have the design standards for your schema it's turning the handle to crank it out.
So after all that my answer is 'It depends'
While the answers already posted cover a lot of points - and ultimately, all answers probably have to all sum up to "it depends" - I'd like to expand on a point that's been touched on already.
My focus is on data - I'm a business intelligence and data warehousing developer, and I deal with issues like data quality, data governance, having a set of master data, etc. To this end, I have to pull data from other systems - data which is in varying conditions.
When considering whether the core of your system is really the database or the front end (as suggested by OldCurmudgeon), I strongly suggest thinking outside of your own area. I have seen and heard about many systems where it's clear that the database has been treated as an afterthought (sometimes created via an entity-first model, but also sometimes hand-built), despite the fact that most of the business value is in the data. More and more companies are of course realising that their data is valuable and are adopting tools to make use of it - but it's difficult to do if poor transactional databases mean that data has been lost, was never saved in the first place, has been overwritten when a history is needed, or is inconsistent.
While I don't want to do myself and others with similar roles out of a job: If the data that a system you're working on is or might be valuable, if there's any reason it might be accessed by anything other than the front end you're creating, then it is worth the time and effort to create a sound data model to hold it. If the system is for an organisation or is going to be sold to organisations, there's a decent chance they'll want to report out of it, will want to run output from it into a data warehouse or other data stores, and will want to carry out analysis on the data it creates and holds.
I don't know enough about tools like Hibernate to know if it's possible to both use them to work in an entity-first manner and still create a good quality database, but I know that I have come across some problematic databases created in this manner. At the very least, as has been suggested, if you are going to work that way, make sure it is producing something sane and perhaps adjust it where necessary to maintain data integrity. If data integrity is a key requirement and you cannot get such a tool to create a suitable database that will ensure data integrity, then perhaps consider going back to doing things the "old fashioned" way.
I would also suggest that there's real value in developers working alongside any data specialists, analysts, architects, etc. they may have as colleagues to do some up-front modelling, even if the system they then produce uses entity-first and even if it veers away from the more conceptual models produced early on for technical reasons. I have seen many baked-in problems in systems which have been caused by a lack of understanding of the wider business entities and relationships, and which could have been avoided if time had been spent understanding the overall structure in this way. I've been personally responsible for building those problems when I was an application developer myself, so this shouldn't be read as criticism of front-end developers - just a vote in favour of cross-functional and collaborative analysis and modelling before development approaches and designs are decided.
I'm starting to build a new Spring-based multi-user document management application and I would like to venture into the world of NoSQL/MongoDB. Coming from a RDBMS background, I have several concerns with MongoDB, primarily:
Lack of transactions
More focused on performance/scalability than data integrity
Lack of a JPA standard
To start with, I do not expect high loads or massive reads vs writes. I suspect reads to writes will be about 10 to 1. Additionally, I do not expect very high loads - especially to start.
1) From what I can tell, there is no easy way to do multi-collection transactions. Where in a RDBMS I can easily have a per-user document ID counter maintained in a separate table, there does not seem to be a way to do this reliably in MongoDB given that it would be in a separate collection/document. Consequently, I'm not sure if/how one resolves this problem.
2) Additionally, from what I have read, NoSQL is great where data integrity isn't the primary concern (ex: blog comments, etc). However, I'm not sure how this translates to being the primary data store for an application. Does this mean that one can update a document and have it fail? I ran across an older unaccredited rant which discusses failed commits/etc which further flames the concerns.
3) The seemingly lack of a JPA-like standard for NoSQL would imply that I have to choose my DB and stick with it. Unlike JPA where I can easily swap one DB vendor for another JPQ/SQL compliant vendor, I have to code with MongoDB in mind and redesign my structure/queries if ever I wanted to switch to another NoSQL DB. I've seen Hibernate OGM, but it seems that it is still very much in its infancy and only provides rudimentary support. Definitely not something that would avoid mongodb specific queries.
Are these concerns easily mitigated? Being new to the NoSQL world, I'm still having trouble understanding the right business case when to use NoSQL.
These are good questions. Here's my 2 cents about MongoDB and some references to help you learn more. I won't speak about any other NoSQL thingies as there are a lot out there and there's no real unifying principle to NoSQL other than "it doesn't use SQL", except sometimes people make it work with SQL, so, yeah.
MongoDB does not do joins. Period. MongoDB does not have transactions - whether within one collection or involving multiple collections. The unit of atomicity is the document. How does this work in an application? Via schema designand some techniques for recovering parts of ACID semantics if necessary, for example using two-phase commits. In relational databases, schema design is straightforward and is based on the structure of the data and not its use case. Joins and transactions fill in the gap between the abstract, normalized data representation and the concrete ways the data will be used. The data modeling intro already linked explains the situation for MongoDB, for contrast:
The key challenge in data modeling is balancing the needs of the application, the performance characteristics of the database engine, and the data retrieval patterns. When designing data models, always consider the application usage of the data (i.e. queries, updates, and processing of the data) as well as the inherent structure of the data itself.
That specific "rant" is clearly very old as it talks about writes being unacknowledged by default. This isn't the case anymore. Given any distributed computer system operating over a network, it's pretty easy to come up with a way for it to behave poorly . The MongoDB blog covered a lot of this stuff in a series on consistency. I'd suggest touring the docs about journaling, replication, and write concern and see if that makes you feel better about MongoDB as a primary data store.
Yup. This comes with the NoSQL territory. What doesn't exist is common data access languages or standards because everything is new and trying to be different. Check back in 30 years.
I am a fan of ORM - Object Relational Mapping and I have been using it with Rails for the past year and a half. Prior that, I use to write raw queries using JDBC and make Database do the heavy lifting via Stored Procedures. With ORM, I was initially happy to do stuff like coach.manager and manager.coaches which were very simple and easy to read.
But as time went by there were in-numerous associations creeping up and I ended up doing a.b.c.d which were firing queries in all directions, behind the scenes. With rails and ruby, the garbage collector went nuts and took insane time to load a very complex page which involves relatively lesser data. I had to replace this ORM style code by a simple Stored procedure and the result I saw was enormous. A page that took 50 seconds to load now takes only 2 seconds.
With this huge difference, should I continue using ORM? It is very clear it has severe overheads compared to a raw query.
In general, what are the general pitfalls of using an ORM framework like Hibernate, ActiveRecord?
An ORM is only a tool. If you don't use it correctly, you'll have bad results.
Nothing stops you from using dedicated HQL/criteria queries, with fetch joins or projections, to return the information that your page must display in as few queries as possible. This will take more or less the same time as dedicated SQL queries.
But of course, if you just get everything by ID and navigate through your objects without realizing how many queries it generates, it will lead to long loading times. The key is to know exactly what the ORM does behind the scene, and decide if it's appropriate or if another strategy must be adopted.
I think you've already identified the major tradeoff associated with ORM software. Every time you add a new layer of abstraction that tries to provide a generalized implementation of something that you used to do by hand there is going to be some loss of performance/efficiency.
As you noted, traversing multiple relationships such as a.b.c.d can be inefficient, because most ORM software will be doing an independent database query for each . along the way. But I'm not sure that means you should eliminate ORM altogether. Most ORM solutions (or at least, certainly Hibernate) allow you to specify custom queries where you can bring back exactly what you want in a single database operation. This should be about as fast as your dedicated SQL.
Really the issue is about understanding how the ORM layer is working behind the scenes, and realizing that while something like a.b.c.d is simple to write, what it causes the ORM layer to do as it is evaluated is not. As a general rule I always go with the simplest possible approach to begin, and then write optimized queries in areas where it makes sense/where it is obvious that the simple approach will not scale.
I'd say, one should use the appropriate tool for different tasks.
E.g., for CRUD operations, ORM frameworks like Hibernate can speed up development and it will perform well enough. Sometimes you need to do some necessary tweaks to achieve acceptable performance. I'm not sure, your task (what took 50 sec with Hibernate) could not be done properly with Hibernate, because you did not provide us with the details.
On the other hand, for example bulk operations involving hundreds of thousands of records is not the type of task you'd expect Hibernate will do without significant performance penalty.
As it was mentioned already, ORM is only a tool and you can use it eiter good or bad.
One of the most typical performance problems in ORMs is 1+N queries problem. It is caused by loading additional objects for each of objects from the list. This is caused by eager fetch of 1-to-n-relation entities for each element on list, the dealing is using HQL queries, specifying fields in projection or marking fetching 1-to-n relations to lazy.
Any time, you must exactly know what the ORM is doing in order to achieve good performance. Not understanding what operations are done in background is a way to disaster (slow, buggy and hard to analyze code because of unnecessary and wrongly written work-arounds).
I'm with Petar from your comments regarding the lazy fetching. Say you have an html table filled fields from object a.b.c.d. You could find your framework round-tripping the database thousands of times(possibly many more) . The disadvantage of ORM in this case is you have to read the documentation thoroughly. Most frameworks support disabling lazy fetching and many even support adding your own processing logic to bind the data set.
The net out is that almost any ORM is almost undoubtedly better than anything you are going to write yourself. You will find yourself saddled with maintaining huge libraries of boilerplate or worse writing the same code over and over again.
We are currently investigating to switch from our own data store layer with clean separation of transfer objects and data access objects to JPA. We used a generator to create the TOs, the DAOs and the SQL DDL as well from some documentation in docbook format. By this all of our stuff from documentation, the database structure and the generated Java classes where always in sync with a good documentation of the database itself.
What we discovered so far by using JPA:
Foreign key references cannot be used for imports, some special
queries and so on because they must not be placed in a managed
entity. JPA only allows the target class there.
Access to some user session scope is difficult upto impossible. We
still have no clue how to get the users id into the column
'userWhoLastMadeAnUpdate' in some PrePersist method.
Something expected to be quite easy with an ORM, namely "class
mapping" does not work at all. We are using HalDateTime
(http://sourceforge.net/projects/haldatetime/) internally.
Especially in the client. Mapping it with JPA directly is not
possible although HalDateTime supports it. Due to JPA restrictions
we have to use two fields in the entity.
JPA uses either one XML file to describe the mapping. So you have to
look at least into two files to even understand the relationship
between the Java class and the database. And the XML file becomes
huge for large applications.
Alternatively ORMs provide annotations in the Java class itself. So
its easier to learn and understand the relationship. But it forces
you to see all that database stuff in the client layer (which
completely breaks a proper layering).
You will have to restrict yourself to stay as close to a clean
database structure as anyhow possible. Otherwise you will for sure
end up with a mess of queries and statements by the ORM.
Use an ORM which provides a query language which is close to SQL
itself (JPA seems quite acceptable here). An ORM induced language
makes supporting a large application really expensive.
We are currently evaluating options for migrating from hand-written persistence layer to ORM.
We have a bunch of legacy persistent objects (~200), that implement simple interface like this:
interface JDBC {
public long getId();
public void setId(long id);
public void retrieve();
public void setDataSource(DataSource ds);
}
When retrieve() is called, object populates itself by issuing handwritten SQL queries to the connection provided using the ID it received in the setter (this usually is the only parameter to the query). It manages its statements, result sets, etc itself. Some of the objects have special flavors of retrive() method, like retrieveByName(), in this case a different SQL is issued.
Queries could be quite complex, we often join several tables to populate the sets representing relations to other objects, sometimes join queries are issued on-demand in the specific getter (lazy loading). So basically, we have implemented most of the ORM's functionality manually.
The reason for that was performance. We have very strong requirements for speed, and back in 2005 (when this code was written) performance tests has shown that none of mainstream ORMs were that fast as hand-written SQL.
The problems we are facing now that make us think of ORM are:
Most of the paths in this code are well-tested and are stable. However, some rarely-used code is prone to result set and connection leaks that are very hard to detect
We are currently squeezing some additional performance by adding caching to our persistence layer and it's a huge pain to maintain the cached objects manually in this setup
Support of this code when DB schema changes is a big problem.
I am looking for an advice on what could be the best alternative for us. As far as I know, ORMs has advanced in last 5 years, so it might be that now there's one that offers an acceptable performance. As I see this issue, we need to address those points:
Find some way to reuse at least some of the written SQL to express mappings
Have the possibility to issue native SQL queries without the necessity to manually decompose their results (i.e. avoid manual rs.getInt(42) as they are very sensitive to schema changes)
Add a non-intrusive caching layer
Keep the performance figures.
Is there any ORM framework you could recommend with regards to that?
UPDATE To give a feeling of what kind of performance figures we are talking about:
The backend database is TimesTen, in-memory database that runs on the same machine as the JVM
We found out that changing rs.getInt("column1") to rs.getInt(42) brings the performance increase we consider significant.
If you want a standard persistence layer that lets you issue native SQL queries, consider using iBATIS. It's a fairly thin mapping between your objects and SQL. http://ibatis.apache.org/
For caching and lazy joins, Hibernate might be a better choice. I haven't used iBATIS for these purposes.
Hibernate provides a lot of flexibility in allowing you to specify certain defaults for lazy loading as you traverse your object graph, yet also pre-fetch data with SQL or HQL queries to your heart's content when you need better-known load times. However, the conversion effort will be complicated for you as it has a fairly high bar to entry in terms of learning and configuration. Annotations made this easier for me.
Two benefits you didn't mention about switching to a standard framework:
(1) running down bugs becomes easier when you have a wealth of sites and forums out there to support you.
(2) new hires are cheaper, easier and faster.
Good luck in addressing your performance and usability issues. The tradeoffs you point out are very common. Sorry if I evangelized.
For the bulk of your queries, I'd go with hibernate. It's widely used,well documented, and generally performant. You can drop down to hand-written SQL if hibernate isn't producing efficient enough queries. Hibernate gives you a lot of control in specifying the table names and columns that the domain objects map to, and in most cases you can retro fit it to an exisitng schema.
Find some way to reuse at least some of the written SQL to express mappings
The mappings are expressed in JPA using annotations. You can use the existing SQL as a guide when creating JPQL queries.
Add a non-intrusive caching layer
Caching in hibernate is automatic and transparent, unless you specifically choose to get involved. You can mark entities as read only, or evict from the cache, control when changes are flushed to the database (inside a transaction of course - automatic use of batching improves performance when network latency is a concern.)
Have the possibility to issue native
SQL queries without the necessity to
manually decompose their results (i.e.
avoid manual rs.getInt(42) as they
are very sensitive to schema changes)
Hibernate allows you to write SQL, and have this mapped to your entities. You don't deal with the ResultSet directly - hibernate takes care of the deconstruction into your entity. See Chpt 16, Native SQL in the hibernate manual.
Support of this code when DB schema changes is a big problem.
Managing schema changes can still be a pain, since you now effectively have two schemata - the database schema and the JPA mapping (an object schema). if you choose to let hibernate generate the db schema and move your data to that, you are no longer directly responsible for what goes into the database, and so you are then faced with manging automatic changes to a machine generated schema. There are tools that can assist, such as dbmigrate, and liquibase, but it's no walk in the park. Conversely, if you are managing the db schema by hand, then you will have to carefully recraft your entities, JPA annotations and queries to accomodate the schema changes. Adding columns and new entities is relatively trivial, but more complex changes such as changing a single property to a collection of properties, or restructing an object hierarchy will involve considerably more extensive changes. There is no easy way out of this - either the db or hibernate is the "master" that decides the schema, and when one changes, the other must follow. The code changes aren't so bad - in my experience, it's migrating the data that's difficult. But this is a basic issue with databases, and will be present in any solution you choose.
So, to sum up, I'd go with hibernate, and use the JPA interface.
I've recently drilled through a bunch of Java ORMs and didn't come up with anything much better than Hibernate. Hibernate's performance may get you there and satisfy your performance goals.
Lots of people think that moving to Hibernate will make everything so awesome, but it's really just moving a set of problems from JDBC queries into Hibernate tuning. Read a bunch of books or (better) hire a "Hibernate guy" to come in and help.
During your refactor, I'd recommend using JPA so you can un-plug and re-plug a new persistence provider when the Next Big Thing comes along (or you move to Oracle)
Do you really need to migrate? What's forcing you to move? Is there some REAL need here or someone just inventing work (an 'Astronaut architect')?
I agree with the above answers though - if you HAVE to move - Hibernate or iBatis are good choices. iBatis especially if you want to stay 'closer' to the SQL.
If you need more performance: drop the database (for on-line work) and handle the persistence direct. Adding caching is not going to help you with a TimesTen DB, it just adds an extra copy (slowing you down).
You might want to take a look at GemFire.
There is a lot of good advice already in here that I won't repeat. The only thing I didn't see suggested that might work for you is caching reference data in memory.
I have done quite a bit of this in the past and it does save a lot of time. If you have a large number of fairly static reference tables, load them all into memory at startup time and refresh them every couple minutes. That way you're not hitting the DB over and over again for data that never changes.