Is my way of doing threads in Android correct? - java

I'm writing a live wallpaper, and I'm forking off two separate threads in my main wallpaper service. One updates, and the other draws. I was under the impression that once you call thread.start(), it took care of everything for you, but after some trial and error, it seems that if I want my update and draw threads to keep running, I have to manually keep calling their run() methods? In other words, instead of calling start() on both threads and forgetting, I have to manually set up a delayed handler event that calls thread.run() on both the update and draw threads every 16 milliseconds. Is this the correct way of having a long running thread?
Also, to kill threads, I'm just setting them to be daemons, then nulling them out. Is this method ok? Most examples I see use some sort of join() / interrupt() in a while loop...I don't understand that one...

No
No
For #1, I believe your threads are terminating. Once the run() method is left, the thread is considered terminated. If you want the thread to run "forever", you need to repeat your actions.
For #2, the thread will continue running even if you lose all references to it. I would suggest a signal or condition to the worker thread, followed by a join() in the main thread.

Like Yann said, if you keep having to restart your thread(s), it means you are probably not looping correctly.
Say your wallpaper just has a ball moving around the screen, this would be a sample run() method:
boolean isAnimating;
public void run() {
isAnimating = true;
while(isAnimating) {
moveBall();
isAnimating = isWallpaperVisible(); // or whatever conditions apply to not keep animating
}
}
This way your run method will keep running indefinitely.

Related

Java SystemTray blocks GUI? [duplicate]

I am fairly new to java, and am starting to get into using different threads in order to use wait() or sleep() on one part of my code and have the others still run.
For this project, I am using JFrame with the javax.swing.* and java.awt.* imports. What I am trying to do is have one of the threads (in my code it is the main, starting thread) allow the player to choose a space on the tic tac toe board, and when they click it, it will change icons, and then the AI will wait for 1 second before playing back from the second thread that I created.
Unfortunately, whenever I call ait.sleep(1000) (ait is my thread name) both threads wait for 1 second before finishing their execution. Can anyone tell me why sleeping one thread is stopping my whole execution?
Can anyone tell me why sleeping one thread is stopping my whole
execution
to better explain your Swing GUI is created on its own special thread separate from that which main() and other code will run in, this is done via creating your Swing components in the SwingUtilities.invokeXXX block (even if you have not done this your GUI will be run on a single thread called the initial thread) . Now if you simply call sleep while on Event Dispatch Thread (or for that matter on the same Thread) it will wait for the call to Thread.sleep to finish. Now because all Swing events are processed on EDT we pause its execution by calling sleep(..) thus pausing the UI events from being processed and therefore GUI is frozen (until sleep(..) returns).
You should not use Thread.sleep(..) on Event Dispatch Thread (or any Thread where sleep will cuase unwanted execution blocking), as this will cause the UI to seem frozen.
Here is a nice example which demonstrates exactly, this unwanted behavior caused by invoking Thread.sleep(..) on GUI's EDT.
Rather use:
Swing Timer for example:
int delay=1000;// wait for second
Timer timer = new Timer(delay, new AbstractAction() {
#Override
public void actionPerformed(ActionEvent ae) {
//action that you want performed
}
});
//timer.setRepeats(false);//the timer should only go off once
timer.start();
Swing Worker
or if no Swing components are being created/modified:
TimerTask
Thread, you would then use Thread.sleep(int milis) (but thats last option in any case IMO)
UPDATE
Swing Timer/SwingWorker was only added in Java 1.6, however, TimerTask and Thread have been around for alot longer sine Java 1.3 and JDK 1 repsectively, thus you could even use either of the 2 above methods and wrap calls that create/manipulate Swing components in SwingUtilities/EventQueue#invokeXX block; thats the way things used to be done :P
Thread.sleep is a static method. Invocations of it via the reference of any given Thread is simply a form of convenience.
As a result, any invocation of sleep is really calling sleep on the current Thread, which I suspect is the Event Thread in your case. Sleeping/blocking on the Event Thread will give the appearance of being locked up.
If you want the ait thread to sleep, then code that thread to sleep. Designs where one thread "reaches into" another and pushes it around at a low level are fundamentally broken. You write the code for every thread, so write it to do what you want it to do in the first place so you'll find no need to reach into it from the outside.
Which makes more sense, for the person in the kitchen to know how to cook breakfast or the person in the bedroom to yell down and direct them to perform each step of making breakfast? Sure, you might tell them to make breakfast. But you definitely don't direct each step at a low level.
Thread.sleep is a static method which causes the currently executing thread to sleep for the specified amount of time. Java syntax allows you to call a static method via a variable, but the compiler simply uses the compile-time type of that variable to determine which method to call, i.e.
Thread ait = null;
ait.sleep(1000); // calls Thread.sleep(1000), causing current thread to sleep.
// In particular, does *not* NPE
You also mentioned wait() - while this is an instance method rather than a static it still causes the current thread to do the waiting (ait.wait(1000) would cause the current thread to wait for up to 1 second or until another thread calls ait.notifyAll()).
There is a Thread.suspend() and its counterpart resume() that were introduced in the very early days of Java to allow one thread to control another, but they were deprecated soon after as they are inherently deadlock-prone. The recommended pattern if you want one thread to "control" another is to do it co-operatively, i.e. have some kind of shared flag that thread A sets and thread B reads, and have B send itself to sleep according to the flag:
volatile boolean threadBShouldRun = true;
// Thread B
while(true) {
if(threadBShouldRun) {
// do some stuff
} else {
Thread.sleep(1000);
}
}
// Thread A
if(someCondition) {
threadBShouldRun = false;
}
but it's generally easier and less error-prone to make use of the facilities that exist in the java.util.concurrent package. Doing multi-threading right is much harder than it appears on the surface.

How to notice other threads to kill themselves when one of them finished a specify task?

I created 10 threads to finish a same task, if one of them finish it earlier, I'd like to kill the other threads.
Is there any way to do that?
I don't think there's a clean way to do this in straight up Java. As a simple suggestion, you could:
create a ThreadGroup instance
add your ten threads to the thread group
start all 10 threads
write the code inside each thread's run() method so that, when it completes the work it's responsible for, it calls interrupt() on the ThreadGroup instance. This will result in an interrupt() call on all the threads in the group
write the code inside each thread's block of work (the loop inside run()?) so that it checks its status periodically. When it sees the status is interrupted, it should quit cleanly.

Thread with capability of stopping it in any duration of time

is there any kind of Runnable, Callable or Thread with capability of stopping it in any duration of time?
I wrote something like this
public class ThreadRunner {
private ExecutorService threadPoolExecutor;
ThreadRunner() {
threadPoolExecutor = Executors.newSingleThreadExecutor();
}
public void startThread(String endPoint, ProgressBar progressBar) {
Runnable task = () -> {
// some code which saves images from URL (1230 images) and updates progress bar
};
threadPoolExecutor.execute(task);
}
public void stopThread() {
threadPoolExecutor.shutdownNow();
}
}
Thread runs correctly, images are being saved, progress bar being updated, but when I want to stop thread (or maybe even pause process of saving if possible) by calling ThreadRunner class's method - nothing happens.
Am I doing something wrong - or most likely - what am I doing wrong?
is there any kind of Runnable, Callable or Thread with capability of stopping it in any duration of time?
You can implement such a thing yourself, but there is no generic support available for it, unless you count the long-deprecated Thread.stop() methods. Under no circumstances should you use those methods, but do read their API docs for a discussion of why they are deprecated and what you can do instead. You can find a longer-form version of the discussion in Java's technical notes.
The bottom line is that the computation you want to be able to stop needs to periodically check some shared variable or built-in condition to determine whether to do so. You arrange for that variable to be set when you want the thread to stop, and if you need to block until it does stop then you join() it. Under some circumstances, it can be helpful to interrupt() the thread to get it to check the variable (or being interrupted can itself serve as the termination condition). The user-facing end of this can be wrapped up in a method.
In any case, an ExecutorService cannot give you a handle on this. Requesting such a service to shut down will prevent it from dispatching any more tasks, but there is no safe, general-purpose mechanism by which it could force a premature shutdown of tasks that are already running.
Once started, a thread will run until Runnable.run() exits. Due to several issues you should never use Thread.stop() or Thread.interrupt().
Instead, you will have to implement your own logic for exit/pause. A few suggestions:
For stopping the thread, you can make a boolean variable shouldExit. In your thread, check this variable every now and then, and just do "return" or break the for/while loop when it becomes true. Setting this variable from another thread should now make the downloader exit. If necessary, you should surround access to this variable with synchronized block as to prevent any race conditions.
For pausing the thread, you can use a similar approach. When you set a certain variable to true (e.g. isPaused), make the thread react by going into an Object.sleep(). This way, it won't consume any CPU during sleep. You can then use Object.notify() from another thread to "kick" the sleeping thread out ouf sleep. You will need a synchronized block here, too.

using sleep() for a single thread

I am fairly new to java, and am starting to get into using different threads in order to use wait() or sleep() on one part of my code and have the others still run.
For this project, I am using JFrame with the javax.swing.* and java.awt.* imports. What I am trying to do is have one of the threads (in my code it is the main, starting thread) allow the player to choose a space on the tic tac toe board, and when they click it, it will change icons, and then the AI will wait for 1 second before playing back from the second thread that I created.
Unfortunately, whenever I call ait.sleep(1000) (ait is my thread name) both threads wait for 1 second before finishing their execution. Can anyone tell me why sleeping one thread is stopping my whole execution?
Can anyone tell me why sleeping one thread is stopping my whole
execution
to better explain your Swing GUI is created on its own special thread separate from that which main() and other code will run in, this is done via creating your Swing components in the SwingUtilities.invokeXXX block (even if you have not done this your GUI will be run on a single thread called the initial thread) . Now if you simply call sleep while on Event Dispatch Thread (or for that matter on the same Thread) it will wait for the call to Thread.sleep to finish. Now because all Swing events are processed on EDT we pause its execution by calling sleep(..) thus pausing the UI events from being processed and therefore GUI is frozen (until sleep(..) returns).
You should not use Thread.sleep(..) on Event Dispatch Thread (or any Thread where sleep will cuase unwanted execution blocking), as this will cause the UI to seem frozen.
Here is a nice example which demonstrates exactly, this unwanted behavior caused by invoking Thread.sleep(..) on GUI's EDT.
Rather use:
Swing Timer for example:
int delay=1000;// wait for second
Timer timer = new Timer(delay, new AbstractAction() {
#Override
public void actionPerformed(ActionEvent ae) {
//action that you want performed
}
});
//timer.setRepeats(false);//the timer should only go off once
timer.start();
Swing Worker
or if no Swing components are being created/modified:
TimerTask
Thread, you would then use Thread.sleep(int milis) (but thats last option in any case IMO)
UPDATE
Swing Timer/SwingWorker was only added in Java 1.6, however, TimerTask and Thread have been around for alot longer sine Java 1.3 and JDK 1 repsectively, thus you could even use either of the 2 above methods and wrap calls that create/manipulate Swing components in SwingUtilities/EventQueue#invokeXX block; thats the way things used to be done :P
Thread.sleep is a static method. Invocations of it via the reference of any given Thread is simply a form of convenience.
As a result, any invocation of sleep is really calling sleep on the current Thread, which I suspect is the Event Thread in your case. Sleeping/blocking on the Event Thread will give the appearance of being locked up.
If you want the ait thread to sleep, then code that thread to sleep. Designs where one thread "reaches into" another and pushes it around at a low level are fundamentally broken. You write the code for every thread, so write it to do what you want it to do in the first place so you'll find no need to reach into it from the outside.
Which makes more sense, for the person in the kitchen to know how to cook breakfast or the person in the bedroom to yell down and direct them to perform each step of making breakfast? Sure, you might tell them to make breakfast. But you definitely don't direct each step at a low level.
Thread.sleep is a static method which causes the currently executing thread to sleep for the specified amount of time. Java syntax allows you to call a static method via a variable, but the compiler simply uses the compile-time type of that variable to determine which method to call, i.e.
Thread ait = null;
ait.sleep(1000); // calls Thread.sleep(1000), causing current thread to sleep.
// In particular, does *not* NPE
You also mentioned wait() - while this is an instance method rather than a static it still causes the current thread to do the waiting (ait.wait(1000) would cause the current thread to wait for up to 1 second or until another thread calls ait.notifyAll()).
There is a Thread.suspend() and its counterpart resume() that were introduced in the very early days of Java to allow one thread to control another, but they were deprecated soon after as they are inherently deadlock-prone. The recommended pattern if you want one thread to "control" another is to do it co-operatively, i.e. have some kind of shared flag that thread A sets and thread B reads, and have B send itself to sleep according to the flag:
volatile boolean threadBShouldRun = true;
// Thread B
while(true) {
if(threadBShouldRun) {
// do some stuff
} else {
Thread.sleep(1000);
}
}
// Thread A
if(someCondition) {
threadBShouldRun = false;
}
but it's generally easier and less error-prone to make use of the facilities that exist in the java.util.concurrent package. Doing multi-threading right is much harder than it appears on the surface.

How to start/stop/restart a thread in Java?

I am having a real hard time finding a way to start, stop, and restart a thread in Java.
Specifically, I have a class Task (currently implements Runnable) in a file Task.java. My main application needs to be able to START this task on a thread, STOP (kill) the thread when it needs to, and sometimes KILL & RESTART the thread...
My first attempt was with ExecutorService but I can't seem to find a way for it restart a task. When I use .shutdownnow() any future call to .execute() fails because the ExecutorService is "shutdown"...
So, how could I accomplish this?
Once a thread stops you cannot restart it. However, there is nothing stopping you from creating and starting a new thread.
Option 1: Create a new thread rather than trying to restart.
Option 2: Instead of letting the thread stop, have it wait and then when it receives notification you can allow it to do work again. This way the thread never stops and will never need to be restarted.
Edit based on comment:
To "kill" the thread you can do something like the following.
yourThread.setIsTerminating(true); // tell the thread to stop
yourThread.join(); // wait for the thread to stop
Review java.lang.Thread.
To start or restart (once a thread is stopped, you can't restart that same thread, but it doesn't matter; just create a new Thread instance):
// Create your Runnable instance
Task task = new Task(...);
// Start a thread and run your Runnable
Thread t = new Thread(task);
To stop it, have a method on your Task instance that sets a flag to tell the run method to exit; returning from run exits the thread. If your calling code needs to know the thread really has stopped before it returns, you can use join:
// Tell Task to stop
task.setStopFlag(true);
// Wait for it to do so
t.join();
Regarding restarting: Even though a Thread can't be restarted, you can reuse your Runnable instance with a new thread if it has state and such you want to keep; that comes to the same thing. Just make sure your Runnable is designed to allow multiple calls to run.
It is impossible to terminate a thread unless the code running in that thread checks for and allows termination.
You said: "Sadly I must kill/restart it ... I don't have complete control over the contents of the thread and for my situation it requires a restart"
If the contents of the thread does not allow for termination of its exectuion then you can not terminate that thread.
In your post you said: "My first attempt was with ExecutorService but I can't seem to find a way for it restart a task. When I use .shutdownnow()..."
If you look at the source of "shutdownnow" it just runs through and interrupts the currently running threads. This will not stop their execution unless the code in those threads checks to see if it has been ineterrupted and, if so, stops execution itself. So shutdownnow is probably not doing what you think.
Let me illustrate what I mean when I say that the contents of the thread must allow for that thread to be terminated:
myExecutor.execute(new Runnable() {
public void run() {
while (true) {
System.out.println("running");
}
}
});
myExecutor.shutdownnow();
That thread will continue to run forever, even though shutdownnow was called, because it never checks to see if it has been terminated or not. This thread, however, will shut down:
myExecutor.execute(new Runnable() {
public void run() {
while (!Thread.interrupted()) {
System.out.println("running");
}
}
});
myExecutor.shutdownnow();
Since this thread checks to see whether or not it has been interrupted / shut down / terminated.
So if you want a thread that you can shut down, you need to make sure it checks to see if it has been interrupted. If you want a thread that you can "shut down" and "restart" you can make a runnable that can take new tasks as was mentioned before.
Why can you not shut down a running thread? Well I actually lied, you can call "yourThread.stop()" but why is this a bad idea? The thread could be in a synchronized (or other critical section, but we will limit ourselves to setions guarded by the syncrhonized key word here) section of code when you stop it. synch blocks are supposed to be executed in their entirity and only by one thread before being accessed by some other thread. If you stop a thread in the middle of a synch block, the protection put into place by the synch block is invalidated and your program will get into an unknown state. Developers make put stuff in synch blocks to keep things in synch, if you use threadInstance.stop() you destroy the meaning of synchronize, what the developer of that code was trying to accomplish and how the developer of that code expected his synchronized blocks to behave.
You can't restart a thread so your best option is to save the current state of the object at the time the thread was stopped and when operations need to continue on that object you can recreate that object using the saved and then start the new thread.
These two articles Swing Worker and Concurrency may help you determine the best solution for your problem.
As stated by Taylor L, you can't just "stop" a thread (by calling a simple method) due to the fact that it could leave your system in an unstable state as the external calling thread may not know what is going on inside your thread.
With this said, the best way to "stop" a thread is to have the thread keep an eye on itself and to have it know and understand when it should stop.
If your task is performing some kind of action in a loop there is a way to pause/restart processing, but I think it would have to be outside what the Thread API currently offers. If its a single shot process I am not aware of any way to suspend/restart without running into API that has been deprecated or is no longer allowed.
As for looped processes, the easiest way I could think of is that the code that spawns the Task instantiates a ReentrantLock and passes it to the task, as well as keeping a reference itself. Every time the Task enters its loop it attempts a lock on the ReentrantLock instance and when the loop completes it should unlock. You may want to encapsulate all this try/finally, making sure you let go of the lock at the end of the loop, even if an exception is thrown.
If you want to pause the task simply attempt a lock from the main code (since you kept a reference handy). What this will do is wait for the loop to complete and not let it start another iteration (since the main thread is holding a lock). To restart the thread simply unlock from the main code, this will allow the task to resume its loops.
To permanently stop the thread I would use the normal API or leave a flag in the Task and a setter for the flag (something like stopImmediately). When the loop encountered a true value for this flag it stops processing and completes the run method.
Sometimes if a Thread was started and it loaded a downside dynamic class which is processing with lots of Thread/currentThread sleep while ignoring interrupted Exception catch(es), one interrupt might not be enough to completely exit execution.
In that case, we can supply these loop-based interrupts:
while(th.isAlive()){
log.trace("Still processing Internally; Sending Interrupt;");
th.interrupt();
try {
Thread.currentThread().sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
There's a difference between pausing a thread and stopping/killing it. If stopping for you mean killing the thread, then a restart simply means creating a new thread and launching.
There are methods for killing threads from a different thread (e.g., your spawner), but they are unsafe in general. It might be safer if your thread constantly checks some flag to see if it should continue (I assume there is some loop in your thread), and have the external "controller" change the state of that flag.
You can see a little more in:
http://java.sun.com/j2se/1.4.2/docs/guide/misc/threadPrimitiveDeprecation.html
May I ask why you want to kill the thread and restart it? Why not just have it wait until its services are needed again? Java has synchronization mechanisms exactly for that purpose. The thread will be sleeping until the controller notifies it to continue executing.
You can start a thread like:
Thread thread=new Thread(new Runnable() {
#Override
public void run() {
try {
//Do you task
}catch (Exception ex){
ex.printStackTrace();}
}
});
thread.start();
To stop a Thread:
thread.join();//it will kill you thread
//if you want to know whether your thread is alive or dead you can use
System.out.println("Thread is "+thread.isAlive());
Its advisable to create a new thread rather than restarting it.

Categories