i need to implement the shift reduce parser in my college ,i need to know how can i implement it using java
is there is any implementations already .... or any sample one
is there any implementations already?
Unless the task is to actually practice writing it yourself, I'd recommend using a parser generator such as JavaCUP or ANTLR. (I used JavaCUP in one of my compiler courses, but perhaps you have a different scope in your course.)
Related
UML classdiagrams are a standard graphical notation to describe classes and their relationships.
Is there a standard textual notation (DSL) to describe the same? Don't say XMI or EMF;-)
I think you could do that with Corba IDL and use Interfaces for classes, but this is somehow too much on the Corba side. You could use Java Interfaces, but this is too Java.
Background of my question is writing generators. I think it is easier to write a generator based on the syntax tree of a DSL than to parse a graphical notation. A graphical notation first has to be translated into a syntax tree (that would be the same you'd get from the corresponding DSL). I think translating a graphical notation into the syntax tree is harder than to translate a DSL (where you can use ANTLR).
You've got the answer already, but I'd like to clarify. There is a standard notation, it's called HUTN, and nobody uses it.
Check this complete list of textual notations to describe UML models. Btw, the reasons to create one of these tools (in particular TextUML) can be find here.
It is no coincidence that UML separates abstract and concrete syntax.
Tying up code generation to a user-facing notation is a bad idea. Tools (code generators) and people (modelers) have totally distinct needs, so no single syntax can serve both audiences well. Not to mention you lose the ability of applying the same code generator to models created using different notations.
TextUML is a concrete syntax tailored to modelers. XMI is a much better notation for tools, and the UML2 object model makes it very easy to handle.
Rafael
http://abstratt.com/blog
No standard notation to my knowledge but a good summary of options here.
hth.
I've been programming in R for around a year now, and am just starting to teach myself Java. One thing I've loved about R is the family of apply() functions (e.g. sapply, mapply, apply etc.).
I was wondering if Java had equivalent functions, or if anyone had written these up in Java - I may be able to give some of these a basic go myself, but I wouldn't be able to do much in terms of the optimisation they seem to have (i.e. sapply(FUN, X) seems much faster than for(i in 1:length(X)) FUN(X[i]) in many cases).
If not, am I thinking about this badly e.g. perhaps you don't tend to need to apply some function, FUN to each element of a vector often since Java is object-oriented, so in typical problems where you'd want to use these, Java's not your best bet, or there are other ways of approaching it?
The functional additions in Java 8 should address your concerns.
Previous to java 8 java is not a functional language.
A functional language is a language where it is possible to pass a function as an argument to another function.
The introduction of Lamba expressions solve this problem.
If you can't use java 8 the only possibility is to create an interface with only one method (apply for example) and manually call the apply method when needed (see for example how swing works to handle events like click).
I'm currently working with Java to write a program that does an EAI between two applications. One application comes with HL7, which I parse with HAPI. So I get a Java object structure. I want to transform this structure to my own structure that I want to use to generate XML files with JAXB after doing some other work.
In my opinion my current solution is not very nice, because the source code gets very complex:
public NaturalPerson convertPID(PID pid) {
NaturalPerson person = new NaturalPerson();
NameNaturalPerson personsname = new NameNaturalPerson();
name.setFamilyName(pid.getPatientName().getFamilyName().getValue());
...
}
Which language is an appropiate Language to do such type mappings? (http://en.wikipedia.org/wiki/List_of_JVM_languages)
I think Java is not the best language for doing that. I don't have much time for learning, so I need a language that is easy to learn and which has a low begin-of-learning-peek. I already have some experience in the functional languages Haskell and F#. First I thought Groovy would be a good language, but then I found other opinions that suggest Scala.
Which language would you suggest for doing such type mappings?
Did you look at Dozer? It is a Java library that recursively copies data from one Java object to another. There are several ways to configure the mapping:
XML
Java API providing a DSL
Java annotations
Data in forms of Maps and Vectors handling are superbly handled on the JVM using Clojure
See all the core functions available and this SO Question on which tutorials are good to learn Clojure.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 9 years ago.
Improve this question
Much of my programming background is in Java, and I'm still doing most of my programming in Java. However, I'm starting to learn Python for some side projects at work, and I'd like to learn it as independent of my Java background as possible - i.e. I don't want to just program Java in Python. What are some things I should look out for?
A quick example - when looking through the Python tutorial, I came across the fact that defaulted mutable parameters of a function (such as a list) are persisted (remembered from call to call). This was counter-intuitive to me as a Java programmer and hard to get my head around. (See here and here if you don't understand the example.)
Someone also provided me with this list, which I found helpful, but short. Anyone have any other examples of how a Java programmer might tend to misuse Python...? Or things a Java programmer would falsely assume or have trouble understanding?
Edit: Ok, a brief overview of the reasons addressed by the article I linked to to prevent duplicates in the answers (as suggested by Bill the Lizard). (Please let me know if I make a mistake in phrasing, I've only just started with Python so I may not understand all the concepts fully. And a disclaimer - these are going to be very brief, so if you don't understand what it's getting at check out the link.)
A static method in Java does not translate to a Python classmethod
A switch statement in Java translates to a hash table in Python
Don't use XML
Getters and setters are evil (hey, I'm just quoting :) )
Code duplication is often a necessary evil in Java (e.g. method overloading), but not in Python
(And if you find this question at all interesting, check out the link anyway. :) It's quite good.)
Don't put everything into classes. Python's built-in list and dictionaries will take you far.
Don't worry about keeping one class per module. Divide modules by purpose, not by class.
Use inheritance for behavior, not interfaces. Don't create an "Animal" class for "Dog" and "Cat" to inherit from, just so you can have a generic "make_sound" method.
Just do this:
class Dog(object):
def make_sound(self):
return "woof!"
class Cat(object):
def make_sound(self):
return "meow!"
class LolCat(object):
def make_sound(self):
return "i can has cheezburger?"
The referenced article has some good advice that can easily be misquoted and misunderstood. And some bad advice.
Leave Java behind. Start fresh. "do not trust your [Java-based] instincts". Saying things are "counter-intuitive" is a bad habit in any programming discipline. When learning a new language, start fresh, and drop your habits. Your intuition must be wrong.
Languages are different. Otherwise, they'd be the same language with different syntax, and there'd be simple translators. Because there are not simple translators, there's no simple mapping. That means that intuition is unhelpful and dangerous.
"A static method in Java does not translate to a Python classmethod." This kind of thing is really limited and unhelpful. Python has a staticmethod decorator. It also has a classmethod decorator, for which Java has no equivalent.
This point, BTW, also included the much more helpful advice on not needlessly wrapping everything in a class. "The idiomatic translation of a Java static method is usually a module-level function".
The Java switch statement in Java can be implemented several ways. First, and foremost, it's usually an if elif elif elif construct. The article is unhelpful in this respect. If you're absolutely sure this is too slow (and can prove it) you can use a Python dictionary as a slightly faster mapping from value to block of code. Blindly translating switch to dictionary (without thinking) is really bad advice.
Don't use XML. Doesn't make sense when taken out of context. In context it means don't rely on XML to add flexibility. Java relies on describing stuff in XML; WSDL files, for example, repeat information that's obvious from inspecting the code. Python relies on introspection instead of restating everything in XML.
But Python has excellent XML processing libraries. Several.
Getters and setters are not required in Python they way they're required in Java. First, you have better introspection in Python, so you don't need getters and setters to help make dynamic bean objects. (For that, you use collections.namedtuple).
However, you have the property decorator which will bundle getters (and setters) into an attribute-like construct. The point is that Python prefers naked attributes; when necessary, we can bundle getters and setters to appear as if there's a simple attribute.
Also, Python has descriptor classes if properties aren't sophisticated enough.
Code duplication is often a necessary evil in Java (e.g. method overloading), but not in Python. Correct. Python uses optional arguments instead of method overloading.
The bullet point went on to talk about closure; that isn't as helpful as the simple advice to use default argument values wisely.
One thing you might be used to in Java that you won't find in Python is strict privacy. This is not so much something to look out for as it is something not to look for (I am embarrassed by how long I searched for a Python equivalent to 'private' when I started out!). Instead, Python has much more transparency and easier introspection than Java. This falls under what is sometimes described as the "we're all consenting adults here" philosophy. There are a few conventions and language mechanisms to help prevent accidental use of "unpublic" methods and so forth, but the whole mindset of information hiding is virtually absent in Python.
The biggest one I can think of is not understanding or not fully utilizing duck typing. In Java you're required to specify very explicit and detailed type information upfront. In Python typing is both dynamic and largely implicit. The philosophy is that you should be thinking about your program at a higher level than nominal types. For example, in Python, you don't use inheritance to model substitutability. Substitutability comes by default as a result of duck typing. Inheritance is only a programmer convenience for reusing implementation.
Similarly, the Pythonic idiom is "beg forgiveness, don't ask permission". Explicit typing is considered evil. Don't check whether a parameter is a certain type upfront. Just try to do whatever you need to do with the parameter. If it doesn't conform to the proper interface, it will throw a very clear exception and you will be able to find the problem very quickly. If someone passes a parameter of a type that was nominally unexpected but has the same interface as what you expected, then you've gained flexibility for free.
The most important thing, from a Java POV, is that it's perfectly ok to not make classes for everything. There are many situations where a procedural approach is simpler and shorter.
The next most important thing is that you will have to get over the notion that the type of an object controls what it may do; rather, the code controls what objects must be able to support at runtime (this is by virtue of duck-typing).
Oh, and use native lists and dicts (not customized descendants) as far as possible.
The way exceptions are treated in Python is different from
how they are treated in Java. While in Java the advice
is to use exceptions only for exceptional conditions this is not
so with Python.
In Python things like Iterator makes use of exception mechanism to signal that there are no more items.But such a design is not considered as good practice in Java.
As Alex Martelli puts in his book Python in a Nutshell
the exception mechanism with other languages (and applicable to Java)
is LBYL (Look Before You Leap) :
is to check in advance, before attempting an operation, for all circumstances that might make the operation invalid.
Where as with Python the approach is EAFP (it's easier to Ask for forgiveness than permission)
A corrollary to "Don't use classes for everything": callbacks.
The Java way for doing callbacks relies on passing objects that implement the callback interface (for example ActionListener with its actionPerformed() method). Nothing of this sort is necessary in Python, you can directly pass methods or even locally defined functions:
def handler():
print("click!")
button.onclick(handler)
Or even lambdas:
button.onclick(lambda: print("click!\n"))
Besides the dynamic nature of Python (and the syntax), what are some of the major features of the Python language that Java doesn't have, and vice versa?
List comprehensions. I often find myself filtering/mapping lists, and being able to say [line.replace("spam","eggs") for line in open("somefile.txt") if line.startswith("nee")] is really nice.
Functions are first class objects. They can be passed as parameters to other functions, defined inside other function, and have lexical scope. This makes it really easy to say things like people.sort(key=lambda p: p.age) and thus sort a bunch of people on their age without having to define a custom comparator class or something equally verbose.
Everything is an object. Java has basic types which aren't objects, which is why many classes in the standard library define 9 different versions of functions (for boolean, byte, char, double, float, int, long, Object, short). Array.sort is a good example. Autoboxing helps, although it makes things awkward when something turns out to be null.
Properties. Python lets you create classes with read-only fields, lazily-generated fields, as well as fields which are checked upon assignment to make sure they're never 0 or null or whatever you want to guard against, etc.'
Default and keyword arguments. In Java if you want a constructor that can take up to 5 optional arguments, you must define 6 different versions of that constructor. And there's no way at all to say Student(name="Eli", age=25)
Functions can only return 1 thing. In Python you have tuple assignment, so you can say spam, eggs = nee() but in Java you'd need to either resort to mutable out parameters or have a custom class with 2 fields and then have two additional lines of code to extract those fields.
Built-in syntax for lists and dictionaries.
Operator Overloading.
Generally better designed libraries. For example, to parse an XML document in Java, you say
Document doc = DocumentBuilderFactory.newInstance().newDocumentBuilder().parse("test.xml");
and in Python you say
doc = parse("test.xml")
Anyway, I could go on and on with further examples, but Python is just overall a much more flexible and expressive language. It's also dynamically typed, which I really like, but which comes with some disadvantages.
Java has much better performance than Python and has way better tool support. Sometimes those things matter a lot and Java is the better language than Python for a task; I continue to use Java for some new projects despite liking Python a lot more. But as a language I think Python is superior for most things I find myself needing to accomplish.
I think this pair of articles by Philip J. Eby does a great job discussing the differences between the two languages (mostly about philosophy/mentality rather than specific language features).
Python is Not Java
Java is Not Python, either
One key difference in Python is significant whitespace. This puts a lot of people off - me too for a long time - but once you get going it seems natural and makes much more sense than ;s everywhere.
From a personal perspective, Python has the following benefits over Java:
No Checked Exceptions
Optional Arguments
Much less boilerplate and less verbose generally
Other than those, this page on the Python Wiki is a good place to look with lots of links to interesting articles.
With Jython you can have both. It's only at Python 2.2, but still very useful if you need an embedded interpreter that has access to the Java runtime.
Apart from what Eli Courtwright said:
I find iterators in Python more concise. You can use for i in something, and it works with pretty much everything. Yeah, Java has gotten better since 1.5, but for example you can iterate through a string in python with this same construct.
Introspection: In python you can get at runtime information about an object or a module about its symbols, methods, or even its docstrings. You can also instantiate them dynamically. Java has some of this, but usually in Java it takes half a page of code to get an instance of a class, whereas in Python it is about 3 lines. And as far as I know the docstrings thing is not available in Java