Most of the time I will use an exception to check for a condition in my code, I wonder when it is an appropriate time to use an assertion?
For instance,
Group group=null;
try{
group = service().getGroup("abc");
}catch(Exception e){
//I dont log error because I know whenever error occur mean group not found
}
if(group !=null)
{
//do something
}
Could you indicate how an assertion fits in here? Should I use an assertion?
It seems like I never use assertions in production code and only see assertions in unit tests. I do know that in most cases, I can just use exception to do the checking like above, but I want to know appropriate way to do it "professionally".
Out of my mind (list may be incomplete, and is too long to fit in a comment), I would say:
use exceptions when checking parameters passed to public or protected methods and constructors
use exceptions when interacting with the user or when you expect the client code to recover from an exceptional situation
use exceptions to address problems that might occur
use assertions when checking pre-conditions, post-conditions and invariants of private/internal code
use assertions to provide feedback to yourself or your developer team
use assertions when checking for things that are very unlikely to happen otherwise it means that there is a serious flaw in your application
use assertions to state things that you (supposedly) know to be true
In other words, exceptions address the robustness of your application while assertions address its correctness.
Assertions are designed to be cheap to write, you can use them almost everywhere and I'm using this rule of thumb: the more an assertion statement looks stupid, the more valuable it is and the more information it embeds. When debugging a program that does not behave the right way, you will surely check the more obvious failure possibilities based on your experience. Then you will check for problems that just cannot happen: this is exactly when assertions help a lot and save time.
Assertions should be used to check something that should never happen, while an exception should be used to check something that might happen.
For example, a function might divide by 0, so an exception should be used, but an assertion could be used to check that the harddrive suddenly disappears.
An assertion would stop the program from running, but an exception would let the program continue running.
Note that if(group != null) is not an assertion, that is just a conditional.
Remember assertions can be disabled at runtime using parameters, and are disabled by default, so don't count on them except for debugging purposes.
Also you should read the Oracle article about assert to see more cases where to use - or not to use - assert.
As a general rule:
Use assertions for internal consistency checks where it doesn't matter at all if someone turns them off. (Note that the java command turns off all assertions by default.)
Use regular tests for any kind of checks what shouldn't be turned off. This includes defensive checks that guard against potential damage cause by bugs, and any validation data / requests / whatever provided by users or external services.
The following code from your question is bad style and potentially buggy
try {
group = service().getGroup("abc");
} catch (Exception e) {
//i dont log error because i know whenever error occur mean group not found
}
The problem is that you DON'T know that an exception means that the group was not found. It is also possible that the service() call threw an exception, or that it returned null which then caused a NullPointerException.
When you catch an "expected" exception, you should catch only the exception that you are expecting. By catching java.lang.Exception (and especially by not logging it), you are making it harder to diagnose / debug the problem, and potentially allowing the app to do more damage.
Well, back at Microsoft, the recommendation was to throw Exceptions in all APIs you make available publicly and use Asserts in all sorts of assumptions you make about code that's internal. It's a bit of a loose definition but I guess it's up to each developer to draw the line.
Regarding the use of Exceptions, as the name says, their usage should be exceptional so for the code you present above, the getGroup call should return null if no service exists. Exception should only occur if a network link goes down or something like that.
I guess the conclusion is that it's a bit left down to the development team for each application to define the boundaries of assert vs exceptions.
According to this doc http://docs.oracle.com/javase/6/docs/technotes/guides/language/assert.html#design-faq-general, "The assert statement is appropriate for nonpublic precondition, postcondition and class invariant checking. Public precondition checking should still be performed by checks inside methods that result in particular, documented exceptions, such as IllegalArgumentException and IllegalStateException."
If you want to know more about precondition, postcondition and class invariant, check this doc: http://docs.oracle.com/javase/6/docs/technotes/guides/language/assert.html#usage-conditions. It also contains with examples of assertions usage.
Testing for null will only catch nulls causing problems, whereas a try/catch as you have it will catch any error.
Broadly, try/catch is safer, but slightly slower, and you have to be careful that you catch all the kinds of error that may occur. So I would say use try/catch - one day the getGroup code may change, and you just might need that bigger net.
You can use this simple difference in mind while their usage. Exceptions will be used for checking expected and unexpected errors called checked and unchecked error while assertion is used mainly for debugging purposes at the run time to see whether the assumptions are validated or not.
Unfortunately asserts can be disabled. When in production you need all the help you can get when tracking down something unforeseen, so asserts disqualify themselves.
I confess I'm a little confused by your question. When an assertion condition is not met, an exception is thrown. Confusingly this is called AssertionError. Note that it's unchecked, like (for example) IllegalArgumentException which is thrown in very similar circumstances.
So using assertions in Java
is a more concise means of writing a condition/throw block
permits you to turn these checks on/off via JVM parameters. Normally I would leave these checks on all the time, unless they impact runtime performance or have a similar penalty.
See section 6.1.2 (Assertions vs. other error code) of Sun's documentation at the following link.
http://www.oracle.com/technetwork/articles/javase/javapch06.pdf
This document gives the best advice I've seen on when to use assertions. Quoting from the document:
"A good rule of thumb is that you should use an assertion for exceptional cases that you would like to forget about. An assertion is the quickest way to deal with, and forget, a condition or state that you don’t expect to have to deal with."
I’m not experienced with Java asserts but I think the answer here naturally follows from what Java asserts are:
Code that is only run if enabled
Disabled by default
Thus we can surmise that assertions should never be used to implement application logic: it should only be used as optional (because of the on/off feature) sanity checks/explicit assumptions. The correctness of your app (modulo bugs!) cannot depend on a runtime flag which is turned off by default.
So only use assertions to check internal assumptions (your own code only, not things that are out of your control like user input). But on the other hand you might sometimes want to use exceptions to check your assumptions; if you want to always check a certain assumption then you don’t need the on/off feature that assertions provide.
For the task of checking assumptions, it seems that assertions excel when:
The check might be costly so you want the option of disabling it
Using if-or-throw would be too much “noise” but you can bear the cost of one little assert <expr>
You want to leave a little comment which merely states something like:
// NOTE we KNOW that `x` is not null!
x.doWork();
Then the Java folks say that you should always replace that line with:
assert x != null;
x.doWork();
Or (in my opinion) if you prefer:
if (x == null) {
throw new IllegalStateException("shouldn’t be null");
}
x.doWork();
Things that follow from these principles
I think we can immediately expand on related principles (sibling answer) by using this “optional” principle (my gloss in cursive):
use exceptions when checking parameters passed to public or protected methods and constructors
Because you are checking things outside your code: code coming into your module
use exceptions when interacting with the user or when you expect the client code to recover from an exceptional situation
Because the input is from the user and has nothing to do with your code. Also assertions are not really something you are supposed to recover from.(†1)
use exceptions to address problems that might occur
I.e. errors that happen as a matter of course: not bugs in your code
use assertions when checking pre-conditions, post-conditions and invariants of private/internal code
Because it’s your own code: problems inside your own code are self-caused
use assertions to provide feedback to yourself or your developer team
Bugs are for developers to deal with
use assertions when checking for things that are very unlikely to happen otherwise it means that there is a serious flaw in your application
Key word “serious flaw in your application”
use assertions to state things that you (supposedly) know to be true
Checking assumptions
Notes
I think this is a general opinion. See also (my bold):
Why is AssertionError a subclass of Error rather than RuntimeException?
This issue was controversial. The expert group discussed it at length, and came to the conclusion that Error was more appropriate to discourage programmers from attempting to recover from assertion failures.
Related
To avoid all standard-answers I could have Googled on, I will provide an example you all can attack at will.
C# and Java (and too many others) have with plenty of types some of ‘overflow’ behaviour I don’t like at all (e.g type.MaxValue + type.SmallestValue == type.MinValue for example : int.MaxValue + 1 == int.MinValue).
But, seen my vicious nature, I’ll add some insult to this injury by expanding this behaviour to, let’s say an Overridden DateTime type. (I know DateTime is sealed in .NET, but for the sake of this example, I’m using a pseudo language that is exactly like C#, except for the fact that DateTime isn’t sealed).
The overridden Add method:
/// <summary>
/// Increments this date with a timespan, but loops when
/// the maximum value for datetime is exceeded.
/// </summary>
/// <param name="ts">The timespan to (try to) add</param>
/// <returns>The Date, incremented with the given timespan.
/// If DateTime.MaxValue is exceeded, the sum wil 'overflow' and
/// continue from DateTime.MinValue.
/// </returns>
public DateTime override Add(TimeSpan ts)
{
try
{
return base.Add(ts);
}
catch (ArgumentOutOfRangeException nb)
{
// calculate how much the MaxValue is exceeded
// regular program flow
TimeSpan saldo = ts - (base.MaxValue - this);
return DateTime.MinValue.Add(saldo)
}
catch(Exception anyOther)
{
// 'real' exception handling.
}
}
Of course an if could solve this just as easy, but the fact remains that I just fail to see why you couldn’t use exceptions (logically that is, I can see that when performance is an issue that in certain cases exceptions should be avoided).
I think in many cases they are more clear than if-structures and don’t break any contract the method is making.
IMHO the “Never use them for regular program flow” reaction everybody seems to have is not that well underbuild as the strength of that reaction can justify.
Or am I mistaken?
I've read other posts, dealing with all kind of special cases, but my point is there's nothing wrong with it if you are both:
Clear
Honour the contract of your method
Shoot me.
Have you ever tried to debug a program raising five exceptions per second in the normal course of operation ?
I have.
The program was quite complex (it was a distributed calculation server), and a slight modification at one side of the program could easily break something in a totally different place.
I wish I could just have launched the program and wait for exceptions to occur, but there were around 200 exceptions during the start-up in the normal course of operations
My point : if you use exceptions for normal situations, how do you locate unusual (ie exceptional) situations ?
Of course, there are other strong reasons not to use exceptions too much, especially performance-wise
Exceptions are basically non-local goto statements with all the consequences of the latter. Using exceptions for flow control violates a principle of least astonishment, make programs hard to read (remember that programs are written for programmers first).
Moreover, this is not what compiler vendors expect. They expect exceptions to be thrown rarely, and they usually let the throw code be quite inefficient. Throwing exceptions is one of the most expensive operations in .NET.
However, some languages (notably Python) use exceptions as flow-control constructs. For example, iterators raise a StopIteration exception if there are no further items. Even standard language constructs (such as for) rely on this.
My rule of thumb is:
If you can do anything to recover from an error, catch exceptions
If the error is a very common one (eg. user tried to log in with the wrong password), use returnvalues
If you can't do anything to recover from an error, leave it uncaught (Or catch it in your main-catcher to do some semi-graceful shutdown of the application)
The problem I see with exceptions is from a purely syntax point of view (I'm pretty sure the perfomance overhead is minimal). I don't like try-blocks all over the place.
Take this example:
try
{
DoSomeMethod(); //Can throw Exception1
DoSomeOtherMethod(); //Can throw Exception1 and Exception2
}
catch(Exception1)
{
//Okay something messed up, but is it SomeMethod or SomeOtherMethod?
}
.. Another example could be when you need to assign something to a handle using a factory, and that factory could throw an exception:
Class1 myInstance;
try
{
myInstance = Class1Factory.Build();
}
catch(SomeException)
{
// Couldn't instantiate class, do something else..
}
myInstance.BestMethodEver(); // Will throw a compile-time error, saying that myInstance is uninitalized, which it potentially is.. :(
Soo, personally, I think you should keep exceptions for rare error-conditions (out of memory etc.) and use returnvalues (valueclasses, structs or enums) to do your error checking instead.
Hope I understood your question correct :)
A first reaction to a lot of answers :
you're writing for the programmers and the principle of least astonishment
Of course! But an if just isnot more clear all the time.
It shouldn't be astonishing eg : divide (1/x) catch (divisionByZero) is more clear than any if to me (at Conrad and others) . The fact this kind of programming isn't expected is purely conventional, and indeed, still relevant. Maybe in my example an if would be clearer.
But DivisionByZero and FileNotFound for that matter are clearer than ifs.
Of course if it's less performant and needed a zillion time per sec, you should of course avoid it, but still i haven't read any good reason to avoid the overal design.
As far as the principle of least astonishment goes : there's a danger of circular reasoning here : suppose a whole community uses a bad design, this design will become expected! Therefore the principle cannot be a grail and should be concidered carefully.
exceptions for normal situations, how do you locate unusual (ie exceptional) situations ?
In many reactions sth. like this shines trough. Just catch them, no? Your method should be clear, well documented, and hounouring it's contract. I don't get that question I must admit.
Debugging on all exceptions : the same, that's just done sometimes because the design not to use exceptions is common. My question was : why is it common in the first place?
Before exceptions, in C, there were setjmp and longjmp that could be used to accomplish a similar unrolling of the stack frame.
Then the same construct was given a name: "Exception". And most of the answers rely on the meaning of this name to argue about its usage, claiming that exceptions are intended to be used in exceptional conditions. That was never the intent in the original longjmp. There were just situations where you needed to break control flow across many stack frames.
Exceptions are slightly more general in that you can use them within the same stack frame too. This raises analogies with goto that I believe are wrong. Gotos are a tightly coupled pair (and so are setjmp and longjmp). Exceptions follow a loosely coupled publish/subscribe that is much cleaner! Therefore using them within the same stack frame is hardly the same thing as using gotos.
The third source of confusion relates to whether they are checked or unchecked exceptions. Of course, unchecked exceptions seem particularly awful to use for control flow and perhaps a lot of other things.
Checked exceptions however are great for control flow, once you get over all the Victorian hangups and live a little.
My favorite usage is a sequence of throw new Success() in a long fragment of code that tries one thing after the other until it finds what it is looking for. Each thing -- each piece of logic -- may have arbritrary nesting so break's are out as also any kind of condition tests. The if-else pattern is brittle. If I edit out an else or mess up the syntax in some other way, then there is a hairy bug.
Using throw new Success() linearizes the code flow. I use locally defined Success classes -- checked of course -- so that if I forget to catch it the code won't compile. And I don't catch another method's Successes.
Sometimes my code checks for one thing after the other and only succeeds if everything is OK. In this case I have a similar linearization using throw new Failure().
Using a separate function messes with the natural level of compartmentalization. So the return solution is not optimal. I prefer to have a page or two of code in one place for cognitive reasons. I don't believe in ultra-finely divided code.
What JVMs or compilers do is less relevant to me unless there is a hotspot. I cannot believe there is any fundamental reason for compilers to not detect locally thrown and caught Exceptions and simply treat them as very efficient gotos at the machine code level.
As far as using them across functions for control flow -- i. e. for common cases rather than exceptional ones -- I cannot see how they would be less efficient than multiple break, condition tests, returns to wade through three stack frames as opposed to just restore the stack pointer.
I personally do not use the pattern across stack frames and I can see how it would require design sophistication to do so elegantly. But used sparingly it should be fine.
Lastly, regarding surprising virgin programmers, it is not a compelling reason. If you gently introduce them to the practice, they will learn to love it. I remember C++ used to surprise and scare the heck out of C programmers.
The standard anwser is that exceptions are not regular and should be used in exceptional cases.
One reason, which is important to me, is that when I read a try-catch control structure in a software I maintain or debug, I try to find out why the original coder used an exception handling instead of an if-else structure. And I expect to find a good answer.
Remember that you write code not only for the computer but also for other coders. There is a semantic associated to an exception handler that you cannot throw away just because the machine doesn't mind.
Josh Bloch deals with this topic extensively in Effective Java. His suggestions are illuminating and should apply to .NET as well (except for the details).
In particular, exceptions should be used for exceptional circumstances. The reasons for this are usability-related, mainly. For a given method to be maximally usable, its input and output conditions should be maximally constrained.
For example, the second method is easier to use than the first:
/**
* Adds two positive numbers.
*
* #param addend1 greater than zero
* #param addend2 greater than zero
* #throws AdditionException if addend1 or addend2 is less than or equal to zero
*/
int addPositiveNumbers(int addend1, int addend2) throws AdditionException{
if( addend1 <= 0 ){
throw new AdditionException("addend1 is <= 0");
}
else if( addend2 <= 0 ){
throw new AdditionException("addend2 is <= 0");
}
return addend1 + addend2;
}
/**
* Adds two positive numbers.
*
* #param addend1 greater than zero
* #param addend2 greater than zero
*/
public int addPositiveNumbers(int addend1, int addend2) {
if( addend1 <= 0 ){
throw new IllegalArgumentException("addend1 is <= 0");
}
else if( addend2 <= 0 ){
throw new IllegalArgumentException("addend2 is <= 0");
}
return addend1 + addend2;
}
In either case, you need to check to make sure that the caller is using your API appropriately. But in the second case, you require it (implicitly). The soft Exceptions will still be thrown if the user didn't read the javadoc, but:
You don't need to document it.
You don't need to test for it (depending upon how aggresive your
unit testing strategy is).
You don't require the caller to handle three use cases.
The ground-level point is that Exceptions should not be used as return codes, largely because you've complicated not only YOUR API, but the caller's API as well.
Doing the right thing comes at a cost, of course. The cost is that everyone needs to understand that they need to read and follow the documentation. Hopefully that is the case anyway.
How about performance? While load testing a .NET web app we topped out at 100 simulated users per web server until we fixed a commonly-occuring exception and that number increased to 500 users.
I think that you can use Exceptions for flow control. There is, however, a flipside of this technique. Creating Exceptions is a costly thing, because they have to create a stack trace. So if you want to use Exceptions more often than for just signalling an exceptional situation you have to make sure that building the stack traces doesn't negatively influence your performance.
The best way to cut down the cost of creating exceptions is to override the fillInStackTrace() method like this:
public Throwable fillInStackTrace() { return this; }
Such an exception will have no stacktraces filled in.
Here are best practices I described in my blog post:
Throw an exception to state an unexpected situation in your software.
Use return values for input validation.
If you know how to deal with exceptions a library throws, catch them at the lowest level possible.
If you have an unexpected exception, discard current operation completely. Don’t pretend you know how to deal with them.
I don't really see how you're controlling program flow in the code you cited. You'll never see another exception besides the ArgumentOutOfRange exception. (So your second catch clause will never be hit). All you're doing is using an extremely costly throw to mimic an if statement.
Also you aren't performing the more sinister of operations where you just throw an exception purely for it to be caught somewhere else to perform flow control. You're actually handling an exceptional case.
Apart from the reasons stated, one reason not to use exceptions for flow control is that it can greatly complicate the debugging process.
For example, when I'm trying to track down a bug in VS I'll typically turn on "break on all exceptions". If you're using exceptions for flow control then I'm going to be breaking in the debugger on a regular basis and will have to keep ignoring these non-exceptional exceptions until I get to the real problem. This is likely to drive someone mad!!
Lets assume you have a method that does some calculations. There are many input parameters it has to validate, then to return a number greater then 0.
Using return values to signal validation error, it's simple: if method returned a number lesser then 0, an error occured. How to tell then which parameter didn't validate?
I remember from my C days a lot of functions returned error codes like this:
-1 - x lesser then MinX
-2 - x greater then MaxX
-3 - y lesser then MinY
etc.
Is it really less readable then throwing and catching an exception?
Because the code is hard to read, you may have troubles debugging it, you will introduce new bugs when fixing bugs after a long time, it is more expensive in terms of resources and time, and it annoys you if you are debugging your code and the debugger halts on the occurence of every exception ;)
If you are using exception handlers for control flow, you are being too general and lazy. As someone else mentioned, you know something happened if you are handling processing in the handler, but what exactly? Essentially you are using the exception for an else statement, if you are using it for control flow.
If you don't know what possible state could occur, then you can use an exception handler for unexpected states, for example when you have to use a third-party library, or you have to catch everything in the UI to show a nice error message and log the exception.
However, if you do know what might go wrong, and you don't put an if statement or something to check for it, then you are just being lazy. Allowing the exception handler to be the catch-all for stuff you know could happen is lazy, and it will come back to haunt you later, because you will be trying to fix a situation in your exception handler based on a possibly false assumption.
If you put logic in your exception handler to determine what exactly happened, then you would be quite stupid for not putting that logic inside the try block.
Exception handlers are the last resort, for when you run out of ideas/ways to stop something from going wrong, or things are beyond your ability to control. Like, the server is down and times out and you can't prevent that exception from being thrown.
Finally, having all the checks done up front shows what you know or expect will occur and makes it explicit. Code should be clear in intent. What would you rather read?
You can use a hammer's claw to turn a screw, just like you can use exceptions for control flow. That doesn't mean it is the intended usage of the feature. The if statement expresses conditions, whose intended usage is controlling flow.
If you are using a feature in an unintended way while choosing to not use the feature designed for that purpose, there will be an associated cost. In this case, clarity and performance suffer for no real added value. What does using exceptions buy you over the widely-accepted if statement?
Said another way: just because you can doesn't mean you should.
As others have mentioned numerously, the principle of least astonishment will forbid that you use exceptions excessively for control flow only purposes. On the other hand, no rule is 100% correct, and there are always those cases where an exception is "just the right tool" - much like goto itself, by the way, which ships in the form of break and continue in languages like Java, which are often the perfect way to jump out of heavily nested loops, which aren't always avoidable.
The following blog post explains a rather complex but also rather interesting use-case for a non-local ControlFlowException:
http://blog.jooq.org/2013/04/28/rare-uses-of-a-controlflowexception
It explains how inside of jOOQ (a SQL abstraction library for Java), such exceptions are occasionally used to abort the SQL rendering process early when some "rare" condition is met.
Examples of such conditions are:
Too many bind values are encountered. Some databases do not support arbitrary numbers of bind values in their SQL statements (SQLite: 999, Ingres 10.1.0: 1024, Sybase ASE 15.5: 2000, SQL Server 2008: 2100). In those cases, jOOQ aborts the SQL rendering phase and re-renders the SQL statement with inlined bind values. Example:
// Pseudo-code attaching a "handler" that will
// abort query rendering once the maximum number
// of bind values was exceeded:
context.attachBindValueCounter();
String sql;
try {
// In most cases, this will succeed:
sql = query.render();
}
catch (ReRenderWithInlinedVariables e) {
sql = query.renderWithInlinedBindValues();
}
If we explicitly extracted the bind values from the query AST to count them every time, we'd waste valuable CPU cycles for those 99.9% of the queries that don't suffer from this problem.
Some logic is available only indirectly via an API that we want to execute only "partially". The UpdatableRecord.store() method generates an INSERT or UPDATE statement, depending on the Record's internal flags. From the "outside", we don't know what kind of logic is contained in store() (e.g. optimistic locking, event listener handling, etc.) so we don't want to repeat that logic when we store several records in a batch statement, where we'd like to have store() only generate the SQL statement, not actually execute it. Example:
// Pseudo-code attaching a "handler" that will
// prevent query execution and throw exceptions
// instead:
context.attachQueryCollector();
// Collect the SQL for every store operation
for (int i = 0; i < records.length; i++) {
try {
records[i].store();
}
// The attached handler will result in this
// exception being thrown rather than actually
// storing records to the database
catch (QueryCollectorException e) {
// The exception is thrown after the rendered
// SQL statement is available
queries.add(e.query());
}
}
If we had externalised the store() logic into "re-usable" API that can be customised to optionally not execute the SQL, we'd be looking into creating a rather hard to maintain, hardly re-usable API.
Conclusion
In essence, our usage of these non-local gotos is just along the lines of what [Mason Wheeler][5] said in his answer:
"I just encountered a situation that I cannot deal with properly at this point, because I don't have enough context to handle it, but the routine that called me (or something further up the call stack) ought to know how to handle it."
Both usages of ControlFlowExceptions were rather easy to implement compared to their alternatives, allowing us to reuse a wide range of logic without refactoring it out of the relevant internals.
But the feeling of this being a bit of a surprise to future maintainers remains. The code feels rather delicate and while it was the right choice in this case, we'd always prefer not to use exceptions for local control flow, where it is easy to avoid using ordinary branching through if - else.
Typically there is nothing wrong, per se, with handling an exception at a low level. An exception IS a valid message that provides a lot of detail for why an operation cannot be performed. And if you can handle it, you ought to.
In general if you know there is a high probability of failure that you can check for... you should do the check... i.e. if(obj != null) obj.method()
In your case, i'm not familiar enough with the C# library to know if date time has an easy way to check whether a timestamp is out of bounds. If it does, just call if(.isvalid(ts))
otherwise your code is basically fine.
So, basically it comes down to whichever way creates cleaner code... if the operation to guard against an expected exception is more complex than just handling the exception; than you have my permission to handle the exception instead of creating complex guards everywhere.
You might be interested in having a look at Common Lisp's condition system which is a sort of generalization of exceptions done right. Because you can unwind the stack or not in a controlled way, you get "restarts" as well, which are extremely handy.
This doesn't have anything much to do with best practices in other languages, but it shows you what can be done with some design thought in (roughly) the direction you are thinking of.
Of course there are still performance considerations if you're bouncing up and down the stack like a yo-yo, but it's a much more general idea than "oh crap, lets bail" kind of approach that most catch/throw exception systems embody.
I don't think there is anything wrong with using Exceptions for flow-control. Exceptions are somewhat similar to continuations and in statically typed languages, Exceptions are more powerful than continuations, so, if you need continuations but your language doesn't have them, you can use Exceptions to implement them.
Well, actually, if you need continuations and your language doesn't have them, you chose the wrong language and you should rather be using a different one. But sometimes you don't have a choice: client-side web programming is the prime example – there's just no way to get around JavaScript.
An example: Microsoft Volta is a project to allow writing web applications in straight-forward .NET, and let the framework take care of figuring out which bits need to run where. One consequence of this is that Volta needs to be able to compile CIL to JavaScript, so that you can run code on the client. However, there is a problem: .NET has multithreading, JavaScript doesn't. So, Volta implements continuations in JavaScript using JavaScript Exceptions, then implements .NET Threads using those continuations. That way, Volta applications that use threads can be compiled to run in an unmodified browser – no Silverlight needed.
But you won't always know what happens in the Method/s that you call. You won't know exactly where the exception was thrown. Without examining the exception object in greater detail....
I feel that there is nothing wrong with your example. On the contrary, it would be a sin to ignore the exception thrown by the called function.
In the JVM, throwing an exception is not that expensive, only creating the exception with new xyzException(...), because the latter involves a stack walk. So if you have some exceptions created in advance, you may throw them many times without costs. Of course, this way you can't pass data along with the exception, but I think that is a bad thing to do anyway.
There are a few general mechanisms via which a language could allow for a method to exit without returning a value and unwind to the next "catch" block:
Have the method examine the stack frame to determine the call site, and use the metadata for the call site to find either information about a try block within the calling method, or the location where the calling method stored the address of its caller; in the latter situation, examine metadata for the caller's caller to determine in the same fashion as the immediate caller, repeating until one finds a try block or the stack is empty. This approach adds very little overhead to the no-exception case (it does preclude some optimizations) but is expensive when an exception occurs.
Have the method return a "hidden" flag which distinguishes a normal return from an exception, and have the caller check that flag and branch to an "exception" routine if it's set. This routine adds 1-2 instructions to the no-exception case, but relatively little overhead when an exception occurs.
Have the caller place exception-handling information or code at a fixed address relative to the stacked return address. For example, with the ARM, instead of using the instruction "BL subroutine", one could use the sequence:
adr lr,next_instr
b subroutine
b handle_exception
next_instr:
To exit normally, the subroutine would simply do bx lr or pop {pc}; in case of an abnormal exit, the subroutine would either subtract 4 from LR before performing the return or use sub lr,#4,pc (depending upon the ARM variation, execution mode, etc.) This approach will malfunction very badly if the caller is not designed to accommodate it.
A language or framework which uses checked exceptions might benefit from having those handled with a mechanism like #2 or #3 above, while unchecked exceptions are handled using #1. Although the implementation of checked exceptions in Java is rather nuisancesome, they would not be a bad concept if there were a means by which a call site could say, essentially, "This method is declared as throwing XX, but I don't expect it ever to do so; if it does, rethrow as an "unchecked" exception. In a framework where checked exceptions were handled in such fashion, they could be an effective means of flow control for things like parsing methods which in some contexts may have a high likelihood of failure, but where failure should return fundamentally different information than success. I'm unaware of any frameworks that use such a pattern, however. Instead, the more common pattern is to use the first approach above (minimal cost for the no-exception case, but high cost when exceptions are thrown) for all exceptions.
One aesthetic reason:
A try always comes with a catch, whereas an if doesn't have to come with an else.
if (PerformCheckSucceeded())
DoSomething();
With try/catch, it becomes much more verbose.
try
{
PerformCheckSucceeded();
DoSomething();
}
catch
{
}
That's 6 lines of code too many.
To do internal logic checks, there are two ways in Java,
use the assert keyword: e.g, assert(x>y);
manually throw assertion error: e.g, if(y>x) throw new AssertionError();
What are the differences among above two methods( performance wise, programming flexibility, etc.?
Which one is considered as a good programming practice?
The main difference is that assert is not guaranteed to be processed, unless assertions are explicitly enabled (either via the -ea option to java, or programmatically). On the other hand, throwing a new AssertionError() will always work.
Some reading information: Programming with Assertions
Way #1 "assert(x>y);" uses a JVM feature which is turned off by default. However, it gives you more flexibility since you can turn it on and off as you like with one single parameter.
Way #2 "if(y>x) throw new AssertionError();" will always be executed, you can't turn it off via the assert-param. It is just an exception.
I've often seen people use Exceptions for "real" errors (network not available, wrong input provided), while assertions are often used (i.e. turned on) during development/integration for very basic checks (e.g. param not null). IMO, it's hard to draw the line.
When assert(x>y) fails, then it would raise AssertionError(provided assertions are enabled). The advantage of using java assertions is that it can be enabled or disabled during compile time. You can disable assertions for production environment which improves performance compared to raising manually AssertionError in which you always perform assertions thereby reducing performance.
Non of above answers answer my second question (Which one is considered as a good programming practice?). So I talked regards this with one of my friend and according to him, If some thing is private to the package and you are the only one calling that function (e.g, private functions) then use assert. If something is public and you expect some other third party developer may directly call the function, then do a explicit if check and throw the exception.
When I code, I often ask myself the same question :
Do I have to verify all arguments are not null ? So, in each method, I will have something like that :
if (arg1 == null)
{
throw FooException("...");
}
if (arg2 == null)
{
throw FooException("...");
}
If not, in which case is preferable ?
What's the best practices ?
As always, it depends.
If you're writing an API to be used by other teams / organizations, such defensive programming with precondition checks on public functions can really help your users; when using an external library, a meaningful error message like 'argument passed to foo() should not be null' is way better than NullPointerException thrown from some inner class.
Outside of API, though, I think such checks clutter the code too much. Thrown NullPointerExceptions are usually pretty easy to trace with debugger anyway. In languages that support them, you can consider using assertions - their syntax is usually less cumbersome, and you can turn them off on production so the checks won't degrade performance.
Unfortunetly, yes. you should check all arguments. Now ideally, if you code with good design practices one function should not have more than 4 or 5 arguments, at the most.
Having said that, one should always check for null values in function entry and throw appropriate exception or IllegalArgumentException (my fav).
Furhter, one should never pass NULL to a function and should never return a NULL. Sounds simple but it will save lots of code and bugs. Have a look at the NULL Design Pattern too.
Depends, if you want different exceptions i guess you would have to do that for all occasions where you might get a null value. Another way would be to user DATATYP.TryParse(). Look that up.
Hope it helps.
Since you're throwing an exception anyway, not verifying them would probably just lead to a nullpointerexception or something similar. I'm not entirely sure what the best practices are myself.
You should ideally always verify any arguments before you perform any action that might modify any state or data associated with said arguments. It's better to fail early and in a manageable way (by throwing a exception) than to end up with an inconsistent state / data which then also has to be resolved.
Your methods are expecting certain data to be there, there are some cases when it should be safe to assume that it is actually there (say inside a private method, which is called from other methods which validate input). However in general I would recommend validating arguments whenever they are:
Supplied by a user.
Supplied as part of an API.
Passed between modules of a system .
It's might be worth taking a look at this previous StackOverflow question.
I feel it's mostly down to common sense, and a little down to personal preference.
As others have mentioned, if it's a public API then you want to provide clear error messages wherever possible, so it's best to check parameters before they are used and throw exceptions with messages as per your example.
If it's internal code then there are two other options to think about: use assertions, or don't bother with the validation and rely on debugging. As a rule of thumb, I'll put assertions in if it's code that I expect other developers will be calling or if the condition is subtle enough that debugging it might be a pain. Otherwise, I'll just allow it to fail.
Sometimes you can avoid the issue by using the Null Object pattern. If it's a public API I'd still be inclined to include the checks though.
Finally, I have a question to ask on Stack Overflow! :-)
The main target is for Java but I believe it is mostly language agnostic: if you don't have native assert, you can always simulate it.
I work for a company selling a suite of softwares written in Java. The code is old, dating back to Java 1.3 at least, and at some places, it shows... That's a large code base, some 2 millions of lines, so we can't refactor it all at once.
Recently, we switched the latest versions from Java 1.4 syntax and JVM to Java 1.6, making conservative use of some new features like assert (we used to use a DEBUG.ASSERT macro -- I know assert has been introduced in 1.4 but we didn't used it before), generics (only typed collections), foreach loop, enums, etc.
I am still a bit green about the use of assert, although I have read a couple of articles on the topic. Yet, some usages I see leave me perplex, hurting my common sense... ^_^ So I thought I should ask some questions, to see if I am right to want to correct stuff, or if it goes against common practices. I am wordy, so I bolded the questions, for those liking to skim stuff.
For reference, I have searched assert java in SO and found some interesting threads, but apparently no exact duplicate.
How to avoid “!= null” statements in java? and How much null checking is enough? are quite relevant, because lot of asserts we have just check if variable is null. At some places in our code, there are usages of the null object (eg. returning new String[0]) but not always. We have to live with that, at least for maintenance of legacy code.
Some good answers also in Java assertions underused.
Oh, and SO indicates with reason that When should I use Debug.Assert()? question is related too (nice feature to reduce duplicates!).
First, main issue, which triggered my question today:
SubDocument aSubDoc = documents.GetAt( i );
assert( aSubDoc != null );
if ( aSubDoc.GetType() == GIS_DOC )
{
continue;
}
assert( aSubDoc.GetDoc() != null );
ContentsInfo ci = (ContentsInfo) aSubDoc.GetDoc();
(Yes, we use MS' C/C++ style/code conventions. And I even like it (coming from same background)! So sue us.)
First, the assert() form comes from conversion of DEBUG.ASSERT() calls. I dislike the extra parentheses, since assert is a language construct, not (no longer, here) a function call. I dislike also return (foo); :-)
Next, the asserts don't test here for invariants, they are rather used as guards against bad values. But as I understand it, they are useless here: the assert will throw an exception, not even documented with a companion string, and only if assertions are enabled. So if we have -ea option, we just have an assertion thrown instead of the regular NullPointerException one. That doesn't look like a paramount advantage, since we catch unchecked exceptions at highest level anyway.
Am I right supposing we can get rid of them and live with that (ie. let Java raise such unckecked exception)? (or, of course, test against null value if likely, which is done in other places).
Side note: should I have to assert in the above snippet, I would do that against ci value, not against the getter: even if most getters are optimized/inlined, we cannot be sure, so we should avoid calling it twice.
Somebody told, in the last referenced thread, that public methods should use tests against values of parameters (usage of the public API) and private methods should rely on asserts instead. Good advice.
Now, both kinds of methods must check another source of data: external input. Ie. data coming from user, from a database, from some file or from the network, for example.
In our code, I see asserts against these values. I always change these to real test, so they act even with assertions disabled: these are not invariants and must be properly handled.
I see only one possible exception, where input is supposed constant, for example a database table filled with constants used in relations: program would break if this table is changed but corresponding code wasn't updated.
Do you see other exceptions?
Another relatively frequent use I see, which seems OK: in the default of a switch, or at the end of a series of else if testing all possible values (these cases date back before our use of enums!), there is often an assert false : "Unexpected value for stuff: " + stuff;
Looks legitimate for me (these cases shouldn't happen in production), what do you think? (beyond the "no switch, use OO" advices which are irrelevant here).
And finally, are there any other useful use cases or annoying gotchas I missed here? (probably!)
The number one rule is to avoid side-effects in assertions. In other words, the code should behave identically with assertions turned off as it does when assertions are turned on and not failing (obviously assertions that fail are going to alter the behaviour because they will raise an error).
The number two rule is not to use assertions for essential checks. They can be turned off (or, more correctly, not turned on). For parameter-checking of non-private methods use IllegalArgumentException.
Assertions are executable assumptions. I use assertions to state my beliefs about the current state of the program. For example, things like "I assume that n is positive here", or "I assume that the list has precisely one element here".
I use assert, not only for parameter validation, but also used for verifying Threads.
Every time I do swing, I write assert in almost every method to mark "I should only be execute in worker thread/AWTThread". (I think Sun should do it for us.) Because of the Swing threading model, it MAY NOT fail (and randomly fail) if you access swing api from non-UI thread. It is quite difficult to find out all these problem without assert.
Another example I can imagination is to check JAR enclosed resource. You can have english exception rather then NPE.
EDIT:
Another example; object lock checking. If I know that I am going to use nested synchronized block, or when I am going to fix a deadlock, I use Thread.holdLock(Object) to ensure I won't get the locks in reverse order.
EDIT(2): If you are quite sure some code block should never be reach, you may write
throw new AssertionError("You dead");
rather then
assert false:"I am lucky";
For example, if you override "equals(Object)" on a mutable object, override hashCode() with AssertionError if you believe it will never be the key. This practice is suggested in some books. I won't hurt performance (as it should never reach).
you have touched on many of the reasons why i think asserts should be avoided in general. unless you are working with a codebase where assert usage has very strict guidelines, you very quickly get into a situation where you cannot ever turn the assertions off, in which case you might as well just be using normal logic tests.
so, my recommendation is skip the assertions. don't stick in extra null-pointer checks where the language will do it for you. however, if the pointer may not be dereferenced for a while, up-front null checking is a good idea. also, always use real exceptions for cases which should "never" happen (the final if branch or the default switch case), don't use "assert false". if you use an assertion, there's a chance someone could turn it off, and if the situation actually happens, things will get really confused.
I recommend checking parameters in public (API) methods and throwing IllegalArgumentException if the params aren't valid. No asserts here as an API user requires to get a proper error (message).
Asserts should be used in non-public methods to check post-conditions and possibly pre-conditions. For example:
List returnListOfSize(int size) {
// complex list creation
assert list.size == size;
}
Often using a clever error handling strategy asserts can be circumvented.
I'm wondering why the assert keyword is so underused in Java? I've almost never seen them used, but I think they're a great idea. I certainly much prefer the brevity of:
assert param != null : "Param cannot be null";
to the verbosity of:
if (param == null) {
throw new IllegalArgumentException("Param cannot be null");
}
My suspicion is that they're underused because
They arrived relatively late (Java 1.4), by which time many people had already established their Java programming style/habit
They are turned off at runtime by default
assertions are, in theory, for testing invariants, assumptions that must be true in order for the code to complete properly.
The example shown is testing for valid input, which isn't a typical usage for an assertion because it is, generally, user supplied.
Assertions aren't generally used in production code because there is an overhead and it is assumed that situations where the invariants fail have been caught as coding errors during development and testing.
Your point about them coming "late" to java is also a reason why they aren't more widely seen.
Also, unit testing frameworks allow for some of the need for programmatic assertions to be external to the code being tested.
It's an abuse of assertions to use them to test user input. Throwing an IllegalArgumentException on invalid input is more correct, as it allows the calling method to catch the exception, display the error, and do whatever it needs to (ask for input again, quit, whatever).
If that method is a private method inside one of your classes, the assertion is fine, because you are just trying to make sure you aren't accidentally passing it a null argument. You test with assertions on, and when you have tested all the paths through and not triggered the assertion, you can turn them off so that you aren't wasting resources on them. They are also useful just as comments. An assert at the start of a method is good documentation to maintainers that they should be following certain preconditions, and an assert at the end with a postcondition documents what the method should be doing. They can be just as useful as comments; moreso, because with assertions on, they actually TEST what they document.
Assertions are for testing/debugging, not error-checking, which is why they are off by default: to discourage people from using assertions to validate user input.
In "Effective Java", Joshua Bloch suggested (in the "Check parameters for validity" topic) that (sort of like a simple rule to adopt), for public methods, we shall validate the arguments and throw a necessary exception if found invalid, and for non-public methods (which are not exposed and you as the user of them should ensure their validity), we can use assertions instead.
From Programming with Assertions
By default, assertions are disabled at runtime. Two command-line switches allow you to selectively enable or disable assertions.
This means that if you don't have complete control over the run-time environment, you can't guarantee that the assertion code will even be called. Assertions are meant to be used in a test-environment, not for production code. You can't replace exception handling with assertions because if the user runs your application with assertions disabled (the default), all of your error handling code disappears.
#Don, you are frustrated that assertion are turned off by default. I was also, and thus wrote this little javac plugin that inlines them (ie emits the bytecode for if (!expr) throw Ex rather than this silly assert bytecode.
If you include fa.jar in your classpath while compiling Java code, it will do its magic and then tell
Note: %n assertions inlined.
#see http://smallwiki.unibe.ch/adriankuhn/javacompiler/forceassertions and alternatively on github https://github.com/akuhn/javac
I'm not sure why you would bother to write asserts and then replace them with a standard if then condition statement, why not just write the conditions as ifs in the first place?
Asserts are for testing only, and they have two side effects: Larger binaries and degraded performance when enabled (which is why you can turn them off!)
Asserts shouldn't be used to validate conditions because that means the behaviour of your app is different at run time when asserts are enabled/disabled - which is a nightmare!
Assertions are useful because they:
catch PROGRAMMING errors early
document code using code
Think of them as code self-validation. If they fail it should mean that your program is broken and must stop. Always turn them on while unit testing !
In The Pragmatic Programmer they even recommend to let them run in production.
Leave Assertions Turned On
Use Assertions to Prevent the Impossible.
Note that assertions throw AssertionError if they fail, so not caught by catch Exception.
tl;dr
Yes, use assertion-testing in production where it makes sense.
Use other libraries (JUnit, AssertJ, Hamcrest, etc.) rather than the built-in assert facility if you wish.
Most of the other Answers on this page push the maxim "Assertions aren't generally used in production code”. While true in productivity apps such as a word-processor or spreadsheet, in custom business apps where Java is so commonly used, assertion-testing in production is extremely useful, and common.
Like many maxims in the world of programming, what starts out true in one context is misconstrued and then misapplied in other contexts.
Productivity Apps
This maxim of "Assertions aren't generally used in production code”, though common, is incorrect.
Formalized assertion-testing originated with apps such as a word-processor like Microsoft Word or a spreadsheet like Microsoft Excel. These apps might invoke an array of assertion tests assertions on every keystroke made by the user. Such extreme repetition impacted performance severely. So only the beta-versions of such products in limited distribution had assertions enabled. Thus the maxim.
Business Apps
In contrast, in business-oriented apps for data-entry, database, or other data-processing, the use of assertion-testing in production is enormously useful. The insignificant hit on performance makes it quite practical – and common.
Test business rules
Verifying your business rules at runtime in production is entirely reasonable, and should be encouraged. For example:
If an invoice must have one or more line items at all times, then write an assertion testing than the count of invoice line items is greater than zero.
If a product name must be at least 3 characters or more, write an assertion testing the length of the string.
When calculating the balance for a cash ledger, you know the result can never be negative, so run a check for a negative number signaling a flaw in the data or code.
Such tests have no significant impact on performance in production.
Runtime conditions
If your app expects certain conditions to always be true when your app runs in production, write those expectations into your code as assertion tests.
If you expect those conditions may reasonably on occasion fail, then do not write assertion tests. Perhaps throw certain exceptions. Then try to recover where possible.
Sanity-checks
Sanity checks at runtime in production is also entirely reasonable, and should be encouraged. Testing a few arbitrary conditions that one could not imagine being untrue has saved my bacon in countless situations when some bizarre happening occurred.
For example, testing that rounding a nickel (0.05) to the penny resulted in a nickel (0.05) in a certain library helped me in being one of the first people to discover a floating-point technology flaw that Apple shipped in their Rosetta library during the PowerPC-to-Intel transition. Such a flaw reaching the public would have seemed impossible. But amazingly, the flaw had escaped the notice of the originating vendor, Transitive, and Apple, and the early-access developers testing on Apple’s betas.
(By the way, I should mention… never use floating-point for money, use BigDecimal.)
Choice of frameworks
Rather than use the built-in assert facility, you may want to consider using another assertion framework. You have multiple options, including:
JUnitSee: org.junit.jupiter.api.Assertions.
AssertJKnown for its slick fluent interface.
HamcrestUsed across many languages (Java, Python, Ruby, Swift, etc.).
Or roll-your-own. Make a little class to use in your project. Something like this.
package work.basil.example;
public class Assertions {
static public void assertTrue ( Boolean booleanExpression , CharSequence message ) throws java.lang.AssertionError {
if ( booleanExpression ) {
// No code needed here.
} else { // If booleanExpression is false rather than expected true, throw assertion error.
// FIXME: Add logging.
throw new java.lang.AssertionError( message.toString() );
}
}
}
Example usage:
Assertions.assertTrue(
localTime.isBefore( LocalTime.NOON ) ,
"The time-of-day is too late, after noon: " + localTime + ". Message # 816a2a26-2b95-45fa-9b0a-5d10884d819d."
) ;
Your questions
They arrived relatively late (Java 1.4), by which time many people had already established their Java programming style/habit
Yes, this is quite true. Many people were disappointed by the API that Sun/JCP developed for assertion-testing. Its design was lackluster in comparison to existing libraries. So many ignored the new API, and stuck with known tools (3rd-party tools, or roll-your-own mini-library).
They are turned off at runtime by default, WHY OH WHY??
In the earliest years, Java got a bad rap for poor performance speed. Ironically, Java quickly evolved to become one of the best platforms for performance. But the bad rap hung around like a stinky odor. So Sun was extremely wary of anything that might in any measurable way impact performance. So in this perspective, it made sense to make disabling assertion-testing the default.
Another reason to disable by default might have been related to the fact that, in adding the new assertion facility, Sun had hijacked the word assert. This was not a previously reserved keyword, and required one of the few changes ever made to the Java language. The method name assert had been used by many libraries and by many developers in their own code. For some discussion of this historical transition, read this old documentation, Programming With Assertions.
Assertions are very limited: You can only test boolean conditions and you need to write the code for a useful error message every time. Compare this to JUnit's assertEquals() which allows to generate a useful error message from the inputs and even show the two inputs side by side in the IDE in a JUnit runner.
Also, you can't search for assertions in any IDE I've seen so far but every IDE can search for method invocations.
In fact they arrived in Java 1.4.
I think the main problem is that when you code in an environment where you do not manage JVM options directly by yourself like in Eclipse or J2EE servers (in both cases it is possible to change JVM options, but you need to deeply search to find where it can be done), it is easier (I mean it requires less effort) to use if and exceptions (or worse not to use anything).
As others have stated: assertions are not appropriate for validating user input.
If you are concerned with verbosity, I recommend you check out a library I wrote: https://github.com/cowwoc/requirements.java/. It'll allow you to express these checks using very little code, and it'll even generate the error message on your behalf:
requireThat("name", value).isNotNull();
and if you insist on using assertions, you can do this too:
assertThat("name", value).isNotNull();
The output will look like this:
java.lang.NullPointerException: name may not be null