Does -Xmx stop automatic GC till maximum memory is consumed? - java

My question is simple. I have an application that specifies the "-Xmx 3G" command line option. Does this mean that no garbage collection will take place in the application till all (or say 80%) the 3GB of memory is consumed? Any further reading material would be appreciated as well.

No. A minor gc can occur even before the minimum memory -ms has been reached. The JVm reserves the maximum memory -mx on startup. However you can get full collections before this size is reached.

No. A simple test would demonstrate that!

Related

How to gracefully tell Java about total memory limits?

I have troubles with Java memory consumption.
I'd like to say to Java something like this: "you have 8GB of memory, please use it, and only it. Only if you really can't put all your resources in this memory pool, then fail with OOM".
I know, there are default parameters like -Xmx - they limit only the heap. There are also plenty of other parameters, I know. The problems with these parameters are:
They aren't relevant. I don't want to limit the heap size to 6GB (and trust that native memory won't take more than 2GB). I do want to limit all the memory (heap, native, whatever). And do that effectively, not just saying "-Xmx1GB" - to be safe.
There is too many different parameters related to memory, and I don't know how to configure all of them to achieve the goal.
So, I don't want to go there and care about heap, perm and whatever types of memory. My high-level expectation is: since there is only 8GB, and some static memory is needed - take the static memory from the 8GB, and carefully split the remaining memory between other dynamic memory entities.
Also, ulimit and similar things don't work. I don't want to kill the java process once it consumes more memory than expected. I want Java does its best to not reach the limit firstly, and only if it really, really can't - kill the process.
And I'm OK to define even 100 java parameters, why not. :) But then I need assistance with the full list of needed parameters (for, say, Java 8).
Have you tried -XX:MetaspaceSize?
Is this what you need?
Please, read this article: http://karunsubramanian.com/websphere/one-important-change-in-memory-management-in-java-8/
Keep in mind that this is only valid to Java 8.
AFAIK, there is no java command line parameter or set of parameters that will do that.
Your best bet (IMO) is to set the max heap size and the max metaspace size and hope that other things are going to be pretty static / predictable for your application. (It won't cover the size of the JVM binary and it probably won't cover native libraries, memory mapped files, stacks and so on.)
In a comment you said:
So I'm forced to have a significant amount of memory unused to be safe.
I think you are worrying about the wrong thing here. Assuming that you are not constrained by address space or swap space limitations, memory that is never used doesn't matter.
If a page of your address space is not used, the OS will (in the long term) swap it out, and give the physical RAM page to something else.
Pages in the heap won't be in that situation in a typical Java application. (Address space pages will cycle between in-use and free as the GC moves objects within and between "spaces".)
However, the flip-side is that a GC needs the total heap size to be significantly larger than the sum of the live objects. If too much of the heap is occupied with reachable objects, the interval between garbage collection runs decreases, and your GC ergonomics suffer. In the worst case, a JVM can grind to a halt as the time spent in the GC tends to 100%. Ugly. The GC overhead limit mechanism prevents this, but that just means that your JVM gets an OOME sooner.
So, in the normal heap case, a better way to think about it is that you need to keep a portion of memory "unused" so that the GC can operate efficiently.

Java heap /pool size

When I start JVM it reserves at least {{xms}} memory, right? That means this memory is private for JVM process (it is malloced), yes?
When JVM needs to increase heap at reserves (mallocs) more memory. But how much?
I do not believe it reserves exactly as much as it needs, probably there is certain step (pool?) size.
How this "step size" could be configured?
And all that happens until {{xmx}} is reached and OOM is thrown, right?
When JVM starts GC? Not when it comes to xmx, but when it comes to reserved heap size (top of this pool)?
If so, it is much better to set xms close to xmx to prevent many useless GCs.
I will have one huge GC instead of many little ones, bug every GC freezes my JVM, so it is better to have one, right?
When JVM needs to increase heap at reserves (mallocs) more memory. But how much?
You shouldn't really care. It just works. Many advice using equal Xmx and Xms so that JVM allocates all the memory at startup. This is reasonable, read further.
How this "step size" could be configured?
It can't, it is completely implementation and probably OS dependant.
When JVM starts GC? Not when it comes to xmx, but when it comes to reserved heap size (top of this pool)?
GC is a bit more complicated than you think. Minor GC is executed when young generation is filled up. Major GC is called there is no more space left in old generation.
And all that happens until {{xmx}} is reached and OOM is thrown, right?
No, when Xmx is reached, JVM stabilizes and nothing wrong happens. OutOfMemoryError is thrown when, immediately after GC, JVM is unable to find enough space for new object (this is a major simplification).
If so, it is much better to set xms close to xmx to prevent many useless GCs.
Once again, you must learn how GC works. Using Xmx equal to Xms is a good choice because it avoids unnecessary allocations when application runs (everything happens on startup, no further overhead). GC has nothing to do with that.
instead of many little ones, bug every GC freezes my JVM, so it is better to have one, right?
Nope. Minor GC usualy takes tens of milliseconds and is almost invisible, unless you are working on a real-time system. Major (stop-the-world) GC might take few seconds and is certainly noticeable for end users. In a correctly tuned JVM major GC should occur very rarely.
You are correct about the meaning of the switches.
The way I remember the switches is
xm*s* = Ends with "s" like "*s*tarting memory".
xm*x* = Ends with "x" like "ma*x*imum memory"
It is up to a given JVM to decide how to move from the starting memory to the maximum memory. Assuming the two are not trivially close to each other, the allocation will happen in steps on all JVM's I'm aware of.
I'm not aware of any option to control the size of the steps in any JVM. There is certainly no standard option.
Different JVM's have different GC strategies. Some JVMs allow you to use one of multiple GC strategies, controlled by a command line switch.

Is it good to set the max and min JVM heap size the same?

Currently in our testing environment the max and min JVM heap size are set to the same value, basically as much as the dedicated server machine will allow for our application. Is this the best configuration for performance or would giving the JVM a range be better?
Peter 's answer is correct in that -Xms is allocated at startup and it will grow up to -Xmx (max heap size) but it's a little misleading in how he has worded his answer. (Sorry Peter I know you know this stuff cold).
Setting ms == mx effectively turns off this behavior. While this used to be a good idea in older JVMs, it is no longer the case. Growing and shrinking the heap allows the JVM to adapt to increases in pressure on memory yet reduce pause time by shrinking the heap when memory pressure is reduced. Sometimes this behavior doesn't give you the performance benefits you'd expect and in those cases it's best to set mx == ms.
OOME is thrown when heap is more than 98% of time is spent collecting and the collections cannot recover more than 2% of that. If you are not at max heaps size then the JVM will simply grow so that you're beyond that boundaries. You cannot have an OutOfMemoryError on startup unless your heap hits the max heap size and meets the other conditions that define an OutOfMemoryError.
For the comments that have come in since I posted. I don't know what the JMonitor blog entry is showing but this is from the PSYoung collector.
size_t desired_size = MAX2(MIN2(eden_plus_survivors, gen_size_limit()),
min_gen_size());
I could do more digging about but I'd bet I'd find code that serves the same purpose in the ParNew and PSOldGen and CMS Tenured implementations. In fact it's unlikely that CMS would be able to return memory unless there has been a Concurrent Mode Failure. In the case of a CMF the serial collector will run and that should include a compaction after which top of heap would most likely be clean and therefore eligible to be deallocated.
Main reason to set the -Xms is for if you need a certain heap on start up. (Prevents OutOfMemoryErrors from happening on start up.) As mentioned above, if you need the startup heap to match the max heap is when you would match it. Otherwise you don't really need it. Just asks the application to take up more memory that it may ultimately need. Watching your memory use over time (profiling) while load testing and using your application should give you a good feel for what to need to set them to. But it isn't the worse thing to set them to the same on start up. For a lot of our apps, I actually start out with something like 128, 256, or 512 for min (startup) and one gigabyte for max (this is for non application server applications).
Just found this question on stack overflow which may also be helpful side-effect-for-increasing-maxpermsize-and-max-heap-size. Worth the look.
AFAIK, setting both to the same size does away with the additional step of heap resizing which might be in your favour if you pretty much know how much heap you are going to use. Also, having a large heap size reduces GC invocations to the point that it happens very few times. In my current project (risk analysis of trades), our risk engines have both Xmx and Xms to the same value which pretty large (around 8Gib). This ensures that even after an entire day of invoking the engines, almost no GC takes place.
Also, I found an interesting discussion here.
Definitely yes for a server app. What's the point of having so much memory but not using it?
(No it doesn't save electricity if you don't use a memory cell)
JVM loves memory. For a given app, the more memory JVM has, the less GC it performs. The best part is more objects will die young and less will tenure.
Especially during a server startup, the load is even higher than normal. It's brain dead to give server a small memory to work with at this stage.
From what I see here at http://java-monitor.com/forum/showthread.php?t=427
the JVM under test begins with the Xms setting, but WILL deallocate memory it doesn't need and it will take it upto the Xmx mark when it needs it.
Unless you need a chunk of memory dedicated for a big memory consumer initially, there's not much of a point in putting in a high Xms=Xmx. Looks like deallocation and allocation occur even with Xms=Xmx

How to set the maximum memory usage for JVM?

I want to limit the maximum memory used by the JVM. Note, this is not just the heap, I want to limit the total memory used by this process.
use the arguments -Xms<memory> -Xmx<memory>. Use M or G after the numbers for indicating Megs and Gigs of bytes respectively. -Xms indicates the minimum and -Xmx the maximum.
You shouldn't have to worry about the stack leaking memory (it is highly uncommon). The only time you can have the stack get out of control is with infinite (or really deep) recursion.
This is just the heap. Sorry, didn't read your question fully at first.
You need to run the JVM with the following command line argument.
-Xmx<ammount of memory>
Example:
-Xmx1024m
That will allow a max of 1GB of memory for the JVM.
If you want to limit memory for jvm (not the heap size )
ulimit -v
To get an idea of the difference between jvm and heap memory , take a look at this excellent article
http://blogs.vmware.com/apps/2011/06/taking-a-closer-look-at-sizing-the-java-process.html
The answer above is kind of correct, you can't gracefully control how much native memory a java process allocates. It depends on what your application is doing.
That said, depending on platform, you may be able to do use some mechanism, ulimit for example, to limit the size of a java or any other process.
Just don't expect it to fail gracefully if it hits that limit. Native memory allocation failures are much harder to handle than allocation failures on the java heap. There's a fairly good chance the application will crash but depending on how critical it is to the system to keep the process size down that might still suit you.
The NativeHeap can be increasded by -XX:MaxDirectMemorySize=256M
(default is 128)
I've never used it. Maybe you'll find it useful.

How to ensure JVM starts with value of Xms

When I run a java program with the starting heap size of 3G (set by -Xms3072m VM argument), JVM doesn't start with that size. It start with 400m or so and then keeps on acquiring more memory as required.
This is a serious problem for me. I know JVM is going to need the said amount after some time. And when JVM increases is its memory as per the need, it slows down. During the time when JVM acquires more memory, considerable amount of time is spent in garbage collection. And I suppose memory acquisition is an expensive task.
How do I ensure that JVM actually respects the start heap size parameter?
Update: This application creates lots of objects, most of which die quickly. Some resulting objects are required to stay in memory (which get transferred out of young heap.) During this operation, all these objects need to be in memory. After the operation, I can see that all the objects in young heap are claimed successfully. So there are no memory leaks.
The same operation runs smoothly when the heap size reaches 3G. That clearly indicates the extra time required is spent in acquiring memory.
This Sun JDK 5.
If I am not mistaken, Java tries to get the reservation for the memory from the OS. So if you ask for 3 GB as Xms, Java will ask the OS, if this is available but not start with all the memory right away... it might even reserve it (not allocate it). But these are details.
Normally, the JVM runs up to the Xms size before it starts serious old generation garbage collection. Young generation GC runs all the time. Normally GC is only noticeable when old gen GC is running and the VM is in between Xms and Xmx or, in case you set it to the same value, hit roughly Xmx.
If you need a lot of memory for short lived objects, increase that memory area by setting the young area to... let's say 1 GB -XX:NewSize=1g because it is costly to move the "trash" from the young "buckets" into the old gen. Because in case it has not turned into real trash yet, the JVM checks for garbage, does not find any, copies it between the survivor spaces, and finally moves into the old gen. So try to suppress the check for the garbage in the young gen, when you know that you do not have any and postpone this somehow...
Give it a try!
I believe your problem is not coming from where you think.
It looks like what's costing you the most are the GC cycles, and not the allocation of heap size. If you are indeed creating and deleting lots of objects.
You should be focusing your effort on profiling, to find out exactly what is costing you so much, and work on refactoring that.
My hunch - object creation and deletion, and GC cycles.
In any case, -Xms should be setting minimum heap size (check this with your JVM if it is not Sun). Double-check to see exactly why you think it's not the case.
i have used sun's vm and started with minimum set to 14 gigs and it does start off with that.
maybe u should try setting both the xms and xmx values to the same amt, ie try this-
-Xms3072m -Xmx3072m
Why do you think the heap allocation is not right? Taking any operating system tool that shows only 400m does not mean it isn't allocated.
I don't get really what you are after. Is the 400m and above already a problem or is your program supposed to need that much? If you really have the need to deal with that much memory and it seems you need a lot of objects than you can do several things:
If the memory consumption doesn't match your gut feeling it is the right amount than you probably are leaking memory. That would explain why it "slows down" over time. Maybe you missed to remove objects from one structure so they don't get garbage collected and are slowing lookups and such down.
Your memory settings are maybe the trouble in itself. Garbage collection is not run per se. It is only called if there is some threshold reached. If you give it a big heap setting and your operating system has plenty of memory the garbage collection runs not often.
The characteristics you mentioned would be a scenario where a lot of objects are created and shortly after they would be deleted again. Otherwise the garbage collection wouldn't be a problem (some sort of generational gc). That means you have only "young" objects. Consider using an object pool if you are needing objects only a short period of time. That would eliminate the garbage collection at all.
If you know there are good times in your code for running gc you can consider running it manually to be able to see if it changes anything. This is what you would need
Runtime r = Runtime.getRuntime();
r.gc();
This is just for debugging purposes. The gc is doing a great job most of the time so there shouldn't be the need to invoke the gc on your own.

Categories