JavaFX Threading issue - GUI freezing while method call ran - java

I hoped someone might be able to help as I'm a little stumped. I have a javafx class which runs a user interface, which includes a button to read some text out loud. When you press it, it invokes a Java object which uses the FreeTTS java speech synth to read out loud a String, which all works fine.
The problem is, when the speech is being read out, the program stops completely until its completed. I'm not an expert on threaded applications, but I understand that usually if I extend the Thread class, and provided my implementation of the speech synth code inside an overridden run method, when I call start on the class it "should" create a new Thread, and run this code there, allowing the main thread which has the JavaFX GUI on to continue as normal.
Any idea why this isn't the case? Thanks a lot in advance!

Ack - I've solved it! I called the start() method of the class rather than run() and its sorted. Seems so obviously when looking now!

Related

Other ways to perform tasks without loops?

I'm fairly new to java and I was creating a program which would run indefinitely. Currently, the way I have the program set up is calling a certain method which would perform a task then call another method in the same class, this method would perform a task then call the initial method. This process would repeat indefinitely until I stop the compiler.
My problem is when I try to create a GUI to make my program more user friendly, once I press the initial start button this infinite loop will not allow me to perform any other actions -- including stopping the program.
There has to be another way to do this?
I apologize if this method is extremely sloppy, I sort of taught myself java from videos and looking at other programs and don't entirely understand it yet.
You'll need to run your task in a new thread, and have your GUI stuff in another thread.
Actually, if you keep working on this problem, you'll eventually invent event driven programming. Lots of GUI based software, like Android, use this paradigm.
There are several solutions. The first that comes to mind is that you could put whatever method needs to run forever in its own thread, and have a different thread listen for user input. This might introduce difficulties in getting the threads to interact with each other, but it would allow you to do this.
Alternatively, add a method that checks for user input and handles it inside the infinite loop of your program. something like below
while(true){
//do stuff
checkForUserInput();
//do other stuff
}
To solve this problem, you need to run your UI in another thread.
Many programs are based on an infinite loop (servers that keep waiting for a new user to connect for example) and your problem isn't there.
Managing the CPU time (or the core) allocated to your infinite loop and the one allocated to take care of your UI interactions is the job of the operating system, not yours : that's why your UI should run in a separate thread than your actual code.
Depending on the GUI library (Swing, ...) you're using there may be different ways to do it and the way to implement it is well answered on Stack Overflow

Java SWT control modified doesn't change

I'm making a couple of programs for a chat: a server and the client.
Both of them have a GUI made with SWT. Server always runs great.
In the other side, the GUI of the client doesn't. When I connect to the server, the client ask about the connected clients, and the server answer with X messages, one with each name. I've checked the server really send the names and the client receives them.
But, even when I've received the messages, sometimes the GUI shows them, and other times it doesn't. Even in the same execution, some names can be put into the GUI and others can not.
I think It could be a problem of SWT, especially about the method to modify the GUI.
As You would have supposed, I'm working with threads, even to modify the GUI. Because I want to modify GUI from a thread, I've to use the method "Display.asyncExec", so every time I do a change on GUI I do something like this:
OurDisplay.asyncExec( new Runnable() {
public void run()
{
MyText.append("#The user " + OurName + " has asked us about other clients\n");
}
});
I don't know where can be the problem, because the Server uses the same but It runs fine.
Maybe I would notice, that in the main (both of them, server and client) program I'm using this other code in order to not finish the program execution before I close the window (Shell) i'm working with:
while (!ServerShell.isDisposed())
{
if (!ourDisplay.readAndDispatch())
ourDisplay.sleep();
}
Any idea?
Thanks
- EDIT - Answer to Comment nÂș1 - (I can't answer with a comment, i don't know why)
I didn't. I've tried with "syncExec" method in order to have my thread waiting the modification of the GUI. However this neither does work.
I don't know how to see the Display queue, I'm looking for it. Thanks for the idea.
And I will try to catch the exceptions that the Runnable can be throwing. I will report news.
Make up some try/catch, you will see a typical problem:
trying to update a GUI while it is buisy.
The exception is surpressed until you let it rip.
I assume you've got a Eclipse RCP Application there - right?
The please use the Eclipse Job processing for updating the GUI (UIJob).
That works thousand times better than those asyncExec(Runnable) calls, cause the Eclipse Framework will figure the timing with the GUI updates.
http://www.vogella.com/articles/EclipseJobs/article.html
Lars Vogel has a great Tutorial on the Job processing thingy.

Is the jtextarea.settext() method buffered?

i'm not a java developer, but i need to write a small applet to upload file via ftp
(actually, i'm a web developer). Everything works fine, except for the way that feedback messages are displayed. Let me explain with an example:
if i wrote sometingh like that, inside a method (controlled by a click event)
//....
myJpanel.setText("Connecting to remote server");
//actually, it's surrounded by try-catch statement
myFtpObject.connect(); //this is taken from a third part package
myJpanel.setText("Connected")
When I try to run this code the connection is set (after that connection I upload files with no problem), but inside the Jpanel myJpanel I immeditaly read "connected" (altought it takes several seconds to connect) and I never see the "Connecting to remote server" string.
It sounds to me like the Jpanel setText method is buffered in some way.
How can I display messages in real time?
(I've tried to do System.out.println for testing and it worked great!)
Thanks
if i wrote sometingh like that inside a method (controlled by a click event)
Code executed in an event listener executes on the EDT. The problem is that the long running task is blocking the Swing EDT. So the GUI never gets a chance to repaint itself.
Read the section from the Swing tutorial on Concurrency for more information and for a solution. The basic solution is to create a separate thread for the long running task.
This is also why System.out.println(..) works, because it executes on a different Thread.

IO thread alert GUI thread if error occures

I have a client/server question that i am trying to figure out the best solution for.
If a client ever gets disconnected from the server, for any reason, i would like a way for the input output thread to alert the gui thread that something went wrong, and thus have the gui thread print an error and gracefully handle it (probably drop back out to the login gui). After the initial gui thread is created, the client could change to any number of guis, depending on what he is doing, so I am thinking i need a way to dynamically see what gui is currently being run.
The way that i was thinking of doing this so far:
1) Create an object that creates and shows every gui. So instead of calling invokeLater...SomeGui.CreateAndShoGui()... we would have this object be responsible for doing that, ie GuiObject.showSomeGui();
2) Have each gui implement an interface, which will insure there is a method that, when called, will gracefully shutdown this gui when we have lost connection to the server.
3) Have a thread that monitors the IO thread and the gui object. If something goes wrong on the IO thread, the IO thread will close down and notify the monitoring thread that we have lost connection the server. The monitoring thread could then alert any open guis (from the gui object) that we have lost connection and that it needs to shut down.
I have just started thinking about this, and so far this is the best solution i have come up with. Does this seem like a reasonable solution that wont add too much complexity to the code? Or can anyone recommend a solution that would be simpler for people reading the code to understand?
Thanks
EDIT:
The other option i am toying with is having an object on the IO thread, that also gets passed to each new gui as it is opened. This object will give the currently opened guis reference back to the io thread, so that the io thread can alert it if something goes wrong. I am leaning against this solution though, because it seems like it would be easier to read if you had one object that was dedicated to get this working (like the above solution), instead of passing some obscure object to each gui.
Let me just go through each of your ideas:
1) Bad idea - you are tying your whole application together through a single object. This makes maintainability difficult and is the antithesis of modularity.
2) This is the way to go IMHO. Since it seems that each gui has unique logic in a failure scenario then it stands to reason that the object that best understands what to do would be the gui object itself.
Another version of this idea would be to create an adapter for each gui to put this failure logic into. The advantage would be you have one less dependency between your application framework and your gui. The disadvantage is that this is an extra layer of complexity. If your gui is already pretty coupled to your application then I would choose the interface method. If you want to reuse your guis in another application then the adapter way could help facilitate that.
3) This complements #2 nicely. So let me get this straight - you would have 3 threads: the IO thread, the monitor thread, and the UI thread. I don't know if you need the monitor thread. From what you were saying the IO thread would be able to detect a connection problem by itself (probably because some form of IOException was caught). When a connection problem is discovered the IO thread is not busy since it is just going to shut itself down soon so it might as well just have the responsibility of notifying the guis that there was a problem. The guis should have their interface method called on the UI thread anyways so the IO thread is just calling a bunch of invokeLater() calls (or asyncExec() calls for SWT) and then the IO thread can just shut itself down.
4) (Your Edit) You are basically describing the Visitor pattern. I do not think this is a good solution because the call is from the IO thread to the gui and not the other way around. I am not sure how passing a visitor object around will help in this case.
One final thought. If you make your interface generic (not gui specific) then you can apply this pattern to other resources. For instance you may want to flush your user credentials when you lose connection (since you talked about going to the login screen again). That isn't really gui logic and should not be done from a gui class.
Edit: I would use an event model. Let's say you create a interface like this:
public interface ConnectionFailureListener {
void handleConnectionFailure(); // Add an event object if you need it
}
You could then have registration methods in some object (maybe the Runnable for the IO thread or somewhere else that is convenient for you). These methods would be pretty standard:
public void addConnectionFailureListener(ConnectionFailureListener l) {}
public void removeConnectionFailureListener(ConnectionFailureListener l) {}
When you show a gui on the screen you would add it to your registration object and when you close the gui you would remove it from the registration object. You can add other types of objects as needed - for example when you log in you can add a listener for your credential system and remove it again when log out is processed.
This way when you have a failure condition you simply loop through the currently registered listeners and the listener does its thing.

Is there a function in Android analogous to "int main" in C/C++ which contains the program's main loop?

Normally in a C or C++ program there's a main loop/function, usually int main (). Is there a similar function that I can use in android Java development?
As far as an Android program is concerned there is no main().
There is a UI loop that the OS runs that makes calls to methods you define or override in your program. These methods are likely called from/defined in onCreate(), onStart(), onResume(), onReStart(), onPause(), onStop(), or onDestroy(). All these methods may be overriden in your program.
The fundamental issue is that the OS is designed to run in a resource constrained environment. Your program needs to be prepared to be halted and even completely stopped whenever the OS needs more memory (this is a multitasking OS). In order to handle that your program needs to have some of all of the functions listed above.
The Activity lifecycle describes this best (your program is one or more Activities, think of an Activity as a screen).
Bottom line: Your program 'starts' at onCreate() through onResume() but the OS is running the loop. Your program provides callbacks to the OS to handle whatever the OS sends to it. If you put a long loop at any point in your program it will appear to freeze because the OS (specifically the UI thread) is unable to get a slice of time. Use a thread for long loops.
In Android environment, there is no main(). The OS relies on the manifest file to find out the entry point, an activity in most case, into your application.
You should read http://developer.android.com/guide/topics/fundamentals.html for more detail.
According to:
http://developer.android.com/guide/tutorials/hello-world.html
The application class must support a method for each activity that the Application
supports. In the general case, the onCreate is probably equivalent to the main/top
function for your needs.
Maybe it's possible by creating a timer and execute custom functions at every tick, reset the timer when it's at a specific time
The above answers provide a "why" as to there's no "main loop" on Android (which is important to understand). I'll offer a solution to the implied question, instead, as many visitors here will be looking for exactly that.
I believe the appropriate thing to do, here, would be to create an AsyncTask which operates as your "main loop". Or better yet, design your main loop to run as a java.util.concurrent future, which can be started and ended during lifecycle events (like rotation!), using signaling (keep your data separate). The AsyncTask API is deprecated, because it was complex, and handling it properly amounted to writing code that would, effectively, operate as an AsyncTask which cleaned up when the next problematic lifecycle event transpired.
Keep in mind that this will be a separate thread from the UI, and, as such, will be required to respond in short order to UI thread events, like "onPause" and "onDestroy". If your app does not respond within a certain period of time (~5 secs, iirc) to these events, or user input events, it will be killed by the OS. It's really prudent, for a real-time app, to be able to fully respond to these events in under 1 sec, even on the lowest-end device. You can use synchronization primitives to notify other threads that their response is pending, and they can use them to signal when they are finished (or simply end, in the case of a future).

Categories