What does combineaccessrules mean in Eclipse classpaths? - java

This has been bugging me for years now, and I thought one of you fine people would know - in Eclipse's .classpath files, what is the combineaccessrules attribute of the classpathentry element actually used for?
I can see in the Java Build Path config dialog that it can be maniuplated, but I can't think of a good use case for it. If I muck about with the settings, or modify the .classpath file manually, it doesn't seem to have any effect.
I'm hoping someone else has put it to good use, and I can steal their ideas. Basically, it's an itch I'm trying to scratch.

With proper use of access rules you can prevent using "internal" and/or "non-api" classes and methods. When you add a class or package as Forbidden or Discouraged the compiler show an error or warning when you use that class or class from the specified package. For a longer introduction of access rules you should read this short article.
For using combine access rules imagine the following situation:
You have 2 projects, A and B.
On the classpath of project A there is a jar file that is exported. The jar contains some "stable api", "unstable api" and "non-api" public classes.
Project B depends on project A.
You do not allow using "non-api" classes in project A so you set some Forbidden access rules on those classes / packages.
In project B you do not allow using "non-api" as well, but you do want to get a warning when using "unstable api". In this case in project B you only have to set the additional Discouraged access rules if you check the Combine rules with the access rules of the exported project entries.

Access rules are handy little things, but dangerous. They exclude a source file from the project compiler but leave the file intact in the filesystem.
The project I work on has a bootstrap class in one of our source folders, but if we include the entire folder the project classpath it won't compile (it's a long story and the build process handles this).
So we use an eclipse access rule to exclude it and it never bothers us during development. This means we can't easily change the code, but it's one of those classes that literally hasn't been touched in years.
Combine Access Rules, judging by the JavaDoc, is a real edge use case. To use it you would have to have:
an access rule in an exported source entry of one project
a link to that project from a parent project
a need to combine the access rules of the sub project with the parent
I really can't say how it would be useful, but I hope that at least answers your "what is it" question :)

although i have never used it myself, a little bit of into can be found here.
whether the access rules of the project's exported entries should be combined with this entry's access rules
the access rules would be something like including "com/tests/**"

Related

intellij auto import custom buildfile

I dislike the build tools that exist for Java. So I wrote my own. But there is one feature that it doesn't have yet; auto-import of changes into the IntelliJ project.
I'm having trouble finding information on how to do this. Tutorials on how to write IntelliJ plugins throw tons of useless stuff at me (creating UI for example).
I know this isn't your typical stackoverflow I-have-a-bug question but I'm quite lost and could use a pointer in the right direction.
If you need to know when a certian file was changed and auto-import information from this file you can use VirtualFileManager.addVirtualFileListener().
Or even use fileDocumentManagerListener extension point. Whatever suits your needs more.
So far I've managed to create a simple IntelliJ plugin. The start is fairly simple. IntelliJ has the plugin project skeleton built in. File->new Project is enough there.
From there I've created a class that implements ModuleComponent. The documentation here (https://www.jetbrains.org/intellij/sdk/docs/basics/plugin_structure/plugin_components.html) says it will be loaded whenever a module is opened.
To get it to work I had to add this stuff in the plugin.xml:
<module-components>
<component>
<interface-class>packagename.ClassName</interface-class>
<implementation-class>packagename.ClassName</implementation-class>
</component>
</module-components>
The documentation manages to hide this next step but its possible to give the ModuleComponent a constructor like so:
public ClassName(final Module module) {}
This should give me an instance of the Module class to read values from and to modify the way I need.
As it turns out IntelliJ makes it difficult to figure out how to do things. There is no Javadoc for example. People seem to suggest reading the source code. Weird..
A quick look through the methods of Module didn't really help me much. Google let me know that in order to make changes to the Module I could do the following:
ModuleRootManager.getInstance(module).getModifiableModel()
I can call several methods on this model and finally call .commit() when I'm done to persist the changes. The ModifiableRootModel has two methods that look very promissing:
ModifiableRootModel.addModuleOrderEntry()
ModifiableRootModel.addLibraryEntry()
The first takes a Module instance. I'm hoping that if I add the correct Module this will allow me to well, add modules :). I can think of two situations here. First, the module is already loaded in the project, in which case I will need to find it and add it. And second, the module is not loaded yet so I will need to tell IntelliJ to load it and add it to the project.
The second method takes a Library instance. Just new Library() doesn't work, and google isn't very helpful here. From my buildfile I can extract the groupId:artifactId:version:scope value. So I'll need a way to turn those strings into a Library that works.
This is how far I've gotten so far. Current problems are:
I need to find the already loaded modules so I can find the one I'm linking to
I need a way to add a module to the project if it hasn't been loaded yet
I need a way to turn a maven style dependency into a Library object so I can add it to the module
I need a way to list all the existing modules and libraries so I don't end up adding duplicates

jBPM6: using rules contained in a separate jar artifact

I'm trying to implement a jBPM6 project containing both processes and rules.
One thing I would like to achieve (if it is possible) is to develop a separate artifact containing only the rules definitions, and then referencing this jar into the processes' project via maven, being able to execute the rules from my processes.
I implemented this solution, but when I execute one of the process that uses the rules none of the rules is fired. To verify that there were no implementation problems I put the rules definition files into the processes' project directly, and it worked in this way.
So, it is like the system is not able to load the rules definitions when they are contained into another jar archive. Does anyone knows how to solvemy problem, and if what I want to achieve is even possible in jBPM6? Thank you very much.
I have tried with repository1 and its working fine. I can see global variables are accessible across different projects. Go through repository1

Retrieving a list of classes from a package in an Android project

I'm aware that it isn't easily feasible to get all of the classes in a package using reflection, but I'm wondering if someone knows of a good solution/workaround, specifically for an Android project?
Given a package, I need to be able to retrieve all of the classes from it and process annotations from them using reflection.
Does anyone know of a way to do this? Are there any libraries available?
Scanning the filesystem as most solutions for non-Android Java do won't help on Android. Here's a (theoretical) solution that is android-specific: http://mindtherobot.com/blog/737/android-hacks-scan-android-classpath/
However, it remains a hack, since Java unfortunately does not directly support this.
Existing dependency injection solutions use reflection for processing the annotations, but still need the resources to be declared. See this example of DI using reflection.
If you are using Ant to build your artifacts, you could read the contents of your source directory using Bash or Java, and use this to regenerate the full hierarchy of classes automatically during each build. This might make things tricky if you rely on heavily on the Eclipse IDE though, since the list might be out of date until you run another Ant build. (Note: according to Pyscho you can make Eclipse use Ant by altering the project configuration, see comments)
Another option might be to process the AndroidManifest file using the AssetManager, but you would be limited to the resources declared in that file. The compiled classes themselves are in-lined and optimised in the classes.dex file, and as such you're unlikely to get much useful information from it.
I think you might find the answer here https://stackoverflow.com/a/1457971/1199538
there is a java file attached so you can download it and try it
short snippet from the answer following:
This method can only be used when:
You have a class that is in the same package you want to discover, This class is called a
SeedClass. For example, if you want to list all classes in 'java.io', the seed class may be java.io.File.
Your classes are in a directory or in a JAR file it has source file information (not source code file, but just source file). As far as I've tried, it work almost 100% except the JVM class (those classes come with the JVM).
Your program must have permission to access ProtectionDomain of those classes. If your program is loaded locally, there should be no problem.
You can do classpath scanning for Android at compiletime, before the JVM bytecodes have been converted to Dalvik bytecodes, e.g. using the ClassGraph library (I am the author):
https://github.com/classgraph/classgraph/wiki/Build-Time-Scanning

Why shouldn't we use the (default)src package?

I recently started using Eclipse IDE and have read at a number of places that one shouldn't use the default(src) package and create new packages.
I just wanted to know the reason behind this.
Using the default package may create namespace collisions. Imagine you're creating a library which contains a MyClass class. Someone uses your library in his project and also has a MyClass class in his default package. What should the compiler do? Package in Java is actually a namespace which fully identifies your project. So it's important to not use the default package in the real world projects.
Originally, it was intended as a means to ensure there were no clashes between different pieces of Java code.
Because Java was meant to be run anywhere, and over the net (meaning it might pick up bits from Sun, IBM or even Joe Bloggs and the Dodgy Software Company Pty Ltd), the fact that I owned paxdiablo.com (I don't actually but let's pretend I do for the sake of this answer) meant that it would be safe to call all my code com.paxdiablo.blah.blah.blah and that wouldn't interfere with anyone else, unless they were mentally deficient in some way and used my namespace :-)
From chapter 7, "Packages", of the Java Language Spec:
Programs are organized as sets of packages. Each package has its own set of names for types, which helps to prevent name conflicts.
I actually usually start by using the default package and only move it into a real package (something fairly easy to do with the Eclipse IDE) if it survives long enough to be released to the wild.
Java uses the package as a way to differentiate between classes. By using packages, you can have an org.example.Something class and an org.example.extended.Something class and be able to differentiate between them even though they are both named Something. Since their packages are different, you can use them both in the same project.
By declaring a package you define your own namespace (for classes). This way if you have two identical classes using a different package name (namespace) will differentiate between which one you want to use.
The main reasons I can think of are:
It keeps things organised, which will help you (and others!) know where to look for classes/functionality.
You can define classes with the same name if they are in different packages.
Classes/etc in the default package cannot be imported into named packages. This means that in order to use your classes, other people will have to put all their classes in the default package too. This exacerbates the problems which reasons 1 & 2 solve.
From a java point of view, there are two general dev/deploy lifecycles you can folllow, either using ant to build and deploy, or the maven lifecycle. Both of these lifecycles look for source code and resources in local directories, and in the case of maven, in defined repositories, either locally or on the net.
The point is, when you set up a project, for development and eventually deployment, you want to build a project structure that is portable, and not dependent on the IDE, ie. your project can be built and deployed using either of your build environments. If you use a heavy dependence on the Eclipse framework for providing class variables, compile paths, etc.. you may run into the problem that your project will only build and deploy using that configurationj, and it may not be portable to another developers environment, so to speak.

non-java files in package structure

We have a developer who is in the habit of committing non-java files (xsd, dtd etc) in the java packages under the src/java folder in our repository. Admittedly, these are relevant files to that package, but I just hate to see non-java files in the src folder.
Is this is a common practice that I should get used to or are we doing something strange by maintaining these files like this?
The problem with putting non Java (or other languages) files that are closely tied to the code in a different place than the code is knowing where to find them. It is possible to standardize the locations then theoretically everyone will know where to go and what to do. But I find in practice that does not happen.
Imagine your app still being maintained 5 or 10 years down the road by a team of junior - intermediate developers that do not work at the company now and will never talk to anyone who works on your project now. Putting files closely linked to the source in the source package structure could make their lives easier.
I am a big proponent of eliminating as many ambiguities as possible within reason.
It's very common and even recommended as long as its justifiable. Generally it's justifiable when it's a static resource (DTD+XSLT for proprietary formats, premade scripts etc.) but it's not when the file is something that's likely to be updated by a third party like IP/geographic location database dump.
I think it gets easier if you think of 'src' as not specifically meaning 'source code'. Think of it as the source of resources that are things needed by your program at compile time and/or runtime.
Things that are a product of compile or build activities should not go here.
Admittedly, like most things, exceptions may apply :)
Update:
Personally, I like to break down src further with subdirectories for each resource type underneath it. Others may like that division at a higher level.
There is a lot of jar libraries that uses the same practice.
I think it is acceptable and comfortable.
In Eclipse it works well for us to have a src folder containing java classes, and a configuration folder (which is blessed as a source folder) containing property files etc. Then they all go in the output folder together and can be found in the classpath while still being in seperate folders inside Eclipse
One of the advantages of keeping all the auxiliary files next to the source is that version consistency is maintained between these 3rd party libraries and your source code. If you ever need to go back and debug a specific version, you can pull the entire set of source+config and have it all be the same version.
That being said I'd put them in a $project/config/ directory, or some such, rather than in $project/src/java itself. They're not source, nor java, really, so it's misleading having them in that directory.
When you really get down to it, though, this is an issue of personal style. There's no "Right" answer and you should be talking with those team members and understanding why they made this decision. Using this thread as evidence to support a unilateral decision probably won't go over well. ;)
Its pretty common, you can find it in really popular frameworks, e.g. xsd files for spring various schemas. Also people usually place hibernate mapping files in the same package as the model classes.
I think this is common as long as the files are necessary. The problems arise when people start committing files that are not needed with the source, such as design specs or random text files.
It is surely common, but incredibly lazy and sloppy. My skin crawls when I see it.
Using a tool such as Maven to build your products enables you to easily, and clearly separate code from resources.
Eclipse bundles can be similarly separated.

Categories