I have a WebSphere application that makes use of shared libraries. Whenever an update is made to any jar in the shared libraries path, the application making use of it need to be restarted to get the latest changes. Is it possible to make a WAS application reload the shared libraries without having to be restarted?
I'm using traditional WAS 8.5.5.16.
Short answer: No.
Long answer: There's a technical reason why you can't do that. Java class loaders don't generally support recreating Class objects that they've already defined - once you define a class, it's defined, and that's that for the life of the class loader (the first step in loadClass is "findLoadedClass", which searches for an existing version of the class you're loading). In order for Java to agree to load a new instance of a Class object, you need to create an entirely new class loader, and in a Java EE (or, at least, WAS) setting, that requires restarting the application.
I believe from your question that you're simply associating a normal shared library with your application, so this doesn't necessarily apply, but I'd note that if you use an isolated shared library (which has its own class loader) or a shared library loader configured on the server, even restarting the application is not enough, because those library loaders are created with the server, not with the applications, so they require a server restart to pick up changes.
No. They're only loaded once on the startup of the server.
I have a whole bunch of framework modules that work fine on OSGi, all the services and components are finding one another and running just fine.
There is however one framework that does some dynamic stuff regarding classes. Basically at some point you give it a class name and it performs Class.forName() and then reflection magic happens.
This works great when running in a standard jvm and using SPI to wire together the frameworks but it fails in OSGi because of course that random class "test.MyTest" that you are trying to approach via the framework is not visible to said framework.
It will throw a "java.lang.ClassNotFoundException: test.MyTest not found by framework"
So my question: how can I solve this lack of visibility for the framework that needs to see all? Import-Package: *?
UPDATE
Assuming OSGi hasn't changed much since 2010 on this front, the article http://njbartlett.name/2010/08/30/osgi-readiness-loading-classes.html is very interesting. I have currently added support for both actively registering classes and a domain factory to be injected via OSGi.
Apart from that the default resolving uses context classloader anyway so if all else fails that will be used to try and load the class.
UPDATE
I have added support for the suggested DynamicImport-Package as well which is easier for small projects.
You can use DynamicImport-Package:*. This will allow the bundle to see all classes. The problem is that you have no real control over what exactly is exposed. So this is normally a last resort and not the recommended way.
You should first try to use Thread.currentThread().setContextClassLoader() and set it to the classloader of the class you provide to the framework. Sometimes the frameworks also consult this classloader.
The even better way is to find a method in the framework that allows to provide the user classloader.
If you have control over the code then avoid Class.forName(). Instead let the user either give you a class object instead of a class name or let the user give you the combination of a class name and the classloader to use. Both ways work perfectly in and outside OSGi.
I´m working in the design of a java web application capable of executing custom code or precompiled classes uploaded by the users, focused mostly in simple validations of datasets.
The custom class must be constrained to a predefined interface and only some libraries and classes must be available to the custom class.
My first solution is to use a custom Classloader capable of loading .jar files from a defined directory in the file system. This approach seems to work but i´m concerned about the security and compatibility of this solution.
Is possible to limit the classes that can be imported by the custom class and run the code in a sandbox in order to avoid some actions like opening files or sockets?
When the loaded class will be unloaded?
application Servers like Weblogic have some restriction about using custom classloaders?
I have evaluated another solutions like OSGi Bundles, but it looks really complex and the support is limited in some applications server also i´m not really sure if OSGi is the right technology for this particular usage. Embedded Scripting Languages like Groovy o Javascript are discarded because the project owner wants the custom code precompiled and written in Java.
What would you recommend for this problem?
OSGi is a good fit for an application that wishes to accept external code (plugins). All the requirements you mention (predefined interfaces, loading jars, mutiple classloaders) are all covered by OSGi services and bundle management. Bundles can be installed, started, stopped, uninstalled, etc, including in runtime.
OSGi support in web application servers is not really that limited. You could even considered embedding an OSGi framework.
Security-wise you will need a solution around security managers.
I am looking for a way to reload a class into Java at runtime. The motivation is to make debugging more efficient. The application is a typical client/server design that synchronously processes requests. A "handler" object is instantiated for each request. This is the only class I intend to dynamically replace. Since each request deals with a fresh instance, reloading this class won't have any side-effects. In short, I do not want to restart the entire application every time there is a change to this module.
In my design, the Java process becomes aware that a .class file has been updated in the classpath in between requests. When this happens, the "handler" class is unloaded and a new one is loaded.
I know I can use the classLoader interface to load in a new class. I seem to be having trouble finding the proper way of "unloading".
Classes will be unloaded and garbage collected like any other object, if there is no remaining reference to them. That means there must be no reachable instance of the class (as loaded by that particular classloader instance) and the classloader instance itself must be eligible for garbage collection as well.
So basically, all you have to do is to create a new classloader instance to load the new version of the class, and make sure that no references to instances of the old version remain.
I believe that you actually need to have a hierarchy of classloaders, and in order to reload you actually get rid of the low level classloader (by normall GC means), and hence all the classes it loaded. So far as I know this technique is used by Java EE app servers for reloading applications, and there's all manner of fun results when framework code loaded in one classloader wants to use classes loaded somewhere else.
As of 2015 also java's class reloading is a missing feature.
Use OSGi to create a class reloading application.
Use jrebel for testing. There are a few others which does the same thing.
Use application server and externalize the parts which you want to reload into a separate web application. Then keep deploying/undeploying. You will eventually get some perm gen space overflow kind of errors due to dangling old ClassLoader instances.
Use a script runner to execute parts of changeable code. JSR-223 Java Scripting API support for the scripting language "Java".
I had written a series about class reloading. But all of those methods are not good for production.
The blog and source codes in google sources
IMHO this class reloading is messy in java and its not worth trying it. But I would very much like this to be a specification in java.
I'm working with very large JSF/Facelets applications which use Spring for DI/bean management.
My applications have modular structure and I'm currently looking for approaches to standardize the modularization.
My goal is to compose a web application from a number of modules (possibly depending on each other). Each module may contain the following:
Classes;
Static resources (images, CSS, scripts);
Facelet templates;
Managed beans - Spring application contexts, with request, session and application-scoped beans (alternative is JSF managed beans);
Servlet API stuff - servlets, filters, listeners (this is optional).
What I'd like to avoid (almost at all costs) is the need to copy or extract module resources (like Facelets templates) to the WAR or to extend the web.xml for module's servlets, filters, etc. It must be enough to add the module (JAR, bundle, artifact, ...) to the web application (WEB-INF/lib, bundles, plugins, ...) to extend the web application with this module.
Currently I solve this task with a custom modularization solution which is heavily based on using classpath resources:
Special resources servlet serves static resources from classpath resources (JARs).
Special Facelets resource resolver allows loading Facelet templates from classpath resources.
Spring loads application contexts via the pattern classpath*:com/acme/foo/module/applicationContext.xml - this loads application contexts defined in module JARs.
Finally, a pair of delegating servlets and filters delegate request processing to the servlets and filters configured in Spring application contexts from modules.
Last days I read a lot about OSGi and I was considering, how (and if) I could use OSGi as a standardized modularization approach. I was thinking about how individual tasks could be solved with OSGi:
Static resources - OSGi bundles which want to export static resources register a ResourceLoader instances with the bundle context. A central ResourceServlet uses these resource loaders to load resources from bundles.
Facelet templates - similar to above, a central ResourceResolver uses services registered by bundles.
Managed beans - I have no idea how to use an expression like #{myBean.property} if myBean is defined in one of the bundles.
Servlet API stuff - use something like WebExtender/Pax Web to register servlets, filters and so on.
My questions are:
Am I inventing a bicycle here? Are there standard solutions for that? I've found a mentioning of Spring Slices but could not find much documentation about it.
Do you think OSGi is the right technology for the described task?
Is my sketch of OSGI application more or less correct?
How should managed beans (especially request/session scope) be handled?
I'd be generally grateful for your comments.
What you're aiming to do sounds doable, with a few caveats:
The View Layer: First, your view layer sounds a little overstuffed. There are other ways to modularize JSF components by using custom components that will avoid the headaches involved with trying to create something as dramatic as late-binding managed beans.
The Modules Themselves: Second, your modules don't seem particularly modular. Your first bullet-list makes it sound as if you're trying to create interoperable web apps, rather than modules per se. My idea of a module is that each component has a well-defined, and more or less discrete, purpose. Like how ex underlies vi. If you're going down the OSGi route, then we should define modular like this: Modular, for the sake of this discussion, means that components are hot-swappable -- that is, they can be added and removed without breaking the app.
Dependencies: I'm a little concerned by your description of the modules as "possibly depending on each other." You probably (I hope) already know this, but your dependencies ought to form a directed acyclic graph. Once you introduce a circular dependency, you're asking for a world of hurt in terms of the app's eventual maintainability. One of the biggest weaknesses of OSGi is that it doesn't prevent circular dependencies, so it's up to you to enforce this. Otherwise your dependencies will grow like kudzu and gradually choke the rest of your system's ecosystem.
Servlets: Fuhgeddaboudit. You can't late-bind servlets into a web app, not until the Servlet 3.0 spec is in production (as Pascal pointed out). To launch a separate utility servlet, you'll need to put it into its own app.
OK, so much for the caveats. Let's think about how this might work:
You've defined your own JSF module to do... what, exactly? Let's give it a defined, fairly trivial purpose: a login screen. So you create your login screen, late-bind it using OSGi into your app and... then what? How does the app know the login functionality is there, if you haven't defined it in your .jspx page? How does the app know to navigate to something it can't know is there?
There are ways to get around this using conditional includes and the like (e.g., <c:if #{loginBean.notEmpty}>), but, like you said, things get a little hairy when your managed loginBean exists in another module that may not have even been introduced to the app yet. In fact, you'll get a servlet exception unless that loginBean exists. So what do you do?
You define an API in one of your modules. All the managed beans that you intend to share between modules must be specified as interfaces in this API layer. And all your modules must have default implementations of any of these interfaces that they intend to use. And this API must be shared between all interoperable modules. Then you can use OSGi and Spring to wire together the specified beans with their implementation.
I need to take a moment to point out that this is not how I would approach this problem. Not at all. Given something like as simple as a login page, or even as complicated as a stock chart, I'd personally prefer to create a custom JSF component. But if the requirement is "I want my managed beans to be modular (i.e., hot-swappable, etc)," this is the only way I know to make it work. And I'm not even entirely sure it will work. This email exchange suggests that it's a problem that JSF developers have only just started to work on.
I normally consider managed beans to be part of the view layer, and as such I use them only for view logic, and delegate everything else to the service layer. Making managed beans late-binding is, to my mind, promoting them out of the view layer and into the business logic. There's a reason why all those tutorials are so focused on services: because most of the time you want to consider what it would take for your app to run "headless," and how easy it would be to "skin" your view if, for instance, you wanted it to run, with all its functionality, on an Android phone.
But it sounds like a lot of what you're working with is itself view logic -- for instance, the need to swap in a different view template. OSGi/Spring should be able to help, but you'll need something in your app to choose between available implementations: pretty much what OSGi's Service Registry was built to do.
That leaves static resources. You can modularize these, but remember, you'll need to define an interface to retrieve these resources, and you'll need to provide a default implementation so your app doesn't choke if they're absent. If i18n is a consideration, this could be a good way to go. If you wanted to be really adventurous, then you could push your static resources into JNDI. That would make them completely hot-swappable, and save you the pain of trying to resolve which implementation to use programmatically, but there are some downsides: any failed lookup will cause your app to throw a NamingException. And it's overkill. JNDI is normally used in web apps for app configuration.
As for your remaining questions:
Am I inventing a bicycle here? Are there standard solutions for that?
You are, a little. I've seen apps that do this kind of thing, but you seem to have stumbled into a fairly unique set of requirements.
Do you think OSGi is the right technology for the described task?
If you need the modules to be hot-swappable, then your choices are OSGi and the lighter-weight ServiceLocator interface.
Is my sketch of OSGI application more or less correct?
I can't really tell without knowing more about where your component boundaries are. At the moment, it sounds like you may be pushing OSGi to do more than it is capable of doing.
But don't take my word for it. I found other reading material in these places.
And since you ask about Spring Slices, this should be enough to get you started. You'll need a Git client, and it looks like you'll be training yourself on the app by looking through the source code. And it's very early prototype code.
I am facing the same problems in my current project. In my opinion, OSGi is the best and cleanest solution in terms of standards and future support, but currently you may hit some problems if you try using it in a web application:
there is no well integrated solution between a Web Container and the OSGi platform yet.
OSGi may be too much for a custom build web application that is just searching for a simple modularized architecture. I would consider OSGi if my project needs to support third party extensions that are not 100% under our control, if the project needs hot redeployments, strict access rules between plugins, etc.
A custom solution based on class loaders and resource filters seems very appropriate for me.
As an example you can study the Hudson source code or Java Plug-in Framework (JPF) Project(http://jpf.sourceforge.net/).
As about extending the web.xml, we may be lucky with the Servlet 3.0 specification(http://today.java.net/pub/a/today/2008/10/14/introduction-to-servlet-3.html#pluggability-and-extensibility).
The "web module deployment descriptor fragment" (aka web-fragment.xml) introduced by the Servlet 3.0 specification would be nice here. The specification defines it as:
A web fragment is a logical
partitioning of the web app in such a
way that the frameworks being used
within the web app can define all the
artifacts without asking devlopers to
edit or add information in the
web.xml.
Java EE 6 is maybe not an option for you right now though. Still, it would to be the standardized solution.
Enterprise OSGi is a fairly new domain so dont think you will get a solution that directly satisfies your need. That said one of the things I found missing from Equinox (osgi engine behind eclipse and hence one with largest user base!) is a consistent configuration / DI service. In my project recently we had some similar needs and ended building a simple configuration osgi service.
One of the problems which will be inherent to modular applications would be around DI, as the module visibility could prevent class access in some cases. We got around this using a registered-buddy policy, which is not too ideal but works.
Other than configuration, you can take a look at the recently released Equinox book for guidance on using OSGi as base for creating modular applications. The examples may be specific to Equinox, but the principles would work with any OSGi framework. Link - http://equinoxosgi.org/
You should look into Spring DM Server (it's being transitioned to Eclipse Virgo but that's not been released yet). There's a lot of good things in the recent OSGi enterprise spec which has also just been released.
Some of the Spring DM tutorials will help, I'd imagine. But yes, it's possible to have both resources and classes loaded from outside the web bundle using standard modularity. In that, it's a good fit.
As for the session context - it gets handled as you would expect in a session. However, you might run into problems with sharing that session between web bundles to the extent that in not sure if it's even possible.
You could also look to have a single web bundle and then use e.g. the Eclipse extension registry to extend the capabilities of you web app.