Code explanation - java

Given these set of instructons am I right in saying that :
1) Here I declare two list objects called : audiobytes and lines
List<Byte> audioBytes;
List<Line2D.Double> lines;
2) Here I empty the lists created in step 1 , and update the component --> repaint()
public void resetWaveform() {
audioBytes = new ArrayList<Byte>();
lines = new ArrayList<Line2D.Double>();
repaint();
}
3) Here unfortunately I don't understand:
public void createWaveForm() {
// what does it mean ????
if (audioBytes.size() == 0) {
return;
}
}
What puzzles me is that the method is called createWaveForm but actually does nothing..is
that correct?

1) Correct
2) Almost. I would create lists in #1 and then call clear() on each. Simply because dealing with nulls is a nightmare
3) It does nothing only when list of audio bytes has no data. I guess there is more code after the if statement

You did not empty the lists in step 2, you threw them away and created 2 new lists. This is not the same if something is still holding a reference to the old lists. You should use the clear() method instead.
As far as your code in part 3, yes it really does nothing (except needlessly check the size), assuming you haven't cut anything out. If there was something else there, then all that segment of code is saying is "if there is no data, return (don't execute anything more)".

Related

different sort outcome(SortedSet) in debug mode vs normal run

so i wrote a comparator to sort out objects of the type Polynom (polynomials but in my lang basically). when i iterate slowly over it with a debugger i seem to get the result im expecting. yet when i run it, one of them craps out and returns the wrong value in the comparison which should be very straight forward.
the Polynom object is as follows:
public class Polynom<E> implements IPolynom<E> , Comparable<Polynom<E>>{
private SortedMap<Integer, FieldMember<E>> coefficients = new TreeMap<>();
while IPolynom is just an interface to define the methods
E can be either a complex number (which i also wrote and includes its methods and two fields real and image but its irrelevant to the error)
public int compareTo(Polynom<E> o) {
Polynom<E> p1 = new Polynom<>(this);
Polynom<E> p2 = new Polynom<>(o);
int deg,co;
while(!p1.coefficients.isEmpty() && !p2.coefficients.isEmpty())
{
deg = p1.degree() - p2.degree();
if(deg != 0)
return deg;
co = p1.getCoefficient(p1.degree()).compareTo(p2.getCoefficient(p2.degree()));
if(co != 0)
return co;
p1.coefficients.remove(p1.degree());
p2.coefficients.remove(p2.degree());
}
return (p1.degree() - p2.degree());
}
this is the compareTo method that i wrote
and the method degree() simply returns the degree of x in this scenario
the coefficient part is never reached in this example so ill skip over it
the objects being compared are as follows:
p1 = Polynom: (1.00+0.00i)x^5
p2 = Polynom: (-1.00-5.00i)x^7
the comparison should be straight forward and indicate that p2 is greater than p1
however when i run the opposite is returned
when i debug (and specifically iterate over the lines as they happen) the method returns the correct result. if i skip over it even in debug it still returns the wrong result
in my main method im adding a bunch of Polynom type objects to a SortedSet and the ordering turns out to be wrong only on a single object (the one being p1 in this case which should be the "smallest" of them and go first up in the sorted set)
im really at loss here...
please tell me if theres any other details that i need to add that would make the situation clearer as this is a fairly large project
p.s. all of this is done in eclipse (without any extensions)
My mistake was making .toString() change the state of the object so the debugger didn't tell the whole story.
Thanks a lot guys!

Including new elements in for:each

Before I start my question, i'd like to mention that i DID read up some other topics and i tried around a bit but im just really confused atm so i figured i'd just ask.
So what i wanna do is use for each through a Set and within that for each, add elements to that set and also iterate through those.
The solution I found elsewhere was the following:
for(Object obj : new HashSet<Object>(oldSet))
I tried that, however I keep missing some of the last elements i'd like to match so im not really sure if this is the right approach in the first place?
To be specific, this is basically what my code looks like:
for(Position pos : new HashSet<Position>(oldSet){
for(Delta delta : deltas){
if(board.getTokenAt(pos.plus(delta).equals(initial){
hitList.add(pos.plus(delta);
oldSet.add(pos.plus(delta);
}
}
oldSet.remove(pos);
}
Again, I'd just like to know if my approach is wrong or there must be an error elsewhere in my code so i know what to look at.
Thanks beforehand!
You can't really add to a data structure while iterating over it, that is almost guaranteed to have unexpected results.
However, there is a simple enough solution to your issue. Just process each item recursively when you find that it needs to be added, and add it to a separate List. At the end of iteration, add everything in the List to the main Set. This avoids the issue of adding during iteration while still allowing you to to process the newly added items.
It would look something like this:
List<Position> toAdd = new LinkedList<>();
for(Position pos : oldSet){
for(Delta delta : deltas){
addIfGoodAndRecurse(pos, delta, toAdd);
}
}
And then you can use this helper method to add the item if it meets your conditions and also recursively process added items. Note you will need to change the method signature to pass in your board, initial, and hitList if they are local variables. I didn't know their types or whether they were global variables or fields, so I couldn't really add them in the example.
private void addIfGoodAndRecurse(Position pos, Delta delta, List<Position> toAdd) {
Position toCheck = pos.plus(delta);
if(board.getTokenAt(toCheck.equals(initial))) {
hitList.add(toCheck);
toAdd.add(toCheck);
for (Delta recursionDelta : deltas) {
addIfGoodAndRecurse(toCheck, recursionDelta, toAdd);
}
}
}
I don't have your code, so I can't test this. The idea should work fine, but you may need to make slight modifications.
You can iterate through new elements added to a list that you're iterating if you add them to the end of the list and iterate through it using an index and the get() method, not through an Iterator. You can also use the Set as you are doing now, but only to make sure you only add unique items to your collection.
List<Position> list = new ArrayList<>(oldSet);
for (int i = 0; i < list.length; ++i) { // NB list.length could be different each time
Position pos = list.get(i);
for(Delta delta : deltas){
if(board.getTokenAt(pos.plus(delta).equals(initial){
hitList.add(pos.plus(delta));
if (oldSet.add(pos.plus(delta))) // Check if it already exists in the list
list.add(pos.plus(delta));
}
}
oldSet.remove(pos);
}

I can't get to modify my static variable in java

You give a grid (4x4 here). you need to find out the total no of unique paths from (0,0) to (4,4). main() call a function pathify for this. It finds the possible "next steps" and calls it again. When (4,4) is reached noOfPaths++; is supposed to execute. This doesn't happen and I can't find the problem.
import java.util.ArrayList;
public class NoOfPaths {
static int xRows = 4;
static int yColumns = 4;
static int noOfPaths = 0;
/*A robot is located in the upper-left corner of a 4×4 grid.
* The robot can move either up, down, left, or right,
* but cannot go to the same location twice.
* The robot is trying to reach the lower-right corner of the grid.
* Your task is to find out the number of unique ways to reach the destination.
**/
static ArrayList validNeighbours (int x,int y, ArrayList visited) {
ArrayList valid = new ArrayList();
if((x+1 <= xRows) && !visited.contains(((x+1)*10)+y) ) {
valid.add(((x+1)*10)+y);
}
if((x-1 >= 0) && !visited.contains(((x-1)*10)+y) ) {
valid.add(((x-1)*10)+y);
}
if((y+1 <= yColumns) && !visited.contains(x*10+y+1) ) {
valid.add(x*10+y+1);
}
if((y-1 >= 0) && !visited.contains(x*10+y-1) ) {
valid.add(x*10+y-1);
}
return valid;
}
static void pathify(int x,int y, ArrayList alreadyVisited) {
if(x == xRows && y == yColumns) {
noOfPaths++;
} else {
alreadyVisited.add(x*10+y);
ArrayList callAgain = new ArrayList();
callAgain = validNeighbours(x,y,alreadyVisited);
for (int t=0,temp; t<callAgain.size(); t++) {
temp=(int) callAgain.get(t);
pathify(temp/10, temp%10, alreadyVisited);
}
}
}
public static void main(String[] args) {
ArrayList alreadyVisited = new ArrayList();
pathify(0, 0, alreadyVisited);
System.out.println(noOfPaths);
}
}
The error is in how you're handling alreadyVisited. The first time pathify is called, this list will contain only the initial square (0,0), which is fine. Here's the important part of your code:
for (int t=0,temp; t<callAgain.size(); t++) {
temp=(int) callAgain.get(t);
pathify(temp/10, temp%10, alreadyVisited);
}
You've found the neighbors of the initial cell. Your code will pick the first neighbor; then it will find paths starting with that neighbor, and the recursive calls to pathify will add cells to alreadyVisited.
Now, after all the recursive calls come back, you're ready to find cells starting with the second neighbor of the initial cell. But you have a problem: alreadyVisited still has all the cells it's collected from the paths it found starting with the second neighbor. So you won't find all possible paths starting with the second neighbor; you won't find any path that includes any cell in any path you've previously found. This isn't what you want, since you only want to avoid visiting the same cell in each path--you don't want to avoid visiting the same cell in all your previous paths. (I simplified this a little bit. In reality, the problem will start occurring deeper down the recursive stack, and you won't even find all the paths beginning with the first neighbor.)
When implementing a recursive algorithm, I've found that it's generally a bad idea to keep an intermediate data structure that is shared by recursive invocations that will be modified by those invocations. In this case, that's the list alreadyVisited. The problem is that when an invocation deeper down the stack modifies the structure, this affects invocations further up, because they will see the modifications after the deeper invocations return, which is basically data they need changing underneath them. (I'm not talking about a collection that is used to hold a list of results, if the list is basically write-only.) The way to avoid it here is that instead of adding to alreadyVisited, you could create a clone of this list and then add to it. That way, a deeper invocation can be sure that it's not impacting the shallower invocations by changing their data. That is, instead of
alreadyVisited.add(x*10+y);
write
alreadyVisited = [make a copy of alreadyVisited];
alreadyVisited.add(x*10+y);
The add will modify a new list, not the list that other invocations are using. (Personally, I'd declare a new variable such as newAlreadyVisited, since I don't really like modifying parameters, for readability reasons.)
This may seem inefficient. It will definitely use more memory (although the memory should be garbage-collectible pretty quickly). But trying to share a data structure between recursive invocations is very, very difficult to do correctly. It can be done if you're very careful about cleaning up the changes and restoring the structure to what it was when the method began. That might be necessary if the structure is something like a large tree, making it unfeasible to copy for every invocation. But it can take a lot of skill to make things work.
EDIT: I tested it and it appears to work: 12 if xRows=yColumns=2, 8512 if both are 4 (is that correct?). Another approach: instead of copying the list, I tried
alreadyVisited.remove((Object)(x*10+y));
at the end of the method ((Object) is needed so that Java doesn't think you're removing at an index) and that gave me the same results. If you do that, you'll make sure that alreadyVisited is the same when pathify returns as it was when it started. But I want to emphasize that I don't recommend this "cleanup" approach unless you really know what you're doing.

How do I access the first non null term of a List in Java?

So I have a method (of which I can't change the parameters, or else this could have been made easier through HashMaps...more on this later), that passes an item as a parameter. Now I have a list of instances from this other class, of which one of its attributes is of the same type of this item, and I want to find the instances in the list which correspond to this item (of which there should be only one). This is what I did to find this:
List<Instance> instances = ...
public static void checkItems(Item i) {
List<Instance> n = new ArrayList<>();
instances.forEach(p -> n.add(p.i == i ? p : null));
Instance currentInstance = n.get(0);
//Instance currentInstance = instances.stream().filter(p -> p.i == i).collect(Collectors.toList()).get(0);
}
You'll probably notice two things straight up:
I used a conditional operator which adds a null value to the list when the condition isn't passed
My commented code which was another attempt to solve this issue
So in the first case, I put null because it requires you to put something, and a null value is probably easier to work with, which is why the question arises: How do I access the first non-null value in a list (without resorting to iterating over the entire list to find it...)?
You may notice that I just assign the first value of the list with n.get(0) to currentInstance, because I know that only one value will have passed the test. However, due to some other code that I apply to currentInstance, this value cannot be null.
Just a note on the second point: the way I tried to solve it with streams actually works exactly as planned, except that for some reason the list of instances recovered is not a direct copy of the original instances. This resulted in the values of some of the attributed to have been reset to default values, therefore rendering this method useless.
EDIT: I just wanted to mention that the streams method wasn't working because of some silly mistake that I made in another class, there was nothing wrong with the code so I'll be using that bit to solve my problem :D
If you know that only one p passes the test, I don't know what the point of creating a list with a load of null values plus p is.
Your problem seems to stem from wanting to use forEach. In my opinion, you should almost always use a for loop in preference to forEach. With a simple for loop you can just use break when the item is found.
In detail:
Instance p = null;
for (Instance q : instances) {
if (q.i == i) {
p = q;
break;
}
}
if (p == null)
throw new IllegalStateException(); // It wasn't there.
// Do something with p.
You could do it this way:
Instance currentInstance = instances.stream()
.filter(p -> p.i == i)
.findFirst()
.get(); // you can use get if you are sure there's one instance
The predicate p -> p.i == i seems suspicious. Why not using equals() instead?
As described, this would normally be solved with streams in the following way:
Optional<Instance> first =
instances.stream().filter(p -> p.i == i).findFirst();
(of which there should be only one)
Of which there definitely is only one, or of which there might be more than one. (And if there's more than one, then what? Is that an error?) It sounds like it might be that you should have a Set<Instance>, not a List<Instance>. Just an observation.
You can do it like
instances.forEach(p -> {
if (p.i == i) n.add(p);
});

Removing Actors does not delet all Actors

I am currently trying to save special Actors so i can put them on a map again if the old map get loaded. Therefor i want to put them into a HashMap<String, ArrayList<Monster>> monsterAtMap and remove them from there Stages. So i am trying this:
private void saveMonsters() {
if (this.screen.figureStage.getActors().size == 0)
return;
ArrayList<Monster> monsters = new ArrayList<Monster>();
for (Actor a : this.screen.figureStage.getActors()) {
a.remove();
}
Gdx.app.log("Figurstage size", ""+ this.screen.figureStage.getActors().size);
this.monsterAtMap.put(this.currentMap.name, monsters);
}
As start. But i noticed that it does not delete all. It does just delete 10 thats all. I do log the size of it befor and after the deleting. It's current 21 (20Monsters and 1 Character) after delete the size is 11.I also added this this.screen.figureStage.getRoot().removeActor(a); but this does not change anything.
Any Idea to that?
[EDIT] I wrote a workaround so my idea is working but the general idea that should work isnt possible because the .remove() does not always delete the Actor in anyway?! The workaround does look like this:
private void saveMonsters() {
this.chara = this.screen.character;
if (this.screen.figureStage.getActors().size == 0)
return;
ArrayList<Monster> monsters = new ArrayList<Monster>();
for (Actor a : this.screen.figureStage.getActors()) {
if (a.getClass() == Monster.class)
monsters.add((Monster) a);
}
this.screen.figureStage.clear();
this.screen.figureStage.addActor(chara);
this.monsterAtMap.put(this.currentMap.name, monsters);
}
The .clear()does work correct.
Deleting objects from a container while iterating over that container is always fraught with issues and complications, and I think you're running into some of these issues with the Stage's list of actors. The Stage code tries to use SnapshotArray to hide some of these issues, but its not clear to me that it will work with the code you've written.
One way to avoid this would be to loop through getActors() once and copy the actors into the monsters array, then loop through the monsters array and remove the actors from the Stage (or invoke figureStage.getRoot().clearChildren()). This should prevent you from iterating over a list that you're modifying.
Alternatively, look at how Group.clearChildren() is implemented (it uses an explicit integer index in the array of children, and not an iterator over the Array, and avoid some of the issues).

Categories