I have the following function.
func(ArrayList `<String>`[] name) { ........ }
The function fills the ArrayList[]. (I don't want to return the ArrayList[])
However, in the caller function the ArrayList[] obtained has all ArrayLists as null.
For eg.
name = new ArrayList[num];
func(name);
System.out.println(name[0]);
I get NullPointerException at line 3. Is this because of line 1, i.e. I am not parametrizing? If yes, is there another way this can be done? Because java does not allow creating a generic array of parametrized ArrayList.
That is obviously not your real code, but you're creating an array of ArrayLists, which probably isn't what you want. You can probably just do:
ArrayList<String> name = new ArrayList(num);
func(name);
System.out.println(name.get(0));
Note that when you create the ArrayList, you're only specifying the initial capacity, not the size (number of initial items). It will have an initial size of 0. Your func can just call add to add items.
Even better (no typing errors):
ArrayList<String> name = new ArrayList<String>();
I recommend not bothering with the initial capacity argument (num) - just leave it blank and it will work perfectly. But do bother with the generic type of String in the constructor, or the compiler will complain.
If you want to know how to use the ArrayList (for example, why to use the get() function), you should look at the documentation.
For arrays in Java when you create it all of the elements are either 0, false, or null depending in their type.
So:
final List<String>[] foo;
foo = new ArrayList<String>[10];
foo[0].add("hello"); // crash
that crashes because foo = new ArrayList<String>[10]; allocates enough room to hold 10 ArrayList<String> but it sets all of the values to null. So you need one additional step:
for(int i = 0; i < foo.length; i++)
{
foo[i] = new ArrayList<String>();
}
I haven't compiled the code, but pretty sure it is all correct. You would do that between step 1 and 2 of your program.
I am guessing a bit because your code isn't quite accurate (it would not generate a null pointer as written as near as I can tell).
EDIT:
You would do the new in the method and the for loop with the assignments could be done inside of the method. I prefer to allocate and initialize in the same place (less confusing) but you can split it up if you needed to.
The problem you are encountering is due to the fact that in Java, parameters to methods are passed by value. What this means, is that every parameter is effectively "copied" into the method, meaning that any assignments you make to the parameters are only visible within the method, and cannot be seen by the caller.
Going by your example, you're passing in a null reference to an array of List<String>'s. This reference is then "copied" into the func() method, and when func then assigns something to this variable, it is only the local variable that is being updated, and not the reference held by your calling code.
Here's some compilable code (based on your example) that demonstrates the problem:
public class Main {
public static void main(String[] args) {
List<String>[] array = null;
fill(array);
System.out.println("In main(): " + array[0].get(0));
}
public static void fill(List<String>[] array) {
array = (List<String>[])new List[10];
array[0] = new ArrayList<String>();
array[0].add("test");
System.out.println("In fill(): " + array[0].get(0));
}
}
The println in fill prints the correct value, because the array variable has been assigned to something within the fill method, however the println in the main method throws an NPE because only the "copy" of the array variable was changed by func, and not the "real" variable.
There are two ways to get around this: either instantiate the array within your calling code, or change the fill() method to return a reference to the array is has created.
Below is the first approach:
public class Main {
public static void main(String[] args) {
List<String>[] array = (List<String>[])new List[10];
fill(array);
System.out.println("In main(): " + array[0].get(0));
}
public static void fill(List<String>[] array) {
array[0] = new ArrayList<String>();
array[0].add("test");
System.out.println("In fill(): " + array[0].get(0));
}
}
You may be wondering why this works, because you're still assigning ArrayList's to the elements of the array, however these objects are visible outside of the calling method. The reason for this is that although the fill method is getting a "copy" of the reference to the array, the reference itself is still referencing the same array object. This means that you can modify the internal state of the array object, and any changes you make will be seen by the caller because it referencing that same object.
Below is the second approach:
public class Main {
public static void main(String[] args) {
List<String>[] array = fill();
System.out.println("In main(): " + array[0].get(0));
}
public static List<String>[] fill() {
List<String>[] array = (List<String>[])new List[10];
array[0] = new ArrayList<String>();
array[0].add("test");
System.out.println("In fill(): " + array[0].get(0));
return array;
}
}
(As an aside, you should generally try to avoid creating arrays of generic collections, a better idea would be to use a list to store the lists themselves. E.g:
List<List<String>> list = new ArrayList<List<String>>();
list.add(new ArrayList<String>());
list.get(0).add("test");
new ArrayList<?>[10] give me incompatible type. However, new ArrayList[10] works for me.
Related
I have declared a class named Member. I then assigned an array with Member type. When I try to put things into the array, it gives me this error:
Exception in thread "main" java.lang.NullPointerException
at HW2_2.main(HW2_2.java:15)
This is my code:
import c.Member;
import java.util.Scanner;
public class HW2_2
{
public static void main(String []args)
{
Member[] p = new Member[100];
Scanner in = new Scanner(System.in);
p[0].setID("apple12");
p[0].setPassword("1234");
p[0].setFirstname("fname");
p[0].setLastname("lname");
p[0].setEmail("*#gmail.com");
}
}
How do I fix this to the point where I can store data into my array?
You have created an object p which points to an array of Member objects. This is perfect. However, each object in your array is by default null. You cannot simply perform operations on them.
You probably want to do something like...
//...
p[0] = new Member(...);
p[0].setId("ID");
//... And so on
What's important to learn from here is that an array declaration syntax does not initialize the values of the array itself. That would be impossible, right? How would you pass arguments to the constructors of each one seperately? You have to do it manually.
When you:
Member[] p = new Member[100];
it initializes all array members to null (since this is an array of object types).
You need to initialize members if you want them to be usable, therefore here you have to:
p[0] = new Member();
before you can use that member.
If you want to initialize all members at once, you need to loop over all elements in the array and create one for each member; with Java 8 this can be done as such:
IntStream.range(0, p.length).forEach(index -> p[index] = new Member());
Curiously enough, there is no such method as <T> void fill(T[] array, Supplier<T> supplier) in the Arrays class.
I'm trying to return a List from the test method, I see that there are two options to do this. (Option 1 and Option 2 in the below code snippet).
I would like to know which of these two is a preferred OPTION and the reason for it (if possible).
public class Test {
public static void main(String a[]) {
//OPTION 1
List<Double> outer = new ArrayList<Double>(test());
//OPTION 2
List<Double> temp = test();
if(temp != null && temp.size() > 0) {
for(Double entry: temp) {
System.out.println("entry = " + entry);
}
}
}
public static List<Double> test() {
List<Double> inner = new ArrayList<Double>();
inner.add(123.0);
inner.add(234.0);
return inner;
}
}
Option 2 is better. Option 1 is a constructor that allows you to create a List and initialize it so that it starts with the values in a existing Collection. The first option is a straight-up, standard List assignment.
Unless you have a specific use case, Option 2 is better because you just assign the returned list to the variable temp.
In the first case, even though you can just pass the result of test() in the constructor, internally it has to copy all the values returned by test() into your newly created list outer, which is a overhead and also you have two copies of the same list now.
The difference is pretty simple:
Opt1 creates a copy of the list generated by test() and assigns the copy to outer. Opt2 assigns by value. This means the list created by test() is directly assigned to outer. Whether to use Opt1 or Opt2 depends upon circumstances. In this case Opt2 would be more efficient, since the unnecessary copy-operation falls away. The copy would be necessary if for example the list would exist before calling test() and would only be modified int test() and wouldn't be used as read-only.
As far as I can see, the only reason one would want to use the first option is to ensure that the List is indeed an ArrayList. But, in the rest of your code, all you are doing is iterating through this list. So you are not really using any feature that is particularly biased in favor of an ArrayList.
Therefore, I would say that option 2 is better.
It performs the same as option 1
It is more readable.
It does not waste any time converting to an ArrayList (which, by the way, is unnecessary because the test() method returns the list inner, which is an ArrayList to begin with.
You can use any OPTION, neither of them is preferred. What is really preferred is use classes, properties, objects, non-static methods
public class Test {
List<Double> inner = new ArrayList<>();
public Test(){
init();
}
public static void main(String a[]) {
//OPTION 3
new Test().execute();
}
public void execute() {
for (Double entry: inner)
System.out.println("entry = " + entry);
}
public void init() {
inner.add(123.0);
inner.add(234.0);
}
}
I am having a little trouble understanding the concept of final in Java.
I have a class that follows:
public class MyClass
{
private int[][] myArray; // intended to be changed
private final int[][] MYARRAY_ORIGINAL; // intended to be unchangable
public MyClass(int[][] array)
{
myArray = array;
MYARRAY_ORIGINAL = array;
}
}
I was under the understanding that final would make MYARRAY_ORIGINAL read only. But I have tried editing myArray, and it edits MYARRAY_ORIGINAL as well. My question is, in this context, what exactly does final do? And for extra credit, how can I copy the array passed through the constructor into MYARRAY_ORIGINAL so that I can have 2 arrays, one to edit, and one that will remain preserved?
Your final MYARRAY_ORIGINAL is indeed read only: you can't assign a new value to the MYARRAY_ORIGINAL reference in other side than class constructor or attribute declaration:
public void someMethod() {
//it won't compile
MYARRAY_ORIGINAL = new int[X][];
}
The values inside the array are not final. Those values can change anytime in the code.
public void anotherMethod() {
MYARRAY_ORIGINAL[0][0] = 25;
//later in the code...
MYARRAY_ORIGINAL[0][0] = 30; //it works!
}
If you indeed need a List of final elements, in other words, a List whose elements can't be modified, you can use Collections.unmodifiableList:
List<Integer> items = Collections.unmodifiableList(Arrays.asList(0,1,2,3));
The last piece of code was taken from here: Immutable array in Java
In case of Objects, final makes reference can't be changed, but object state can be changed.
That is the reason why you are able to change values of final MYARRAY_ORIGINAL
MYARRAY_ORIGINAL is indeed read only variable. Your array reference can not be assigned a new value nor for their length of the arrays can be changed. A final variables initialization can be deferred till the constructors is called. If one tries to modify the reference of the final variable, compiler will throw an error message. But what is possible is, one can edit the elements of the MYARRAY_ORIGINAL and of the myArray i.e one can change the state of the object assigned to a final variable. For example
Class A {
final int[] array;
public A() {
array = new int[10] // deferred initialization of a final variable
array[0] = 10;
}
public void method() {
array[0] = 3; // it is allowed
array = new int[20] // not allowed and compiler will throw an error
}
}
To understand more on final please take a look at Java Language Specification on final variable.
Final does not mean 'read-only' per se, but more so "safe publication' for other threads than the one to which it is defined. Another aim of 'final' is that it ensures the latest object available in a multi-thread environment.
Secondly, if you define something as "final", for example:
private final int[][] MYARRAY_ORIGINAL;
The reference is "final", but not the object itself. A much better way to understand it would be this:
public static final List myList = new ArrayList();
Now I can access myList from any other threads - I can modify it (add to it); but I cannot
(a) Declare it again - myList = new ArrayList();
(b) Assign it another list - myList = anotherList;
The context for final I would see best, in a multiple-thread scenario.
Bonus: to answer your question, you cannot make a 'readonly' array, you will have to manage that yourself (as final, only maintains 'read-only' to reference not object)
You can use the method System.arraycopy to make a copy of the array as follows -
int[][] source = {{1,2},{3,4}};
int[][] copy = new int[source.length][];
System.arraycopy(source, 0, copy, 0, source.length);
Also, you some problem with your code regarding what you are trying to do. If you look at the constructor
public MyClass(int[][] array) { //something else passes the array
myArray = array;
MYARRAY_ORIGINAL = array; // you are just keeping a reference to it can be modified from outside
}
If you really want nobody to modify the values in that array MYARRAY_ORIGINAL, you should make a copy of the source array that comes comes from outside.
public MyClass(int[][] array) {
myArray = array; //make a copy here also if you don't want to edit the argument array
MYARRAY_ORIGINAL = new int[array.length][];
System.arraycopy(array, 0, MYARRAY_ORIGINAL, 0, array.length);
}
Now you shouldn't have to worry about the array's being modified from outside.
I'm doing a task for a course in Java programming and I'm not sure how the following thing is working? The method below takes the value from an array and a integer. The integer should be added to the array and then be used outside the method in other methods and so on, but how could this work when the method has no return for the new content of the array? There is a void in the method? Have I missed something? Preciate some help? Is there something about pointers?
public static void makeTransaction(int[] trans, int amount);
Arrays in Java are objects. If you modify the trans array inside the method, the changes will be reflected outside of it1. Eg:
public static void modify(int[] arr)
{
arr[0] = 10;
}
public static void main(...)
{
int x = {1, 2, 3};
System.out.println(x[0]); // prints 1
modify(x);
System.out.println(x[0]); // now it prints 10
}
Note that native arrays can't be dynamically resized in Java. You will have to use something like ArrayList if you need to do that. Alternatively you can change the return type to int[] and return a new array with the new element "appended" to the old array:
public static int[] makeTransaction(int[] trans, int amount)
{
int[] new_trans = Arrays.copyOf(trans, trans.length + 1);
new_trans[trans.length] = amount;
return new_trans;
}
1 It is also worth noting that as objects, array references are passed by value, so the following code has no effect whatsoever outside of the method:
public void no_change(int[] arr)
{
arr = new int[arr.length];
}
You can't add anything to an array. Java arrays have a fixed length. So indeed, what you want to do is impossible. You might make the method return an int[] array, but it would be a whole new array, containing all the elements of the initial one + the amount passed as argument.
If you want to add something to an array-like structure, use an ArrayList<Integer>.
Do you have to keep the method signature as is?
Also, can you be a bit more specific. When you say "the integer should be added to the array", are you referring to the amount argument? If so, then how is that amount added? Do we place it somewhere in the array or is it placed at the end, thus extending the array's length?
As far as pointers go, Java's pointers are implicit, so if you don't have a strong enough knowledge of the language, then it might not be so clear to you. Anyways, I believe that Java methods usually will pass objects by reference, and primitives by value. But, even that isn't entirely true. If you were to assign your object argument to new object, when the method terminates, the variable that you passed to the method is the same after the method executed as it was before. But, if you were to change the argument's member attributes, then when the method terminated those attributes values will be the same as they were inside of the method.
Anyways, back to your question, I believe that will work because an array is an object. So, if you were to do the following:
public static void makeTransaction(int[] trans, int amount)
{
trans[0] = amount;
}
// static int i;
/**
* #param args
*/
public static void main(String[] args)
{
int[] trans = {0,1,3};
makeTransaction(trans, 10);
for(int i = 0; i<trans.length; i++)
{
System.out.println(trans[i]);
}
}
The output of the array will be:
10
1
3
But, watch this. What if I decided to implement makeTransaction like so:
public static void makeTransaction(int[] trans, int amount)
{
trans[0] = amount;
trans = new int[3];
}
What do you think that the output will be? Will it be set to all zero's or will be the same as it was before? The answer is that the output will be the same as it was before. This ties in to what I was saying earlier.
I might've assigned that pointer to a new object in memory, but your copy of the pointer inside of the main method remains the same. It still points to the same place in memory as it did before. When the makeTransaction method terminates, the new int[3] object that I created inside of it is available for garbage collection. The original array remains intact. So, when people say that Java passes objects by reference, it's really more like passing objects' references by value.
Consider the method declaration:
String.format(String, Object ...)
The Object ... argument is just a reference to an array of Objects. Is there a way to use this method with a reference to an actual Object array? If I pass in an Object array to the ... argument - will the resultant argument value be a two-dimensional array - because an Object[] is itself an Object:
Object[] params = ....; // Make the array (for example based on user-input)
String s = String.format("%S has %.2f euros", params);
So the first component of the array (Which is used in the String.format method), will be an array and he will generate:
[class.getName() + "#" + Integer.toHexString(hashCode())]
and then an error because the array size is 1.
The bold sequence is the real question.
This is a second question: Does a ... array/parameter have a name?
From the docs on varargs:
The three periods after the final
parameter's type indicate that the
final argument may be passed as an
array or as a sequence of arguments.
So you can pass multiple arguments or an array.
The following works just fine:
class VarargTest {
public static void main(String[] args) {
Object[] params = {"x", 1.2345f};
String s = String.format("%s is %.2f", params);
System.out.println(s); // Output is: x is 1.23
}
}
You can just pass an array:
public void foo(String... args) {
}
String args[] = new String[10];
foo(args);
The situation you are describing is going to be fairly rare: most of the time, your varargs items will be Strings, or numbers, or Widgets... it will be unusual for them to be Objects (which could be anything) or arrays.
But if the varargs argument is a bunch of Objects or an array type, then your question does arise: you can pass it a single array and then how will the compiler know whether you meant to pass an array (the one you provided), or an series of 1 item which it should PUT into an array for you?
A quick test shows the answer:
public class TestClass {
public static void main(String[] args) {
Object anObject = new Object();
Object[] anArray = new Object[] {anObject, anObject};
System.out.println("object1 = " + anObject);
System.out.println("array1 = " + anArray);
takesArgs();
takesArgs(anObject, anObject);
takesArgs(anArray); // is this the same as array1?
takesArgs(anArray, anArray);
}
public static void takesArgs(Object... stuff) {
System.out.println("The array was " + stuff);
}
}
The result of executing (your exact numbers will vary:
object1 = java.lang.Object#3e25a5
array1 = [Ljava.lang.Object;#19821f
The array was [Ljava.lang.Object;#addbf1
The array was [Ljava.lang.Object;#42e816
The array was [Ljava.lang.Object;#19821f
The array was [Ljava.lang.Object;#9304b1
So the answer is that in ambiguous cases it treats what you passed as the array instead of creating a new array to wrap it. This makes sense as you could always wrap it in an array yourself if you wanted the other interpretation.