How can I write a contract for an abstract method? - java

I am using contracts in my Java project. (Contract = doing checks at the start and end of methods)
I am wondering if there is a nice way/pattern to write a contract for a generic method. For example:
public abstract class AbstractStringGenerator{
/**
* This method must return a new line as it's last char
* #return string output
*/
public abstract string generateLine(String input);
}
What I want is a nice way to check that the output of generateLine satisfies the contract (in this case, that last char must be a new line char).
I guess I could do this (but I wonder if there is a better way);
public abstract class AbstractStringGenerator{
public string generateLine(String input){
string result = generateLineHook(input);
//do contract checking...
//if new line char is not the last char, then throw contract exception...
return result;
}
/**
* This method must return a new line as it's last char
* #return string output
*/
protected abstract string generateLineHook(String input);
}
Hope this is not too vague. Any help appreciated.

This looks like the place to use the Template Method design pattern. With the template method pattern, the general algorithm can be implemented and finalized in the abstract class, whereas some of the specifics can be implemented in the child classes.
In order to implement the Template method:
You'll need to finalize the algorithm, to control the subclassing behavior. By disallowing subclasses from overriding the template method via the final keyword, one can ensure that the sufficient checks can be implemented in the template to ensure that the invariants in the algorithm are held good.
You'll need to allow subclasses to override the behavior that can vary. The subclass can completely override this behavior, and such methods are usually abstract in the parent class, often serving as places where subclasses can implement hooks.
The Template method can be implemented in your example as
public abstract class AbstractStringGenerator{
// marked as final. Subclasses cannot override this behavior
public final String generateLine(String input){
String result = generateLineHook(input);
//do contract checking...
//if new line char is not the last char, then throw contract exception...
if(!result.endsWith("\n")){
throw new IllegalStateException("Result from hook does not contain new line");
}
return result;
}
/**
* This method must return a new line as it's last char
* #return string output
*/
protected abstract string generateLineHook(String input);
}
public class ConcreteStringGenerator{
/**
* This method overrides the beh
* #return string output
*/
protected String generateLineHook(String input){
return "blah\n";
}
}

It's exactly that. you must create your method and use a final modifier on it so nobody can rewrite the contract. In this method you check your contract and call an internal method (your generateLineHook(String)) there is nothing more to do.

I believe that is a nice wa to do it, just remember to add a "final" to the public method so sub-classes cannot override your checking.

I use code contracts regularly and sometimes there are well defined and self-describing methods that it's very difficult to write a contract for.
I dont know about Java (I assume youre using iContract or something), but in C#/Code Contracts I'd do:
Contract.Ensures(result[result.Length-1] == #"\n");
or something similar....
I'm not sure what you mean by there being a better way to do this.

Related

What does "void" mean as the return type of a method? [duplicate]

This question already has answers here:
Can someone explain a void return type in Java?
(5 answers)
Closed 6 years ago.
I'm confused about "void",
as it pertains to methods.
I don't know what the distinction between two methods is when one has "void" and another doesn't.
For example, if I do:
Public meth (int amount)
{
amount = initial * interest;
return amount;
}
( not sure if it was right, or even valid, to take the name "amount" and name it the same thing as my formal parameter, but what makes sense here is that you're performing a calculation and returning the result)
Then, if I did something like:
Public void Testing (int array[])
{
//code that would modify the internals of an array
}
Would the second one have no "return" because it's more of a general method, that can be applied to any integer array, while the first one is about doing work on specific variables?
Would also appreciate one or two more examples of when I would or wouldn't be using "void" and "return".
One other thing that seems to confuse me is calling methods.
I know sometimes I'll do something like, for example, using the Testing method above,
Testing(ArrayName);
Other times, it will be like:
NameOfWhateverImApplyingMethodTo.MethodName();
And then there are times when things will be done properly by:
Thing1.MethodName(Thing2);
Which circumstances would I switch the syntax for method calls like this?
Java is case sensitive, so the modifier Public is invalid, use public
You can't define a method as public methodName(int a), only a constructor has this signature, a method must be public void methodName(<signature>) for methods that don't return anything or public <return type> methodName(<signature>) for methods that do.
Void basically means that the method will not return anything.
If you did
String name= "tim";
public void getName(){
return name;
}
This would result in an error, because the getName method is returning a string object called name, but the method declaration is saying I am returning nothing - because it is void.
Instead the method should be :
String name = "tim";
public String getName(){
return name;
}
Now when the method getName() is called it will return a string object "name" with "tim" inside of it :)
You might have void for a set method. So for example
String name = "tim";
public void setName(String newName){
this.name = newName;
}
When this method is called you would use setName("Andy"); and it would set the value of the name variable to be "Andy". Nothing is returned in this method, because it is setting something, but there is no need to send anything back, so we use void on the method declaration.
Hope this helps.
The method that has void as return type does not return anything. For example you want to set a field firstName in your class. You will write a setting method like
public void setFirstName(String n) {
this.firstName = n;
}
As you can see you are just setting a class variable and does not require to return anything.
If you dont use void then you have to provide a return type for method. Like if you wish to write a getter for above variable as:
public String getFirstName() {
return this.firstName;
}
Once you provide a return type, you will have to return a value of that type otherwise your code will not compile.
Calling a method can be done based on where you are calling it from and what modifier is used:
If you are calling the method from the same class then you can simply write firstName = getFirstName()
If you are calling the method from another class then you require object of method's class as qualifier like personObject.getFirstName()
If you are calling a static method then you require class name as qualifier like Person.getFirstName();
Return type is what you get out of it. When you call it, what are you hoping to get back? For instance, if the method gets the average of two numbers, then you're expecting a number back, so the return type will be a number type, like "int" (integer).
You can see what it should be using that logic or by looking in the method for the word return - what comes after return is what is returned, and its type should be declared in the method (e.g. if it says "return 4;" it's returning an int, and should be e.g. public int getFour()
You also asked about e.g. testing() vs testing(word)
I remember having the same difficulty. The distinction between the two also relates to the method declaration line. I'll illustrate.
public String testing(){
return "a word";
}
Calling this method by doing "System.out.println(testing());" should print "a word". Calling this method by doing "System.out.println(testing("a word"));" will give you an issue - this is because when you call testing, it looks at the appropriate method: one in the right class, with the right return type and with the right arguments/parameters. If you're calling testing("a word"), that means you're using a String as an argument (because "a word" is a string), and so it tries to use the testing(String aString) method - which doesn't exist.
So you use empty brackets when the method takes no input, and you put stuff in brackets when the method expects stuff. This should be less confusing than it sounds, because it's usually logical - if you want to call a method that returns an average, you need to ask yourself "Average of what?" You'd probably need to supply it with the values you want the average of.
Moving on: (a) testing() versus(b) AClass.testing() versus(c) aclass.testing() -
In (a), there's no class specified. Therefore, if you call it from that class, Java can guess which class: this one, and it'll work. From any other class, it won't know what you're talking about, and might even insult you.
In (b), you're specifying a class in general - therefore it'll know what class to find it in - and it'll work if it's a "static method". *[see bottom]
In (c), you're specifying an instance of AClass you want to run "testing()" on*.
For instance, imagine you've created a class called Business. You make a hundred Business objects by specifying for each a name, number, address.
e.g.
Business b = new Business(name, number, address);
Then in the Business class you have a method "getName()". This method takes no argument - you could see that the brackets are empty - so if, from another class, you call "Business.getName()", how could it know which name you want? You've just made a hundred businesses!
It simply can't. Therefore, for such a method, you'd call "b.getName()" (b being the Business we created above) and it would get the name for this instance of a Business - namely, b.
I'm happy to help, so if you're confused about any particular parts of what I just wrote please let me know and I'll try to elaborate!
edit: A bit on static methods:
Static methods don't belong to an instance of the class. getName(), for example, would get the name of this Business - ie, this instance of the Business class. But let's say that in the Business class you made a method that took the first letter of each word in a String and transformed it to uppercase - like if you wanted to make the business names look more professional when you printed them out.
public static String stringToUpperCase(String aString){
aString = aString.substring(0, 1).toUpperCase() + aString.substring(1);
return aString;
}
And to use that, you change the getName() method from:
public String getName(){
return name;
}
to
public String getName(){
return stringToUpperCase(name);
}
The new method is used here to make the name have an uppercase first letter - but that is the extent of its involvement with the Business class. You notice it doesn't ask for information about the name, address, or number for a particular business. It just takes a string you give it, does something to it, and gives it back. It doesn't matter whether you have no Businesses or a hundred.
To call this method, you'd use:
System.out.println(Business.stringToUpperCase("hello"));
This would print Hello.
If it were not a static method, you'd have to make a new Business first:
Business b = new Business("aName", "aNumber", "anAddress");
System.out.println(b.stringToUpperCase("hello"));
And if the method did need access to more Business-instance information (like a business's name number or address) it wouldn't be able to be an instance variable.
The first example, a method without a return type at all, is a constructor; used when an instance is created with new. However, you can't return a value from a constructor. Something like,
this.amount = initial * interest; // return amount;
Sets the field amount to initial * interest.

Instantiating a class, toString terms

I have two classes :
import android.cla;
public class CW {
public static void main(String [] args){
System.out.println(new cla());
}
}
public class Cl {
#Override
public String toString(){
return "LOL";
}
}
In the first class I'm calling the objects toString() method, which has been overriden and printing it to console. It clearly returns "LOL";
I have two questions :
Is it possible to return data while instantiating like this (new cla()) without overriding the objects toString() method; and
What is the proper term for instantiating classes like this (new cla()), that's without declaration like : Object l = new cla()
Thanks. Please correct me on the proper terms.
1 - No it isn't. A 'constructor' is a special method on the class that always returns an object instance of the class. The whole point of the constructor is to return the object. So no, it can't return anything else.
1a - The reason that System.out.println calls the toString method is because you are asking it to print out that object to the screen, and the toString method is the method chosen by the authors of println (and the Java language in general) to give a string representation of the object.
2 - That way of writing isn't really called anything. It's just an expression that you're passing as an 'actual parameter' to the println method. True, it's an expression that instantiates a new object, but it's no different to println("a string"). You could call it an anonymous object if you really wanted to.
2a - (old answer that doesn't actually answer your question but I'll keep it here) That's just called 'using a less derived reference† to a class'. Beware you can only call methods on the type of the reference, so if you added extra methods to your Cl class you couldn't call them from an Object reference. Look into Liskov substitution principle.
† 'less derived' or 'supertype' or 'superclass' or 'more general class' etc...

Java Classes are extremely confusing to me

I am having some trouble understanding classes in Java.
Such as how do you declare "Inputter" in the helper class like this?
public class Helper
{
public void Helper(String z)
{
if(z.length() == 0)
{
System.out.println("You can't leave it blank!");
System.exit(1);
System.out.println("It's not working... ;(");
}
}
public void Inputter(int a)
{
// blah blah
}
}
Would you call it like this?
Helper x = new Inputter();
Please help, and NO this is NOT a homework question.
Thanks,
Smiling
EDIT: Would this be right:
public class Helper
{
public Helper(String z)
{
if(z.length() == 0)
{
System.out.println("You can't leave it blank!");
System.exit(1);
System.out.println("It's not working... ;(");
}
}
public void Inputter(int a)
{
// blah blah
}
}
and declared with:
Helper x = Helper();
And thanks everyone for giving me a warm welcome to StackOverflow! :D
Your problem is not with classes, it is with constructors and methods, and the difference between them.
Methods can have any name you like, they must declare a return type (possibly void), and they're called like this:
ReturnType r = methodName(param1, param2)
Constructors are used to create instances of classes (objects). They must have the same name as the class, they must not have a return type (not even void), and they're called like this:
MyClass m = new MyClass(param1, param2);
There are several problems in your code:
Helper has the correct name for a constructor, but because it declares a void return type, the compiler will treat it as a method.
Inputter doesn't even have the correct name for a constructor. To use it as a constructor with new, it would have to be part of a class called Inputter
Perhaps you should start out reading the introduction to OO part of the Java tutorial.
Inputter() that you have defined is a method or you can call it a behavior. You cannot create an instance for a behavior.
One more problem is that you cannot have return types on a constructor. Helper is the class name and the constructor is having a return type which is incorrect
Regarding your quesiton, if you want to call Inputter, you should do it something like the following.
Helper helper = new Helper("test");
helper.Inputter(100);
It is a good practice to start methods with smaller case letters.
The only object here is Helper. If you want to make a new helper, then you will instantiate it by saying
Helper X = new Helper("blah blah");
If you want to call Inputter then you just say
X.Inputter(1234);
Which will call the Inputter function for the specific instance X of Helper
You must create an instance of Helper Before you can use Inputter:
Helper x = new Helper("some string");
to use Inputter, try this:
//create a new helper
Helper x = new Helper("some string");
//use the Inputter method of the helper.
x.Inputter(1);
The thing to understand here is that Helper is the class, x is an instance of a class, and Inputter is a instance method (which is different from a static method) in the Helper class.
Inputter in your code is not a class. It is a method.
To make following statement correct:
Helper x = new Inputter();
you would need to create Inputter class that extends Helper class.
Inputter is not a class. It's a method of the Helper class. So you cannot instantiate it.
You can call it like this
String someString = "some string";
Helper x = new Helper(someString);
int someInt = 1;
x.Inputter(someInt);
The new keyword is reserved for instantiating (fancy word for saying "making new") classes. The way your class is made, when you make a new Helper, a function is run. That is the construct function, and is named like the class.
Once you instantiate a class, you gain access to the goodies within it (exception is a static method/attribute, where anyone can access it); all within the class that isn't private or protected.
Now, a short intro on OOP (Object Oriented Programming):
You have classes, which are basically blocks of functionality. Within these classes are two things: Methods and Attributes (many names for that, but that's what I call them.)
A Method is basically a good ol` function: It has an input and an output.
An attribute is really like any other variable.
Now, in Java and many other OO languages, there's a separation between the class declaration and class instances. A class declaration is basically the static coded class; exactly what you put in the code. A class instance is taking the class declaration and putting it into use: You can change and use the methods and attributes inside them.
So, if you want to call Inputter, you should do it like this:
Helper bob = new Helper('Bloop');
bob.Inputter(42);
What happened here? We made a new variable called bob which has a type of Helper. When constructing the new Helper, we also run the constructor. Looking at the constructor function, we pass a value to it (in this case, 'Bloop'), and the function is run normally, without us having to manually call it.
Now we want to use the Helper class' Inputter method. For that, we need to access an instance of the Helper class (in our case bob), by using bob. (notice the dot), and then calling it like any other function: Inputter(parameters). Gluing it together we get bob.Inputter(parameters)
This was a really rather lame explanation of Object orientation that didn't cover that much, but it should get you started. I recommend getting a book about Java or reading online tutorials.
First, start with the basics.
Classes best represent nouns. That means a Class is a model of (typically) a thing. Methods best represent verbs on those nouns. Drifting away from this ideal is sometimes necessary; however, the further you stay away from such an ideal, the harder it will be to understand what is going on. With a nod to the exceptions, since you're a beginner let us not get wrapped up in the exception but follow the rule.
public class Person {
private String name;
private int age;
public Person(String name) {
this.name = name;
this.age = -1;
}
public void setAge(int value) {
if (value < 0) {
throw new IllegalArgumentException("Age must be greater than zero");
}
this.age = value;
}
public int getAge() throws IllegalStateException {
if (age < 0) {
throw new IllegalStateException("Age was not set");
}
return this.age;
}
}
Read through the class above, and use its style for your beginning programs. When you find that its style is hindering you more than helping you, then you might have found a place where other techniques are needed.

abstract method of a set length array in java?

i am trying to create a abstract array method that specify's that this abstract object of an array can only hold 3 items.
Now i have tried doing something like this public abstract BaseAdapter[3] adapters(); but it complains with an error that it cant be done this way.
is their another way or do i need to just do public abstract BaseAdapter[] adapters();?
That will work fine but the sub class can still pass an array larger than 3 items
You could solve it like this:
Create an abstract helper method (which you can override) named createAdapters() with return type BaseAdapter[]
protected abstract BaseAdapter[] createAdapters();
In your super-class you have a final method adapters that does the following:
public final BaseAdapter[] adapters() {
BaseAdapter[] adapters = createAdapters();
if (adapters.length != 3)
throw new Exception("Error: Please return 3 adapters.");
return adapters;
}
Another alternative would be to create a simple class called BaseAdapterTriple (perhaps with a more descriptive name) containing the three BaseAdapters, and use that as return value.
As far as I'm aware there is no way to place restrictions like that on objects in a method signature. Either use exceptions in implementing methods, or use custom classes.
You seem to misunderstand the meaning of the abstract modifier in Java.
abstract applies to classes and methods, not to fields / variables, so what you are trying cannot work.
Please describe what you want to accomplish, then we can help :-).
See e.g. http://download.oracle.com/javase/tutorial/java/IandI/abstract.html for an explanation of abstract.
No, you can't do this neither with arrays nor lists. You can throw an exception if number exceeds 3 and document this behavior.
If you want an adapters() method which can only return 3 BaseAdapter at most and having subclasses to implement the "return" themselves while respecting the 3max contract, you should do the verification in your adapters() method, and invoke an abstract method.
For example :
abstract class YourAbstractClass{
public BaseAdapter[] adapters(){
BaseAdapter[] adapters = internalAdapters();
if(adapters.length > 3){
throw new IllegalStateException();
}
return adapters;
}
protected abstract BaseAdapter[] internalAdapters();
}
aioobe's answer is a good approach to take, but I'd also suggest something a little bit different:
If you are requiring a method to return an array of a certain size, you might want to question why an array is the appropriate return type for this method in the first place, rather than using a simple POJO which can easily encapsulate the idea of "3 BaseAdapters", i.e.:
public class ThreeAdapters {
BaseAdapter getAdapter1() { ...}
BaseAdapter getAdapter2() { ...}
BaseAdapter getAdapter3() { ...}
}
It's a lot clearer to everyone involved if you encapsulate the idea of "return 3 adapters" into it's own class so that this can be used as the return type (of course, you may find a more appropriate name for the class).
In Java, the size of an array is not part of its type. Or to put it another way, all array types with a given base type are the same. Furthermore, you cannot a method signature that places restrictions on the size of an array typed parameter or result.
This means that you are left with the coding the method to test (in your case) the length of the array it is about to return. This is probably not going to help you much, since I assume that you are trying leverage static typing to enforce the "tripleness" of your arrays. From this perspective #matt b's answer is on the money, though you could make do it in a way that still gives you arrays (of length 3):
public class AdapterTriple {
private Adapter[] adapters;
/**
* This constructor may throw an exception
*/
public AdapterTriple(Adapter[] adapters) {
if (adapters.length != 3) {
throw new IllegalArgumentException("array length is wrong");
}
this.adapters = adapters;
}
/**
* This constructor won't throw an exception (apart from Errors)
*/
public AdapterTriple(Adapter adapter1, Adapter adapter2, Adapter adapter3) {
this.adapters = adapters = new Adapters[] {
adapter1, adapter2, adapter3};
}
/**
* #return an array of 3 adapters.
*/
public Adapter[] {
return adapters;
}
}
In summary, you cannot enforce array size constraints statically in Java. You have to do it dynamically, but you can take steps to make runtime errors unlikely.

Hiding a constructor behind a static creator method?

I've recently discovered an interesting way to create a new instance of an object in Google Guava and Project Lombok: Hide a constructor behind a static creator method. This means that instead of doing new HashBiMap(), you do HashBiMap.create().
My question is why? What advantage do you have of hiding the constructor? To me I see absolutely no advantage of doing this, and it seems to break basic object creation principles. Since the beggining you create an object with new Object(), not some Object.createMe() method. This almost seems like creating a method for the sake of creating a method.
What do you gain from doing this?
There are a number of reasons why you might prefer a static factory method instead of a public constructor. You can read Item 1 in Effective Java, Second Edition for a longer discussion.
It allows the type of the object returned by the method to be different than the type of the class that contains the method. In fact, the type returned can depend on the parameters. For example, EnumSet.of(E) will return a different type if the emum type has very few elements vs if the enum type has many elements (Edit: in this particular case, improving performance for the common case where the enum doesn't have many elements)
It allows caching. For instance, Integer.valueOf(x) will, by default, return the same object instance if called multiple times with the same value x, if x is between -128 and 127.
It allows you to have named constructors (which can be useful if your class needs many constructors). See, for example, the methods in java.util.concurrent.Executors.
It allows you to create an API that is conceptually simple but actually very powerful. For instance, the static methods in Collections hides many types. Instead of having a Collections class with many static methods, they could have created many public classes, but that would have been harder for someone new to the language to understand or remember.
For generic types, it can limit how much typing you need to do. For example, instead of typing List<String> strings = new ArrayList<String>() in Guava you can do List<String> strings = Lists.newArrayList() (the newArrayList method is a generic method, and the type of the generic type is inferred).
For HashBiMap, the last reason is the most likely.
This is usually done because the class actually instantiated by the create() method might be different than the type upon which you are invoking the method. i.e. a factory pattern where the create() method returns a specific subclass that is appropriate given the current context. (For example, returning one instance when the currrent environment is Windows, and another when it is Linux).
Unlike constructors, static methods can have method names. Here's a recent class I wrote where this was useful:
/**
* A number range that can be min-constrained, max-constrained,
* both-constrained or unconstrained.
*/
public class Range {
private final long min;
private final long max;
private final boolean hasMin;
private final boolean hasMax;
private Range(long min, long max, boolean hasMin, boolean hasMax) {
// ... (private constructor that just assigns attributes)
}
// Static factory methods
public static Range atLeast (long min) {
return new Range(min, 0, true, false);
}
public static Range atMost (long max) {
return new Range(0, max, false, true);
}
public static Range between (long min, long max) {
return new Range(min, max, true, true);
}
public static Range unconstrained () {
return new Range (0, 0, false, false);
}
}
You couldn't do this using just constructors, as atLeast and atMost would have the exact same signature (they both take one long).
This is called a Factory method pattern. Where the factory lies within the class itself. Wikipedia describes it pretty well but here are a few snippets.
Factory methods are common in toolkits and frameworks where library code needs to create objects of types which may be subclassed by applications using the framework.
Parallel class hierarchies often require objects from one hierarchy to be able to create appropriate objects from another.
Well it would be possible for SomeClass.create() to pull an instance from a cache. new SomeClass() won't do that without some shenanigans.
It would be also be possible for create() to return any number of implementations of SomeClass. Basically, a Factory type of dealio.
Although not applicable to this particular code example, the practice of hiding the constructor behind a static method is Singleton Pattern. This is used when you want to ensure that a single instance of the class is created and used throughout.
There are many reasons to use this factory method pattern, but one major reason Guava uses it is that it lets you avoid using type parameters twice when creating a new instance. Compare:
HashBiMap<Foo, Bar> bimap = new HashBiMap<Foo, Bar>();
HashBiMap<Foo, Bar> bimap = HashBiMap.create();
Guava also makes good use of the fact that factory methods can have useful names, unlike constructors. Consider ImmutableList.of, ImmutableList.copyOf, Lists.newArrayListWithExpectedSize, etc.
It also takes advantage of the fact that factory methods don't necessarily have to create a new object. For instance, ImmutableList.copyOf, when given an argument that is itself an ImmutableList, will just return that argument rather than doing any actual copying.
Finally, ImmutableList's factory methods return (non-public) subclasses of ImmutableList such as EmptyImmutableList, SingletonImmutableList and RegularImmutableList depending on the arguments.
None of these things are possible with constructors.
i got very interesting reason to hide constructor check it and please let me know if there is any other alternative to achieve this
enter code here
Class A
{
String val;
protected A( )
{
}
protected A(String val)
{
this.val=val;
}
protected void setVal( String val)
{
this.val=val;
}
public String getVal()
{
return val;
}
}
class B extends A
{
B()
{
super();
}
public val setVal(String val)
{
super.val=val;
}
}
class C extends A
{
C(String val)
{
super(val);
}
}
Some main reasons
Primarily it gives you the power to instantiate a different (sub) class
Possibility to return null
It enables you to return an already existing object

Categories