Java hashmaps without the value? - java

Let's say I want to put words in a data structure and I want to have constant time lookups to see if the word is in this data structure. All I want to do is to see if the word exists. Would I use a HashMap (containsKey()) for this? HashMaps use key->value pairings, but in my case I don't have a value. Of course I could use null for the value, but even null takes space. It seems like there ought to be a better data structure for this application.
The collection could potentially be used by multiple threads, but since the objects contained by the collection would not change, I do not think I have a synchronization/concurrency requirement.
Can anyone help me out?

Use HashSet instead. It's a hash implementation of Set, which is used primarily for exactly what you describe (an unordered set of items).

You'd generally use an implementation of Set, and most usually HashSet. If you did need concurrent access, then ConcurrentHashSet provides a drop-in replacement that provides safe, concurrent access, including safe iteration over the set.
I'd recommend in any case referring to it as simply a Set throughout your code, except in the one place where you construct it; that way, it's easier to drop in one implementation for the other if you later require it.
Even if the set is read-only, if it's used by a thread other than the one that creates it, you do need to think about safe publication (that is, making sure that any other thread sees the set in a consistent state: remember any memory writes, even in constructors, aren't guaranteed to be made available to other threads when or in the otder you expect, unless you take steps to ensure this). This can be done by both of the following:
making sure the only reference(s) to the set are in final fields;
making sure that it really is true that no thread modifies the set.
You can help to ensure the latter by using the Collections.unmodifiableSet() wrapper. This gives you an unmodifiable view of the given set-- so provided no other "normal" reference to the set escapes, you're safe.

You probably want to use a java.util.Set. Implementations include java.util.HashSet, which is the Set equivalent of HashMap.
Even if the objects contained in the collection do not change, you may need to do synchronization. Do new objects need to be added to the Set after the Set is passed to a different thread? If so, you can use Collections.synchronizedSet() to make the Set thread-safe.
If you have a Map with values, and you have some code that just wants to treat the Map as a Set, you can use Map.entrySet() (though keep in mind that entrySet returns a Set view of the keys in the Map; if the Map is mutable, the Map can be changed through the set returned by entrySet).

You want to use a Collection implementing the Set interface, probably HashSet to get the performance you stated. See http://java.sun.com/javase/6/docs/api/java/util/Set.html

Other than Sets, in some circumstances you might want to convert a Map into a Set with Collections.newSetFromMap(Map<E,Boolean>) (some Maps disallow null values, hence the Boolean).

as everyone said HashSet is probably the simplest solution but you won't have constant time lookup in a HashSet (because entries may be chained) and you will store a dummy object (always the same) for every entry...
For information here a list of data structures maybe you'll find one that better fits your needs.

Related

Collections in java - how to choose the appropriate one

I'm learning about collections and trying to ascertain the best one to use for my practice exercise.....I've done a lot of reading on them, but still can't find the best approach.....this may sound a bit woolly but any guidance at all would be appreciated....
I need to associate a list of Travellers, with a list of Boarding Passes. Both classes contain a mutable boolean field that will be modified during my programme, else all other fields are immutable. That boolean field must exist. I'll need to create a collection of 10 travellers, and then when all criteria has been met, instantiate a boarding pass, and associate it with them.
There won't be any duplicates of either due to each object having a unique reference variable associated with them, created through an object factory.
From doing some reading I understand that Sets must contain immutable objects, and don't allow duplicate elements, whereas Lists are the opposite.
Because I need to associate them with each other, I was thinking a Map, but I now know that the keys are stored in a set, which would be problematic due to the aforementioned reasons....
Could I override the hashcode() method so that it doesn't taken into consideration the boolean field and therefore as long as all of my other fields are immutable it should be fine? Or is that bad practice?
I also thought about creating a list of Travellers, and then trying to associate a Boarding Pass another way, but couldn't think of how that could be achieved....
Please don't give me any code - just some sort of a steer in the right direction would be really helpful.
If you are looking for a best practice, you need to think what you are planning to do with the data now and in the (near) future. When you know
what this is, you need to check which of the methods (list, set and map) works best for you. If you want to compare the three, have a look here
You've been mislead about the mutability requirements of set members and map keys.
When you do a lookup in a HashMap, you do it based on the key's hashCode. If you have mutable objects as keys, and mutating the object modifies the hashCode value, then this is a problem.
If a key was inserted into the table when it had a hashCode of 123, but later it's modified to have a hashCode of 345, you won't be able to find it again later since it's stored in the 123 bucket.
If the mutable boolean field does not influence your hashCode values (e.g., you didn't override hashCode or equals on your key class), then there's no issue.
That said, since you say you'll only have one unique instance of each passenger, Boris's suggestion in the comments about using an IdentityHashMap is probably the way to go. The IdentityHashMap gives the same behavior as a HashMap whose keys all use the default (identity-based) implementations for hashCode and equals. This way you'll get the expected behavior whether or not you've overridden equals and/or hashCode for other purposes.
(Note that you need to take equality into account as well as the hashCode.)

Why is exposing an iterators underlying representation bad?

Iterator Pattern Definition: Provides a way to access the elements of an aggregate object sequentially without exposing its underlying representation. Wiki
What are the consequences of exposing the underlying representation?
To provide a more detailed answer: How is the iterator pattern preventing this?
As per: http://www.oodesign.com/iterator-pattern.html
The idea of the iterator pattern is to take the responsibility of accessing and passing trough the objects of the collection and put it in the iterator object. The iterator object will maintain the state of the iteration, keeping track of the current item and having a way of identifying what elements are next to be iterated.
Few benefits that you can get from this pattern:
Using Iterator pattern code designer can decide whether to allow 1 way iteration (using next() only) or allow reverse iteration as well (using prev() as in ListIterator).
Whether to allow object removal or not, if yes then how.
Maintain internal housekeeping when object is removed.
It allows you to expose common mechanism of traversing a collection rather than expecting your clients to understand underlying collections.
If the underlying representation were exposed, client code could couple to it. Then:
If the representation changes, it may be necessary to change all the code coupling to it.
If you want to iterate over a different type of container, it may be necessary to change the code coupling to the old container.
Data abstraction makes code more resilient to a change in the representation.
In short: all the code relying on the underlying representation will have to be changed if you decide to change the representation.
E.g., you decided to use TreeMap at first, but then you don't want ordering anymore (in most cases), so you change to HashMap. Somebody is looping through your map trying to get a increasing list. !!
Using iterator pattern, you could always give the user the ability to loop through something with a certain logic (or just random, which is a kind of logic) without knowing what it is under the hood.
Now, if you use HashMap instead of TreeMap, you could expose a sorted view to the user. If you provide this SortedIterator and tell user "using this will guarantee the result to be sorted, but I can't tell you anything about what's underneath", you can change the representation to be whatever you like, as long as the contract of this SortedIterator is maintained by you.

Java Collections with Mutable Objects

How does a TreeSet, HashSet or LinkedHashSet behave when the objects are mutable? I cannot imagine that they would work in any sense?
If I modify an object after I have added it; what is the behaviour of the list?
Is there a better option for dealing with a collection of mutable objects (which I need to sort/index/etc) other than a linked list or an array and simply iterating through them each time?
The Set interface addresses this issue directly: "Note: Great care must be exercised if mutable objects are used as set elements. The behavior of a set is not specified if the value of an object is changed in a manner that affects equals comparisons while the object is an element in the set. A special case of this prohibition is that it is not permissible for a set to contain itself as an element."
Addendum:
Is there a better option for dealing with a collection of mutable objects?
When trying to decide which collection implementation is most suitable, it may be worth looking over the core collection interfaces. For Set implementations in particular, as long as equals() and hashCode() are implemented correctly, any unrelated attributes may be mutable. By analogy with a database relation, any attribute may change, but the primary key must be inviolate.
Being mutable is only a problem for the collection if the objects' hashCode and behaviour of compare methods change after it is inserted.
The way you could handle this is to remove the objects from the collection and re-adding them after such a change so that the object.
In essence this results in a inmutable object from the collections' point of view.
Another less performant way could be to keep a set containing all objects and creating a TreeSet/HashSet when you need the set to be sorted or indexed. This is no real solution for a situation where the objects change constantly and you need map access at the same time.
The "best" way to deal with this situation is to keep ancillary data structures for lookup, a bit like indexes in a database. Then all of your modifications need to make sure the indexes are updated. Good examples would be maps or multimaps - before an update, remove the entry from any indexes, and then after an update add them back in with the new values. Obviously this needs care with concurrency etc.

Java - Why does Map.put() overwrite while Set.add() does not?

I am wondering what the rationale is behind having Java's Map.put(key, value) method overwrite equivalently key'd values that are already in the collection, while Set.add(value) does not overwrite a pre-existing equivalent value that is already in the collection?
Edit:
It looks like majority viewpoint is that objects in a set that evaluate to equality should be equal in every respect, thus it shouldn't matter if Set.add(Object) overwrites equivalently valued objects or not. If two objects evaluate to equality, but do in fact hold different data, then a Map-type collection is a more appropriate container.
I somewhat disagree with this veiwpoint.
Example: A set holding a group of "Person" objects. In order to update some information about that person, you might want to pass the set a new, updated, person object to overwrite the old, outdated person object. In this case, a Person would hold a primary key that identifies that individual and the set would identify and compare people based only on their primary keys. This primary key is part of the person's identity as opposed to an external reference such as a Map would imply.
The Map behavior allows changing the values associated with equivalent keys. That is a pretty common use case: a : b becomes a : c.
Yes, over-writing Set contents with add could change something (reference value) - but that seems like a pretty narrow use case (which can be accomplished anyways - always try to remove before adding: s.remove(o); s.add(o);) relative to what one would be getting in most cases - nothing for cycles.
edit:
the one potential use I could see for that behavior, is having a constrained memory budget, lots of heavy-but-equivalent objects being created, and having references to different equal versions in various places, preventing garbage collection of the duplicate ones. Having run into that problem before, however, I don't think this behavior is even the best way to solve it.
In my opinion, there is no point in overwriting something in Set, since nothing will change.
However when you update a map, the key might be the same, but the value might be different.
Note that Map isn't actually so different... it may always change the value, but (at least in Sun's implementations) the key will remain the same even if later calls to put() use a different instance that compares as equal to the original.
I disagree with the premise of your question. Both Map and Set are abstract interfaces. Whether they overwrite or not is an implementation detail.
an implementation of Map that does not overwrite.
You could create a mutable singleton set - adding stuff to the set overwrites the existing singleton value.

when to use Set vs. Collection?

Is there any practical difference between a Set and Collection in Java, besides the fact that a Collection can include the same element twice? They have the same methods.
(For example, does Set give me more options to use libraries which accept Sets but not Collections?)
edit: I can think of at least 5 different situations to judge this question. Can anyone else come up with more? I want to make sure I understand the subtleties here.
designing a method which accepts an argument of Set or Collection. Collection is more general and accepts more possibilities of input. (if I'm designing a specific class or interface, I'm being nicer to my consumers and stricter on my subclassers/implementers if I use Collection.)
designing a method which returns a Set or Collection. Set offers more guarantees than Collection (even if it's just the guarantee not to include one element twice). (if I'm designing a specific class or interface, I'm being nicer to my consumers and stricter on my subclassers/implementers if I use Set.)
designing a class that implements the interface Set or Collection. Similar issues as #2. Users of my class/interface get more guarantees, subclassers/implementers have more responsibility.
designing an interface that extends the interface Set or Collection. Very similar to #3.
writing code that uses a Set or Collection. Here I might as well use Set; the only reasons for me to use Collection is if I get back a Collection from someone else's code, or if I have to handle a collection that contains duplicates.
Collection is also the supertype of List, Queue, Deque, and others, so it gives you more options. For example, I try to use Collection as a parameter to library methods that shouldn't explicitly depend on a certain type of collection.
Generally, you should use the right tool for the job. If you don't want duplicates, use Set (or SortedSet if you want ordering, or LinkedHashSet if you want to maintain insertion order). If you want to allow duplicates, use List, and so on.
I think you already have it figured out- use a Set when you want to specifically exclude duplicates. Collection is generally the lowest common denominator, and it's useful to specify APIs that accept/return this, which leaves you room to change details later on if needed. However if the details of your application require unique entries, use Set to enforce this.
Also worth considering is whether order is important to you; if it is, use List, or LinkedHashSet if you care about order and uniqueness.
See Java's Collection tutorial for a good walk-through of Collection usage. In particular, check out the class hierarchy.
As #mmyers states, Collection includes Set, as well as List.
When you declare something as a Set, rather than a Collection, you are saying that the variable cannot be a List or a Map. It will always be a Collection, though. So, any function that accepts a Collection will accept a Set, but a function that accepts a Set cannot take a Collection (unless you cast it to a Set).
One other thing to consider... Sets have extra overhead in time, memory, and coding in order to guarantee that there are no duplicates. (Time and memory because sets are usually backed by a HashMap or a Tree, which adds overhead over a list or an array. Coding because you have to implement the hashCode() and equals() methods.)
I usually use sets when I need a fast implementation of contains() and use Collection or List otherwise, even if the collection shouldn't have duplicates.
You should use a Set when that is what you want.
For example, a List without any order or duplicates. Methods like contains are quite useful.
A collection is much more generic. I believe that what mmyers wrote on their usage says it all.
The practical difference is that Set enforces the set logic, i.e. no duplicates and unordered, while Collection does not. So if you need a Collection and you have no particular requirement for avoiding duplicates then use a Collection. If you have the requirement for Set then use Set. Generally use the highest interface possibble.
As Collection is a super type of Set and SortedSet these can be passed to a method which expects a Collection. Collection just means it may or may not be sorted, order or allow duplicates.

Categories