JMS (ActiveMQ) Performance - java

I have a Java application with a number of components communicating via JMS (ActiveMQ). Currently the application and the JMS Hub are on the same server although we eventually plan to split out the components for scalability. Currently we are having significant issues with performance, all seemingly around JMS, most notably, and the focus of this question is the amount of time it is taking to publish a message to a topic.
We have around 50 dynamically created topics used for communication between the components of the application. One component reads records from a table and processes them one at a time, the processing involves creating a JMS Object message and publishing it to one of the topics. This processing could not keep up with the rate at which records were being written to the source table ~23/sec, so we changed the processing to create the JMS Object message and add it to a queue. A new thread was created which read from this queue and published the message to the appropriate topic. Obviously this does not speed the processing up but it did allow us to see how far behind we were getting by looking at the size of the queue.
At the start of the day no messages are going through the whole system, this quickly ramps up from 1560000 (433/sec) messages through the hub in the first hour to 2100000 (582/sec) in the 3rd hour and then staying at that level. At the start of the first hour the message publishing from the component reading records from the database table keeps up however, by the end of that hour there are 2000 messages in the queue waiting to be sent and by the 3rd hour the queue has 9000 messages in it.
Below are the appropiate sections of the code which send the JMS messages, any advice on what we are doing wrong or how we can improve this performance are much appreciated. Looking at stats on the web JMS should be able to easily handle ~1000-2000 large messages/sec or ~10000 small messages/sec. Our messages are around 500 bytes each so I imagine sit somewhere in the middle of that scale.
Code for getting the publisher:
private JmsSessionPublisher getJmsSessionPublisher(String topicName) throws JMSException {
if (!this.topicPublishers.containsKey(topicName)) {
TopicSession pubSession = (ActiveMQTopicSession) topicConnection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
ActiveMQTopic topic = getTopic(topicName, pubSession);
// Create a JMS publisher and subscriber
TopicPublisher publisher = pubSession.createPublisher(topic);
this.topicPublishers.put(topicName, new JmsSessionPublisher(pubSession, publisher));
}
return this.topicPublishers.get(topicName);
}
Sending the message:
JmsSessionPublisher jmsSessionPublisher = getJmsSessionPublisher(topicName);
ObjectMessage objMessage = jmsSessionPublisher.getSession().createObjectMessage(messageObj);
objMessage.setJMSCorrelationID(correlationID);
objMessage.setJMSTimestamp(System.currentTimeMillis());
jmsSessionPublisher.getPublisher().publish(objMessage, false, 4, 0);
Code which adds messages to the queue:
List<EventQueue> events = eventQueueDao.getNonProcessedEvents();
for (EventQueue eventRow : events) {
IEvent event = eventRow.getEvent();
AbstractEventFactory.EventType eventType = AbstractEventFactory.EventType.valueOf(event.getEventType());
String topic = event.getTopicName() + topicSuffix;
EventMsgPayload eventMsg = AbstractEventFactory.getFactory(eventType).getEventMsgPayload(event);
synchronized (queue) {
queue.add(new QueueElement(eventRow.getEventId(), topic, eventMsg));
queue.notify();
}
}
Code in the thread removing items from the queue:
jmsSessionFactory.publishMessageToTopic(e.getTopic(), e.getEventMsg(), Integer.toString(e.getEventMsg().hashCode()));
publishMessageToTopic executes the 'Sending the message' code above.
Other JMS implementations are an option if the consensus is that ActiveMQ may not be the best option.
Thank you,
James

We do not use ActiveMQ, but we ran into similar issues, we discovered that the issues were with the back-end processing and not with the Java side. There could be multiple issues here:
The program processing the messages from the Queue could be slow (e.g. CICS on mainframe) it might not be able to keep up with the messages that are sent to the queue. One possible solution for this is to increase the processing power (or optimize the back end code which processes the messages)
Check the messages on the queue, sometimes there are are lots of uncommitted poison messages on the queue, we use a separate queue for such messages.
It would nice to know the answers to the questions asked by Karianna.

It's not 100% clear where you are experiencing the slow performance, but it sounds like what you are describing is slowness in publishing the messages. Are you creating a new publisher every time you publish a message? If so, this is terribly inefficient and you should consider creating one publisher and use it over and over to send messages. Furthermore, if you are sending persistent messages, then you are probably using synchronous sends to the broker. You might want to consider using asynchronous sends to speed things up. For more info, see the doc about Async Sends
Also, how is the performance of the consumers? How many consumers are being used? Are they able to keep pace with the rate at which messages are being published?
Additionally, what is the broker configuration that you are using? Has it been tuned at all?
Bruce

Although this is an old question, there is one very very important advice missing:
Investigate the amount of topics and queues that you have.
ActiveMQ keeps subscription topics in separate threads. Particularly, when you have large amounts of different topics, this will drag down any server. Think about using JMS selectors instead.
I ran into a similar situation where I had thousands of market data messages per second. When I naively dumped each message into a market instrument specific channel, the server was able to stand about an hour before it was spitting out error messages to the message producers. I changed the design to have ONE channel "MARKET_DATA" and I then set header properties on all produced messages and set a selector on the consumer side to select just the messages that I want. Note that my selector is in SQL like syntax and runs on the server though ... (yeah, let's skip the CEP marketing hype bashing) ...

Related

How to handle session timeout while processing Kafka messages?

I am processing messages from Kafka in a standard processing loop:
while (true) {
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
for (ConsumerRecord<String, String> record : records) {
processMessage(record);
}
}
What should I do if my Kafka Consumer gets into a timeout while processing the records? I mean the timeout controlled by the property session.timeout.ms
When this happens, my consumer should stop processing the records, because it would lose its partitions and the records that it processes could be already processed by another consumer. If the original consumer writes some processing results into a database, it could overwrite the records produced by the "new" consumer that got the partitions after my original consumer timed out.
I know about the ConsumerRebalanceListener, but from my understanding its method onPartitionsLost would only be called after I call the poll method from the consumer. Therefore this doesn't help me to stop the processing loop of the batch of records that I received from the previous poll.
I would expect that the heartbeat thread could notify me that it was not able to contact the broker and that we have a session timeout in the consumer, but there doesn't seem to be anything like that...
Am I missing something?
Adding this as an answer as it would be too long in a comment.
Kafka has a few ways that can be used to process messages
At most once;
At least once; and
Exactly once.
You are describing that you would like to use kafka as exactly once semantics (which by the way is the least common way of using kafka). Also producers need to play nicely as by default kafka can produce the same message more than once.
It's a lot more common to build services that use the at least once mechanism, in this way you can receive (or process) the same message more than once but you need to have a way to deduplicate them (it's the same idea behind idempotency on http APIs). You'll need to have something in the message that is unique and have register that that id has been processed already. If the payload has nothing you can use to deduplicate them, you can add a header on the message and use that.
This is also useful in the scenario that you have to reset the offset, so the service can go through old messages without breaking.
I would suggest you to google a bit for details on how to implement the above.
Here's a blog post from confluent about developing exactly once semantics Improved Robustness and Usability of Exactly-Once Semantics in Apache Kafka and the Kafka docs explaining the different semantics.
About the point of the ConsumerRebalanceListener, you don't need to do anything if you follow the solution of using idempotency in the consumer. Rebalances also happen when an app crashes, and in that scenario the service might have processed some records, but not committed them yet to Kafka.
A mini tip I give to everyone who is starting with Kafka. Kafka looks simple from the outside but it's a complex technology. Don't use it in production until you know the nitty gritty details of how it works including have done some good amount of negative testing (unless you are ok with losing data).

Cancel ActiveMQ message

I'm not sure if ActiveMQ is a right tool here...
I have a task queue and multiple consumers, so my idea was to use ActiveMQ to post tasks, which are then consumed by consumers.
But I need to be able to cancel the task, if it was not processed yet...
Is there an API for removing Message from Queue in ActiveMQ?
Destination destination = session.createQueue(TOPIC_NAME);
MessageProducer producer = session.createProducer(destination);
ObjectMessage message = session.createObjectMessage(jobData);
producer.send(message);
...
producer.cancel(message); (?)
The use-case is that, for any reason, performing the task is no longer needed, and the task is resource-consuming.
What about setting an expiry time on the message?
http://activemq.apache.org/how-do-i-set-the-message-expiration.html
If you want a message to be deleted if it has not been processed / consumed in a particular time frame, then message expiry seems the answer to me.
ActiveMQ exposes a JMX interface that allows for operations of this kind. The MBean that models a Queue (e.g., org.apache.activemq:type=broker,brokerName=amq,destinationType=Queue,destinationName=my_queue) exposes a method removeMessage (String id). There are also methods that remove messages that match a particular pattern.
So far as I know, this functionality is not exposed outside JMX.
But...
I have a nasty feeling that JMX operations that work on specific messages only work on messages that are paged into memory. By default that would usually be the 400 messages nearest the head of the queue. I know this is true for selector operations, although I'm not sure about JMX.
Some ActiveMQ message stores (e.g., the JDBC store) might also provide a way to get to the underlying message data and manipulate it. On a relational database this is usually safe to do, because messages that are 'in flight' in a JMS operation will be locked at the database level. However, this is a lot of hassle for what ought to be a simple job.
I wonder if JMS is really the right technology for this job? It isn't really intended for random access. Perhaps some sort of distributed data cache would work better (jgroups, Hazelcast,...)?
For those who are looking for a direct answer, there's a JMS API to control this behaviour:
Per JMS API docs:
setTimeToLive(long timeToLive)
Specifies the time to live of messages that are sent using this JMSProducer.
So you can set this value on the producer before sending:
...
producer.setTimeToLive(30000L);
producer.send();
With this particular setting, messages will be retained for 30 seconds before being deleted by the Message Broker

When consumer gets message from channel in rabbitmq,where does pre-fetch messages reside

I have below configuration for rabbitmq
prefetchCount:1
ack-mode:auto.
I have one exchange and one queue is attached to that exchange and one consumer is attached to that queue. As per my understanding below steps will be happening if queue has multiple messages.
Queue write data on a channel.
As ack-mode is auto,as soon as queue writes message on channel,message is removed from queue.
Message comes to consumer,consumer start performing on that data.
As Queue has got acknowledgement for previous message.Queue writes next data on Channel.
Now,my doubt is,Suppose consumer is not finished with previous data yet.What will happen with that next data queue has written in channel?
Also,suppose prefetchCount is 10 and I have just once consumer attached to queue,where these 10 messages will reside?
The scenario you have described is one that is mentioned in the documentation for RabbitMQ, and elaborated in this blog post. Specifically, if you set a sufficiently large prefetch count, and have a relatively small publish rate, your RabbitMQ server turns into a fancy network switch. When acknowledgement mode is set to automatic, prefetch limiting is effectively disabled, as there are never unacknowledged messages. With automatic acknowledgement, the message is acknowledged as soon as it is delivered. This is the same as having an arbitrarily large prefetch count.
With prefetch >1, the messages are stored within a buffer in the client library. The exact data structure will depend upon the client library used, but to my knowledge, all implementations store the messages in RAM. Further, with automatic acknowledgements, you have no way of knowing when a specific consumer actually read and processed a message.
So, there are a few takeaways here:
Prefetch limit is irrelevant with automatic acknowledgements, as there are never any unacknowledged messages, thus
Automatic acknowledgements don't make much sense when using a consumer
Sufficiently-large prefetch when auto-ack is off, or any use of autoack = on will result in the message broker not doing any queuing, and instead doing routing only.
Now, here's a little bit of expert opinion. I find the whole notion of a message broker that "pushes" messages out to be a little backwards, and for this very reason- it's difficult to configure properly, and it is unclear what the benefit is. A queue system is a natural fit for a pull-based system. The processor can ask the broker for the next message when it is done processing the current message. This approach will ensure that load is balanced naturally and the messages don't get lost when processors disconnect or get knocked out.
Therefore, my recommendation is to drop the use of consumers altogether and switch over to using basic.get.

Queueing a message in JMS, for delayed processing

I have a piece of middleware that sits between two JMS queues. From one it reads, processes some data into the database, and writes to the other.
Here is a small diagram to depict the design:
With that in mind, I have some interesting logic that I would like to integrate into the service.
Scenario 1: Say the middleware service receives a message from Queue 1, and hits the database to store portions of that message. If all goes well, it constructs a new message with some data, and writes it to Queue 2.
Scenario 2: Say that the database complains about something, when the service attempts to perform some logic after getting a message from Queue 1.In this case, instead of writing a message to Queue 2, I would re-try to perform the database functionality in incremental timeouts. i.e Try again in 5 sec., then 30 sec, then 1 minute if still down. The catch of course, is to be able to read other messages independently of this re-try. i.e Re-try to process this one request, while listening for other requests.
With that in mind, what is both the correct and most modern way to construct a future proof solution?
After reading some posts on the net, it seems that I have several options.
One, I could spin off a new thread once a new message is received, so that I can both perform the "re-try" functionality and listen to new requests.
Two, I could possibly send the message back to the Queue, with a delay. i.e If the process failed to execute in the db, write the message to the JMS queue by adding some amount of delay to it.
I am more fond of the first solution, however, I wanted to get the opinion of the community if there is a newer/better way to solve for this functionality in java 7. Is there something built into JMS to support this sort of "send message back for reprocessing at a specific time"?
JMS 2.0 specification describes the concept of delayed delivery of messages. See "What's new" section of https://java.net/projects/jms-spec/pages/JMS20FinalReleaseMany JMS providers have implemented the delayed delivery feature.
But I wonder how the delayed delivery will help your scenario. Since the database writes have issues, subsequent messages processing and attempt to write to database might end up in same situation. I guess it might be better to sort out issues with database updates and then pickup messages from queue.

Best Practice for resilience of messages across RabbitMQ queues

I am trying to understand the best use of RabbitMQ to satisfy the following problem.
As context I'm not concerned with performance in this use case (my peak TPS for this flow is 2 TPS) but I am concerned about resilience.
I have RabbitMQ installed in a cluster and ignoring dead letter queues the basic flow is I have a service receive a request, creates a persistent message which it queues, in a transaction, to a durable queue (at this point I'm happy the request is secured to disk). I then have another process listening for a message, which it reads (not using auto ack), does a bunch of stuff, writes a new message to a different exchange queue in a transaction (again now happy this message is secured to disk). Assuming the transaction completes successfully it manually acks the message back to the original consumer.
At this point my only failure scenario is is I have a failure between the commit of the transaction to write to my second queue and the return of the ack. This will lead to a message being potentially processed twice. Is there anything else I can do to plug this gap or do I have to figure out a way of handling duplicate messages.
As a final bit of context the services are written in java so using the java client libs.
Paul Fitz.
First of all, I suggest you to look a this guide here which has a lot of valid information on your topic.
From the RabbitMQ guide:
At the Producer
When using confirms, producers recovering from a channel or connection
failure should retransmit any messages for which an acknowledgement
has not been received from the broker. There is a possibility of
message duplication here, because the broker might have sent a
confirmation that never reached the producer (due to network failures,
etc). Therefore consumer applications will need to perform
deduplication or handle incoming messages in an idempotent manner.
At the Consumer
In the event of network failure (or a node crashing), messages can be
duplicated, and consumers must be prepared to handle them. If
possible, the simplest way to handle this is to ensure that your
consumers handle messages in an idempotent way rather than explicitly
deal with deduplication.
So, the point is that is not possibile in any way at all to guarantee that this "failure" scenario of yours will not happen. You will always have to deal with network failure, disk failure, put something here failure etc.
What you have to do here is to lean on the messaging architecture and implement if possibile "idempotency" of your messages (which means that even if you process the message twice is not going to happen anything wrong, check this).
If you can't than you should provide some kind of "processed message" list (for example you can use a guid inside every message) and check this list every time you receive a message; you can simply discard them in this case.
To be more "theorical", this post from Brave New Geek is very interesting:
Within the context of a distributed system, you cannot have
exactly-once message delivery.
Hope it helps :)

Categories