I'm trying this simple calculation in a Java application:
System.out.println("b=" + (1 - 7 / 10));
Obviously I expect the output to be b=0.3, but I actually get b=1 instead.
What?! Why does this happen?
If I write:
System.out.println("b=" + (1 - 0.7));
I get the right result, which is b=0.3.
What's going wrong here?
You're using integer division.
Try 7.0/10 instead.
You've used integers in the expression 7/10, and integer 7 divided by integer 10 is zero.
What you're expecting is floating point division. Any of the following would evaluate the way you expected:
7.0 / 10
7 / 10.0
7.0 / 10.0
7 / (double) 10
Please do not take this as an answer to the question. It is not, but an advice related to exploiting the difference of int and float. I would have put this under a comment except that the answer box allows me to format this comment.
This feature has been used in every respectable programming language since the days of fortran (or earlier) - I must confess I was once a Fortran and Cobol punch card programmer.
As an example, integer division of 10/3 yields integer value 3 since an integer has no facility to hold fractional residual .3333.. .
One of the ways we (old time ancient programmers) had been using this feature is loop control.
Let's say we wish to print an array of 1000 strings, but we wish to insert a line break after every 15th string, to insert some prettyfying chars at the end of the line and at the beginning of the next line. We exploit this, given that integer k is the position of a string in that array.
int(k/15)*15 == k
is true only when k is divisible by 15, an occurrence at a frequency of every 15th cell. Which is akin to what my friend said about his grandfather's dead watch being accurate twice a day.
int(1/15) = 0 -> int(1/15)*15 = 0
int(2/15) = 0 -> int(2/15)*15 = 0
...
int(14/15) = 0 -> int(14/15)*15 = 0
int(15/15) = 1 -> int(15/15)*15 = 15
int(16/15) = 1 -> int(16/15)*15 = 15
int(17/15) = 1 -> int(17/15)*15 = 15
...
int(29/15) = 1 -> int(29/15)*15 = 15
int(30/15) = 2 -> int(30/15)*15 = 30
Therefore, the loop,
leftPrettyfy();
for(int k=0; k<sa.length; k++){
print(sa[k]);
int z = k + 1;
if ((z/15)*15 == z){
rightPrettyfy();
leftPrettyfy();
}
}
By varying k in a fanciful way in the loop, we could print a triangular printout
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
That is to demonstrate that, if you consider this a bug, this "bug" is a useful feature that we would not want to be removed from any of the various languages that we have used thus far.
I find letter identifiers to be more readable and more indicative of parsed type:
1 - 7f / 10
1 - 7 / 10f
or:
1 - 7d / 10
1 - 7 / 10d
In my case I was doing this:
double a = (double) (MAX_BANDWIDTH_SHARED_MB/(qCount+1));
Instead of the "correct" :
double a = (double)MAX_BANDWIDTH_SHARED_MB/(qCount+1);
Take attention with the parentheses !
Related
So this was a question on one of the challenges I came across in an online competition, a few days ago.
Question:
Accept two inputs.
A big number of N digits,
The number of questions Q to be asked.
In each of the question, you have to find if the number formed by the string between indices Li and Ri is divisible by 7 or not.
Input:
First line contains the number consisting on N digits. Next line contains Q, denoting the number of questions. Each of the next Q lines contains 2 integers Li and Ri.
Output:
For each question, print "YES" or "NO", if the number formed by the string between indices Li and Ri is divisible by 7.
Constraints:
1 ≤ N ≤ 105
1 ≤ Q ≤ 105
1 ≤ Li, Ri ≤ N
Sample Input:
357753
3
1 2
2 3
4 4
Sample Output:
YES
NO
YES
Explanation:
For the first query, number will be 35 which is clearly divisible by 7.
Time Limit: 1.0 sec for each input file.
Memory Limit: 256 MB
Source Limit: 1024 KB
My Approach:
Now according to the constraints, the maximum length of the number i.e. N can be upto 105. This big a number cannot be fitted into a numeric data structure and I am pretty sure thats not the efficient way to go about it.
First Try:
I thought of this algorithm to apply the generic rules of division to each individual digit of the number. This would work to check divisibility amongst any two numbers, in linear time, i.e. O(N).
static String isDivisibleBy(String theIndexedNumber, int divisiblityNo){
int moduloValue = 0;
for(int i = 0; i < theIndexedNumber.length(); i++){
moduloValue = moduloValue * 10;
moduloValue += Character.getNumericValue(theIndexedNumber.charAt(i));
moduloValue %= divisiblityNo;
}
if(moduloValue == 0){
return "YES";
} else{
return "NO";
}
}
But in this case, the algorithm has to also loop through all the values of Q, which can also be upto 105.
Therefore, the time taken to solve the problem becomes O(Q.N) which can also be considered as Quadratic time. Hence, this crossed the given time limit and was not efficient.
Second Try:
After that didn't work, I tried searching for a divisibility rule of 7. All the ones I found, involved calculations based on each individual digit of the number. Hence, that would again result in a Linear time algorithm. And hence, combined with the number of Questions, it would amount to Quadratic Time, i.e. O(Q.N)
I did find one algorithm named Pohlman–Mass method of divisibility by 7, which suggested
Using quick alternating additions and subtractions: 42,341,530
-> 530 − 341 = 189 + 42 = 231 -> 23 − (1×2) = 21 YES
But all that did was, make the time 1/3rd Q.N, which didn't help much.
Am I missing something here? Can anyone help me find a way to solve this efficiently?
Also, is there a chance this is a Dynamic Programming problem?
There are two ways to go through this problem.
1: Dynamic Programming Approach
Let the input be array of digits A[N].
Let N[L,R] be number formed by digits L to R.
Let another array be M[N] where M[i] = N[1,i] mod 7.
So M[i+1] = ((M[i] * 10) mod 7 + A[i+1] mod 7) mod 7
Pre-calculate array M.
Now consider the expression.
N[1,R] = N[1,L-1] * 10R-L+1 + N[L,R]
implies (N[1,R] mod 7) = (N[1,L-1] mod 7 * (10R-L+1mod 7)) + (N[L,R] mod 7)
implies N[L,R] mod 7 = (M[R] - M[L-1] * (10R-L+1 mod 7)) mod 7
N[L,R] mod 7 gives your answer and can be calculated in O(1) as all values on right of expression are already there.
For 10R-L+1 mod 7, you can pre-calculate modulo 7 for all powers of 10.
Time Complexity :
Precalculation O(N)
Overall O(Q) + O(N)
2: Divide and Conquer Approach
Its a segment tree solution.
On each tree node you store the mod 7 for the number formed by digits in that node.
And the expression given in first approach can be used to find the mod 7 of parent by combining the mod 7 values of two children.
The time complexity of this solution will be O(Q log N) + O(N log N)
Basically you want to be able to to calculate the mod 7 of any digits given the mod of the number at any point.
What you can do is to;
record the modulo at each point O(N) for time and space. Uses up to 100 KB of memory.
take the modulo at the two points and determine how much subtracting the digits before the start would make e.g. O(N) time and space (once not per loop)
e.g. between 2 and 3 inclusive
357 % 7 = 0
3 % 7 = 3 and 300 % 7 = 6 (the distance between the start and end)
and 0 != 6 so the number is not a multiple of 7.
between 4 and 4 inclusive
3577 % 7 == 0
357 % 7 = 0 and 0 * 10 % 7 = 0
as 0 == 0 it is a multiple of 7.
You first build a list of digits modulo 7 for each number starting with 0 offset (like in your case, 0%7, 3%7, 35%7, 357%7...) then for each case of (a,b) grab digits[a-1] and digits[b], then multiply digits[b] by 1-3-2-6-4-5 sequence of 10^X modulo 7 defined by (1+b-a)%6 and compare. If these are equal, return YES, otherwise return NO. A pseudocode:
readString(big);
Array a=[0]; // initial value
Array tens=[1,3,2,6,4,5]; // quick multiplier lookup table
int d=0;
int l=big.length;
for (int i=0;i<l;i++) {
int c=((int)big[i])-48; // '0' -> 0, and "big" has characters
d=(3*d+c)%7;
a.push(d); // add to tail
}
readInt(q);
for (i=0;i<q;i++) {
readInt(li);
readInt(ri); // get question
int left=(a[li-1]*tens[(1+ri-li)%6])%7;
if (left==a[ri]) print("YES"); else print("NO");
}
A test example:
247761901
1
5 9
61901 % 7=0. Calculating:
a = [0 2 3 2 6 3 3 4 5 2]
li = 5
ri = 9
left=(a[5-1]*tens[(1+9-5)%6])%7 = (6*5)%7 = 30%7 = 2
a[ri]=2
Answer: YES
I can't figure out a proper solution without using an If Statement. My assignment explicitly says I cannot use an If Statement, so I am currently at a standstill.
I'm not going to answer your question exactly, but point you to the concept...
Most languages offer a modulus operator. (%) This is the equivalent of doing a division, but instead of returning the quotient, it returns you the remainder.
int n = 26%12; // 26 divided by 12 = 2 remainder 4. n = 4
One use for the modulus operator is to efficiently do a wrap around. For example, if you wanted to print out the numbers 1 to 7 repeatedly...
int n = 0;
for(int i = 0; i < 10; ++i) {
Console.log(n+1);
n = (n+1)%7;
}
This would output
1
2
3
4
5
6
7
1
2
3
I have to do a little assignment at my university:
I have a server that runs 'n' independent services. All these services started at the same time in the past. And every service 'i' writes 'b[i]' lines to a log file on the server after a certain period of time 's[i]' in seconds. The input consist of 'l' the number of lines of the log file and 'n' the number of services. Then we have in the next 'n' lines for every service i: 's[i]' the period as mentioned and 'b[i]' the number of lines the services writes to the log file.
I have to compute from the number of lines in the log file, how long ago, in seconds, the programs all started running. Example:
input:
19 3
7 1
8 1
10 2
Output:
42
I have to use divide and conquer, but I can't even figure out how to split this in subproblems. Also I have to use this function, where ss is the array of the periods of the services and bs the number of lines which each services writes to the log file:
long linesAt(int t, int[] ss, int[] bs) {
long out = 0;
for (int i = 0; i < ss.length; i++) {
// floor operation
out += bs[i] * (long)(t/ss[i]);
}
return out;
ss and bs are basically arrays of the input, if we take the example they will look like this, where the row above is the index of the array:
ss:
0 1 2
7 8 10
bs:
0 1 2
1 1 2
It is easily seen that 42 should be the output
linesAt(42) = floor(42/7)*1+floor(42/8)*1+floor(42/10)*2 = 19
Now I have to write a function
int solve(long l, int[] ss, int[] bs)
I already wrote some pseudocode in brute force, but I can't figure out how to solve this with the divide and conquer paradigm, my pseudocode looks like this:
Solve(l, ss, bs)
out = 0
t = 0
while (out != l)
out = linesAt(t, ss, bs)
t++
end while
return t
I think I have to split l in some way, so to calculate the time for smaller lengths. But I don't really see how, because when you look at this it doesn't seem to be possible:
t out
0..6 0
7 1
8 2
9 2
10 4
11..13 4
14 5
15 5
16 6
17..19 6
20 8
...
40 18
42 19
Chantal.
Sounds like a classic binary search would fit the bill, with a prior step to obtain a suitable maximum. You start with some estimate of time 't' (say 100) and call linesAt to obtain the lines for that t. If the value returned is too small (i.e. smaller than l), you double 't' and try again, until the number of lines is too large.
At this point, your maximum is t and your minimum is t/2. You then repeatedly:
pick t as the point halfway between maximum and minimum
call linesAt(t,...) to obtain the number of lines
if you've found the target, stop.
if you have too many lines, adjust the maximum: maximum = t
if you have too few lines adjust the minimum: minimum = t
The above algorithm is a binary search - it splits the search space in half each iteration. Thus, it is an example of divide-and-conquer.
You are trying to solve an integer equation:
floor(n/7)*1+floor(n/8)*1+floor(n/10)*2 = 19
You can remove the floor function and solve for n and get a lower bound and upper bound, then search between these two bounds.
Solving the following equation:
(n/7)*1+(n/8)*1+(n/10)*2 = 19
n=19/(1/7+1/8+2/10)
Having found n, which range of value m0 will be such that floor (m0 / 7) = floor (n/7)?
floor (n/7) * 7 <= m0 <= (ceiling (n/7) * 7) - 1
In the same manner, calculate m1 and m2.
Take max (mi) as upperbound and min(mi) as lowerbound for i between 1 and 3 .
A binary search at this point will probably be an overkill.
This question already has answers here:
Why do these two multiplication operations give different results?
(2 answers)
Closed 9 years ago.
Now signed_int max value is 2,147,483,647 i.e. 2^31 and 1 bit is sign bit, so
when I run long a = 2,147,483,647 + 1;
It gives a = -2,147,483,648 as answer.. This hold good.
But, 24*60*60*1000*1000 = 86400000000 (actually)...
In java, 24*60*60*1000*1000 it equals to 500654080..
I understand that it is because of overflow in integer, but what processing made this value come, What logic was used to get that number by Java. I also refered here.
Multiplication is executed from left to right like this
int x = 24 * 60;
x = x * 60;
x = x * 1000;
x = x * 1000;
first 3 operations produce 86400000 which still fits into Integer.MAX_VALUE. But the last operation produces 86400000000 which is 0x141dd76000 in hex. Bytes above 4 are truncated and we get 0x1dd76000. If we print it
System.out.println(0x1dd76000);
the result will be
500654080
This is quite subtle: when writing long a = 2147483647 + 1, the right hand side is computed first using ints since you have supplied int literals. But that will clock round to a negative (due to overflow) before being converted to a long. So the promotion from int to long is too late for you.
To circumvent this behaviour, you need to promote at least one of the arguments to a long literal by suffixing an L.
This applies to all arithmetic operations using literals (i.e. also your multiplication): you need to promote one of them to a long type.
The fact that your multiplication answer is 500654080 can be seen by looking at
long n = 24L*60*60*1000*1000;
long m = n % 4294967296L; /* % is extracting the int part so m is 500654080
n.b. 4294967296L is 2^32 (using OP notation, not XOR). */
What's happening here is that you are going 'round and round the clock' with the int type. Yes, you are losing the carry bits but that doesn't matter with multiplication.
As the range of int is -2,147,483,648 to 2,147,483,647.
So, when you keep on adding numbers and its exceed the maximum limit it start gain from the left most number i.e. -2,147,483,648, as it works as a cycle. That you had already mentioned in your question.
Similarly when you are computing 24*60*60*1000*1000 which should result 86400000000 as per Maths.
But actually what happens is somehow as follows:
86400000000 can be written as 2147483647+2147483647+2147483647+2147483647+..36 times+500654080
So, after adding 2147483647 for 40 times results 0 and then 500654080 is left which ultimately results in 500654080.
I hope its clear to you.
Add L in your multiplicatoin. If you add L than it multiply you in Long range otherwise in Integer range which overflow. Try to multiply like this.
24L*60*60*1000*1000
This give you a right answer.
An Integer is 32 bit long. Lets take for example a number that is 4 bit long for the sake of simplicity.
It's max positive value would be:
0111 = 7 (first bit is for sign; 0 means positive, 1 means negative)
0000 = 0
It's min negative value would be:
1111 = -8 (first bit is for sign)
1000 = -1
Now, if we call this type fbit, fbit_max is equal to 7.
fbit_max + 1 = -8
because bitwise 0111 + 1 = 1111
Therefore, the span of fbit_min to fbit_max is 16. From -8 to 7.
If you would multiply something like 7*10 and store it in fbit, the result would be:
fbit number = 7 * 10 (actually 70)
fbit number = 7 (to get to from zero to max) + 16 (min to max) + 16 (min to max) + 16 (min to max) + 15 (the rest)
fbit number = 6
24*60*60*1000*1000 = 86400000000
Using MOD as follows: 86400000000 % 2147483648 = 500654080
My question is related to digits sum.
In a digit sum system, a digits sum of number 39 = 3 + 9 = 12.
However in my case, I would like to write a method where the user input 12, and the
method will return 39, given that 39 is the smallest number to achieve digits sum of 12.
It will be good if we can discuss this in psuedo-code as I am more interested in learnign to develop a method/algorithm/formula to solve this puzzle.
The hint was given to use a queue. I have also tried the following:
number%9; number/9, which is close but does not seems to work for all cases.
An Example will be:
12%9 = 3
12/9 = 1; if( ans = 1, return 9)
therefore 3 and 9 will be 39. I know I am close but I tried using the same for numbers like 111, and this does not work anymore.
The smallest number is always of the form "x9...9999" where x is a single digit (possibly 0).
All you need to do is find:
The value of x: n % 9
How many 9s there are: n / 9.
For 111:
n % 9 is 3.
n / 9 is 12.
So the answer is 3999999999999.
I think the smallest number n to have a digit sum equal to k will always be of the form
i99999
Where i is some digit.
Using this, you have
i = n % 9
j = floor(n / 9)
Then you construct your number by concatenating i then 9 j times.
For n = 12 this yields 39.
For n = 111 this yields 3999999999999 (the 9 appears twelve times)