Insert variables, arrays into MySQM database using Java - java

I've successfully inserted data into database by just writing in data that I need. Now I'm trying to insert variables and arrays that will hold the data. This was kind of shot in the dark because I had no idea how to do it, I just kind of guessed. I get no syntax errors, so I thought I was doing good but it doesn't compile... I just need to know the exact syntax to do that.
for(int i = 0; i < ReadingFile.altitudeList.size(); i++){
for(int j = 0; j < ReadingFile.temperatureList.size(); j++){
for( int k = 0; k < ReadingFile.velocityList.size(); k++){
for( int x = 0; x < ReadingFile.latList.size(); x++){
for(int y = 0; y < ReadingFile.longList.size();y++){
stat
.execute("INSERT INTO TrailTracker VALUES(id,ReadingFile.date,ReadingFile.distance, ReadingFile.timeElapsed, ReadingFile.startTime,"
+ "ReadingFile.temperatureList[j], ReadingFile.velocityList[k], ReadingFile.altitudeList[i], ReadingFile.latList[x],"
+ "ReadingFile.longList[y])");
}}}}}

You can't insert variables or arrays into a database. You can only insert data, ie the values of your variables or arrays.
A PreparedStatement is the way to go. It would look something like this;
int a = 1;
Date b = new Date();
String c = "hello world";
PreparedStatement stmt = conn.prepareStatement("INSERT INTO MyTable VALUES (?,?,?)");
stmt.setInt(1, a);
stmt.setDate(2, new java.sql.Date(b.getTime());
stmt.setString(3, c);
stmt.execute();
Note that it doesn't look like you have correctly designed your table to match your data. Your ReadingFile seems to have 5 Lists and you need to figure out how the values in these lists relate to each other. Your current logic with 5 nested loops is almost certainly not what you want. It results in a highly denormalised structure.
For example, say you had a ReadingFile object with an id of 1, date of 20/1/2011, distance of 10, time elapsed of 20 and start time of 30. Then each of the lists had two values;
- temperature 21, 23
- velocity 51, 52
- altitude 1000, 2000
- lat 45.1, 47.2
- long 52.3, 58.4
Then your nested loops would insert data into your table like this;
+--+---------+--------+-----------+---------+-----------+--------+--------+----+----+
|id| date|distance|timeElapsed|startTime|temperature|velocity|altitude| lat|long|
+--+---------+--------+-----------+---------+-----------+--------+--------+----+----+
| 1|20.1.2011| 10| 20| 30| 21| 51| 1000|45.1|52.3|
| 1|20.1.2011| 10| 20| 30| 21| 51| 1000|45.1|58.4|
| 1|20.1.2011| 10| 20| 30| 21| 51| 1000|47.2|52.3|
| 1|20.1.2011| 10| 20| 30| 21| 51| 1000|47.2|58.4|
| 1|20.1.2011| 10| 20| 30| 21| 52| 1000|45.1|52.3|
| 1|20.1.2011| 10| 20| 30| 21| 52| 1000|45.1|58.4|
| 1|20.1.2011| 10| 20| 30| 21| 52| 1000|47.2|52.3|
| 1|20.1.2011| 10| 20| 30| 21| 52| 1000|47.2|58.4|
| 1|20.1.2011| 10| 20| 30| 23| 51| 1000|45.1|52.3|
| 1|20.1.2011| 10| 20| 30| 23| 51| 1000|45.1|58.4|
| 1|20.1.2011| 10| 20| 30| 23| 51| 1000|47.2|52.3|
| 1|20.1.2011| 10| 20| 30| 23| 51| 1000|47.2|58.4|
| 1|20.1.2011| 10| 20| 30| 23| 52| 1000|45.1|52.3|
| 1|20.1.2011| 10| 20| 30| 23| 52| 1000|45.1|58.4|
| 1|20.1.2011| 10| 20| 30| 23| 52| 1000|47.2|52.3|
| 1|20.1.2011| 10| 20| 30| 23| 52| 1000|47.2|58.4|
| 1|20.1.2011| 10| 20| 30| 21| 51| 2000|45.1|52.3|
| 1|20.1.2011| 10| 20| 30| 21| 51| 2000|45.1|58.4|
| 1|20.1.2011| 10| 20| 30| 21| 51| 2000|47.2|52.3|
| 1|20.1.2011| 10| 20| 30| 21| 51| 2000|47.2|58.4|
| 1|20.1.2011| 10| 20| 30| 21| 52| 2000|45.1|52.3|
| 1|20.1.2011| 10| 20| 30| 21| 52| 2000|45.1|58.4|
| 1|20.1.2011| 10| 20| 30| 21| 52| 2000|47.2|52.3|
| 1|20.1.2011| 10| 20| 30| 21| 52| 2000|47.2|58.4|
| 1|20.1.2011| 10| 20| 30| 23| 51| 2000|45.1|52.3|
| 1|20.1.2011| 10| 20| 30| 23| 51| 2000|45.1|58.4|
| 1|20.1.2011| 10| 20| 30| 23| 51| 2000|47.2|52.3|
| 1|20.1.2011| 10| 20| 30| 23| 51| 2000|47.2|58.4|
| 1|20.1.2011| 10| 20| 30| 23| 52| 2000|45.1|52.3|
| 1|20.1.2011| 10| 20| 30| 23| 52| 2000|45.1|58.4|
| 1|20.1.2011| 10| 20| 30| 23| 52| 2000|47.2|52.3|
| 1|20.1.2011| 10| 20| 30| 23| 52| 2000|47.2|58.4|
+--+---------+--------+-----------+---------+-----------+--------+--------+----+----+

this would be invalid query.
You need to go for PreparedStatement.

So I figured out the easiest way to do what I needed using a while loop
while(!(sampleSize == temp)){
conn.prepareStatement(insertStr);
prstat.setInt(1, id);
prstat.setInt(7, v.get(temp));
temp++;
prstat.executeUpdate();
}
temp is initially set to zero, and increments while inserting elements from arrayList into database until its equal to the sampleSize (sampleSize = v.size();) so that it knows it reached the end of the list. Thanks for everyones help!

Related

Count of Txns in spark within a group

I have the below dataframe in spark
+---------+--------------+-------+------------+---------+------+------+
| id| txnId|account| date| idl| type|amount|
+---------+--------------+-------+------------+---------+------+------+
| 153| 0000004512 | 30095| 11272020| 30| debit| 1000|
| 153| 0000004512 | 30096| 11272020| 0|credit| 200|
| 145| 0000004513 | 30095| 11272020| 0| debit| 4000|
| 135| 0000004512 | 30096| 11272020| 0|credit| 2000|
| 153| 0000004512 | 30097| 11272020| 0| debit| 1000|
| 145| 0000004514 | 30094| 11272020| 0| debit| 1000|
+---------+--------------+-------+------------+---------+------+------+
I need to group the rows based on id, txnId and type and add another column to add counts
for ex the output should be
+---------+--------------+-------+------------+---------+------+------+
| id| txnId|account| date| idl| type|count |
+---------+--------------+-------+------------+---------+------+------+
| 153| 0000004512 | 30095| 11272020| 30| debit| 2 |
| 153| 0000004512 | 30097| 11272020| 0| debit| 2. |
| 153| 0000004512 | 30096| 11272020| 0|credit| 1. |
| 145| 0000004513 | 30095| 11272020| 0| debit| 2. |
| 145| 0000004514 | 30094| 11272020| 0| debit| 2. |
| 135| 0000004512 | 30096| 11272020| 0|credit| 1. |
+---------+--------------+-------+------------+---------+------+------+
Here is the logic I tried but it is not working
WindowSpec windowSpec = Window.partitionBy("id","txnId","type").orderBy("id");
Column roworder = rank().over(windowSpec).as("rank");
Dataset<Row> df1 = df.select(df.col("*"),roworder);
Dataset<Row> df2 = df1.withColumn("count",sum(agg(df1.col("id"),1))
But this is not working
You don't need the rank function to achieve what you have
WindowSpec windowSpec = Window.partitionBy("id","txnId","type").orderBy("id");
Dataset<Row> df2 = df.withColumn("count",count("*").over(windowSpec))
this gives me the result
+---+----------+-------+--------+---+------+------+-----+
| id| txnId|account| date|idl| type|amount|count|
+---+----------+-------+--------+---+------+------+-----+
|145|0000004513| 30095|11272020| 0| debit| 4000| 1|
|145|0000004514| 30094|11272020| 0| debit| 1000| 1|
|135|0000004512| 30096|11272020| 0|credit| 2000| 1|
|153|0000004512| 30095|11272020| 30| debit| 1000| 2|
|153|0000004512| 30097|11272020| 0| debit| 1000| 2|
|153|0000004512| 30096|11272020| 0|credit| 200| 1|
+---+----------+-------+--------+---+------+------+-----+

spark with column and aggregate function dropping other columns in the dataset

I have the below data frame and I have grouped the below data frame by id, txnId and date
+---------+--------------+-------+------------+---------+------+------+
| id| txnId|account| date| idl| type|amount|
+---------+--------------+-------+------------+---------+------+------+
| 153| 0000004512 | 30095| 11272020| 30| debit| 1000|
| 153| 0000004512 | 30096| 11272020| 0|credit| 200|
| 145| 0000004513 | 30095| 11272020| 0| debit| 4000|
| 135| 0000004512 | 30096| 11272020| 0|credit| 2000|
| 153| 0000004512 | 30097| 11272020| 0| debit| 1000|
| 145| 0000004514 | 30094| 11272020| 0| debit| 1000|
+---------+--------------+-------+------------+---------+------+------+
so after grouping , the output is
+---------+--------------+-------+------------+---------+------+------+
| id| txnId|account| date| idl| type|amount|
+---------+--------------+-------+------------+---------+------+------+
| 153| 0000004512| 30095| 11272020| 30| debit| 1000|
| 153| 0000004512| 30096| 11272020| 0|credit| 200|
| 153| 0000004512| 30097| 11272020| 0| debit| 1000|
| 153| 0000004512| 30097| 11272020| 0|credit| 500|
| 145| 0000004513| 30095| 11272020| 0| debit| 4000|
| 145| 0000004514| 30094| 11272020| 0| debit| 1000|
| 135| 0000004512| 30096| 11272020| 0|credit| 2000|
+---------+--------------+-------+------------+---------+------+------+
I need to add a third and fourth column to the data frame such that it is a total of amounts by the type credit or debit for that group , the output should look like
+---------+--------------+-------+-----------+---------+------+------+-----------+----------+
| id| txnId|account| date| idl| type|amount|totalcredit|totaldebit|
+---------+--------------+-------+-----------+---------+------+------+-----------+----------+
| 153| 0000004512| 30095| 11272020| 30| debit| 1000| 0| 2000|
| 153| 0000004512| 30096| 11272020| 0|credit| 200| 700| 0|
| 153| 0000004512| 30097| 11272020| 0| debit| 1000| 0| 2000|
| 153| 0000004512| 30097| 11272020| 0|credit| 500| 700| 0|
| 145| 0000004513| 30095| 11272020| 0| debit| 4000| 0| 4000|
| 145| 0000004514| 30094| 11272020| 0|credit| 1000| 1000| 0|
| 135| 0000004512| 30096| 11272020| 0|credit| 2000| 2000| 0|
+---------+--------------+-------+-----------+---------+------+------+-----------+----------+
I have written the below code to add new column for
Dataset <Row> df3 = df2.where(df2.col("type").equalTo("credit"))
.groupBy("type")
.agg(sum("amount")).withColumnRenamed("sum(amount)", "totalcredit");
but it is dropping the other columns from the dataset, how do I preserve the other columns in the dataset ?.
You want to use conditional sum aggregation over a Window partitioned by id:
import org.apache.spark.sql.expressions.Window;
import org.apache.spark.sql.expressions.WindowSpec;
import static org.apache.spark.sql.functions.*;
WindowSpec w = Window.partitionBy("id");
Dataset <Row> df3 = df2.withColumn(
"totalcredit",
when(
col("type").equalTo("credit"),
sum(when(col("type").equalTo("credit"), col("amount"))).over(w)
).otherwise(0)
).withColumn(
"totaldebit",
when(
col("type").equalTo("debit"),
sum(when(col("type").equalTo("debit"), col("amount"))).over(w)
).otherwise(0)
);
df3.show();
//+---+-----+-------+--------+---+------+------+-----------+----------+
//| id|txnId|account| date|idl| type|amount|totalcredit|totaldebit|
//+---+-----+-------+--------+---+------+------+-----------+----------+
//|145| 4513| 30095|11272020| 0| debit| 4000| 0| 5000|
//|145| 4514| 30094|11272020| 0| debit| 1000| 0| 5000|
//|135| 4512| 30096|11272020| 0|credit| 2000| 2000| 0|
//|153| 4512| 30095|11272020| 30| debit| 1000| 0| 2000|
//|153| 4512| 30096|11272020| 0|credit| 200| 700| 0|
//|153| 4512| 30097|11272020| 0| debit| 1000| 0| 2000|
//|153| 4512| 30097|11272020| 0|credit| 500| 700| 0|
//+---+-----+-------+--------+---+------+------+-----------+----------+

How to data pre-processing in Spark in this case

I made a follwing dataset with scala.
+--------------------+---+
| text| docu_no|
+--------------------+---+
|서울,NNP 시내,NNG 한,M...| 1|
|최저,NNG 임금,NNG 때문,...| 2|
|왜,MAG 시급,NNG 만,JX...| 3|
|지금,MAG 경제,NNG 가,J...| 4|
|임대료,NNG 폭리,NNG 내리...| 5|
|모든,MM 문제,NNG 를,JK...| 6|
|니,NP 들,XSN 이,JKS ...| 7|
|실제,NNG 자영업,NNG 자,...| 8|
I want to make DTM for analysis.
For example
docu_no|서울|시내|한|최저|임금|지금|폭리 ...
1 1 1 1 0 0 0 0
2 0 0 0 1 1 1 1
For this, I thought pre-processing as follows.
+--------------------+---+
| text|count |docu_no
+--------------------+---+
|서울,NNP | 1| 1
|시내,NNG | 1| 1
|한,M. | 1| 1
|최저,NNG | 1| 2
|임금,NNG| 1| 2
|때문,...| 1| 2
After I make this (rdd or DataSet), if I use group by and pivot, I will get the results that I want to. But it is too difficult for me. If you have ideas, please inform those to me.
val data = List(("A", 1),("B", 2),("C", 3),("E", 4),("F", 5))
val df = sc.parallelize(data).toDF("text","doc_no")
df.show()
+----+------+
|text|doc_no|
+----+------+
| A| 1|
| B| 2|
| C| 3|
| E| 4|
| F| 5|
+----+------+
import org.apache.spark.sql.functions._
df.groupBy($"doc_no").pivot("text").agg(count("doc_no")).show()
+------+---+---+---+---+---+
|doc_no| A| B| C| E| F|
+------+---+---+---+---+---+
| 1| 1| 0| 0| 0| 0|
| 2| 0| 1| 0| 0| 0|
| 3| 0| 0| 1| 0| 0|
| 4| 0| 0| 0| 1| 0|
| 5| 0| 0| 0| 0| 1|
+------+---+---+---+---+---+

Transform Spark Datset - count and merge multiple rows by ID

After some data processing, I end up with this Dataset:
Dataset<Row> counts //ID,COUNT,DAY_OF_WEEK
Now I want to transform this to this format and save as CSV:
ID,COUNT_DoW1, ID,COUNT_DoW2, ID,COUNT_DoW3,..ID,COUNT_DoW7
I can think of one approach of:
JavaPairRDD<Long, Map<Integer, Integer>> r = counts.toJavaRDD().mapToPair(...)
JavaPairRDD<Long, Map<Integer, Integer>> merged = r.reduceByKey(...);
Where its a pair of "ID" and List of size 7.
After I get JavaPairRDD, I can store it in csv. Is there a simpler approach for this transformation without converting it to an RDD?
You can use the struct function to construct a pair from cnt and day and then do a groupby with collect_list.
Something like this (scala but you can easily convert to java):
df.groupBy("ID").agg(collect_list(struct("COUNT","DAY")))
Now you can write a UDF which extracts the relevant column. So you simply do a withColumn in a loop to simply copy the ID (df.withColumn("id2",col("id")))
then you create a UDF which extracts the count element from position i and run it on all columns and lastly the same on day.
If you keep the order you want and drop irrelevant columns you would get what you asked for.
You can also work with the pivot command (again in scala but you should be able to easily convert to java):
df.show()
>>+---+---+---+
>>| id|cnt|day|
>>+---+---+---+
>>|333| 31| 1|
>>|333| 32| 2|
>>|333|133| 3|
>>|333| 34| 4|
>>|333| 35| 5|
>>|333| 36| 6|
>>|333| 37| 7|
>>|222| 41| 4|
>>|111| 11| 1|
>>|111| 22| 2|
>>|111| 33| 3|
>>|111| 44| 4|
>>|111| 55| 5|
>>|111| 66| 6|
>>|111| 77| 7|
>>|222| 21| 1|
>>+---+---+---+
val df2 = df.withColumn("all",struct('id, 'cnt' 'day))
val res = .groupBy("id").pivot("day").agg(first('all).as("bla")).select("1.*","2.*","3.*", "4.*", "5.*", "6.*", "7.*")
res.show()
>>+---+---+---+----+----+----+----+----+----+---+---+---+----+----+----+----+----+----+----+----+----+
>>| id|cnt|day| id| cnt| day| id| cnt| day| id|cnt|day| id| cnt| day| id| cnt| day| id| cnt| day|
>>+---+---+---+----+----+----+----+----+----+---+---+---+----+----+----+----+----+----+----+----+----+
>>|333| 31| 1| 333| 32| 2| 333| 133| 3|333| 34| 4| 333| 35| 5| 333| 36| 6| 333| 37| 7|
>>|222| 21| 1|null|null|null|null|null|null|222| 41| 4|null|null|null|null|null|null|null|null|null|
>>|111| 11| 1| 111| 22| 2| 111| 33| 3|111| 44| 4| 111| 55| 5| 111| 66| 6| 111| 77| 7|
>>+---+---+---+----+----+----+----+----+----+---+---+---+----+----+----+----+----+----+----+----+----+

Upload attachement Orbeon Fatal error: Content is not allowed in prolog

When i upload attachment give this error:
+----------------------------------------------------------------------------------------------------------------------+ |An Error has Occurred
|
|----------------------------------------------------------------------------------------------------------------------| |Fatal error: Content is not allowed in prolog.
|
|----------------------------------------------------------------------------------------------------------------------| |Application Call Stack
|
|----------------------------------------------------------------------------------------------------------------------| |oxf:/ops/xforms/xforms-server.xpl
|reading processor output | 37|
|······················································································································|
|element=<p:output name="data" id="xforms-request"/>
| |name =data
| |id =xforms-request
|
|----------------------------------------------------------------------------------------------------------------------| |file:/opt/portal/tomcat/temp/upload_1a87ef6c_152e534ba6b__7fff_00000965.tmp
| | 1|
|----------------------------------------------------------------------------------------------------------------------| |Exception: org.orbeon.oxf.common.ValidationException
|
|----------------------------------------------------------------------------------------------------------------------| |org.orbeon.oxf.xml.XMLParsing$ErrorHandler |fatalError
|XMLParsing.java | 215|
|orbeon.apache.xerces.util.ErrorHandlerWrapper |fatalError
| | |
|orbeon.apache.xerces.impl.XMLErrorReporter |reportError
| | |
|orbeon.apache.xerces.impl.XMLErrorReporter |reportError
| | |
|orbeon.apache.xerces.impl.XMLErrorReporter |reportError
| | |
|orbeon.apache.xerces.impl.XMLScanner |reportFatalError
| | |
|xerces.impl.XMLDocumentScannerImpl$PrologDispatcher|dispatch
| | |
|n.apache.xerces.impl.XMLDocumentFragmentScannerImpl|scanDocument
| | |
|orbeon.apache.xerces.parsers.XML11Configuration |parse
| | |
|orbeon.apache.xerces.parsers.XML11Configuration |parse
| | |
|orbeon.apache.xerces.parsers.XMLParser |parse
| | |
|orbeon.apache.xerces.parsers.AbstractSAXParser |parse
| | |
|processor.generator.URLGenerator$URLResourceHandler|readXML
|URLGenerator.java |1012|
|org.orbeon.oxf.processor.generator.URLGenerator$1 |readImpl
|URLGenerator.java | 538|
|essor.impl.ProcessorOutputImpl$TopLevelOutputFilter|read
|ProcessorOutputImpl.java | 257|
|eteRuntimeOutputFilter$ForwarderRuntimeOutputOutput|read
|ProcessorOutputImpl.java | 218|
|org.orbeon.oxf.processor.ProcessorImpl |readInputAsSAX
|ProcessorImpl.java | 262|
|n.oxf.processor.validation.MSVValidationProcessor$3|readImpl
|MSVValidationProcessor.java | 221|
|essor.impl.ProcessorOutputImpl$TopLevelOutputFilter|read
|ProcessorOutputImpl.java | 257|
|org.orbeon.oxf.processor.impl.ProcessorOutputImpl |read
|ProcessorOutputImpl.java | 394|
|mpl.ProcessorOutputImpl$ConcreteRuntimeOutputFilter|read
|ProcessorOutputImpl.java | 241|
|org.orbeon.oxf.processor.impl.ProcessorOutputImpl |read
|ProcessorOutputImpl.java | 394|
|org.orbeon.oxf.processor.ProcessorImpl |readInputAsSAX
|ProcessorImpl.java | 262|
|org.orbeon.oxf.processor.ProcessorImpl |readInputAsDOM4J
|ProcessorImpl.java | 279|
|org.orbeon.oxf.processor.ProcessorImpl |readInputAsDOM4J
|ProcessorImpl.java | 294|
|org.orbeon.oxf.xforms.processor.XFormsServer |doIt
|XFormsServer.java | 123|
|org.orbeon.oxf.xforms.processor.XFormsServer |access$000
|XFormsServer.java | 64|
|org.orbeon.oxf.xforms.processor.XFormsServer$1 |readImpl
|XFormsServer.java | 91|
|essor.impl.ProcessorOutputImpl$TopLevelOutputFilter|read
|ProcessorOutputImpl.java | 257|
|eteRuntimeOutputFilter$ForwarderRuntimeOutputOutput|read
|ProcessorOutputImpl.java | 218|
|org.orbeon.oxf.processor.ProcessorImpl |readInputAsSAX
|ProcessorImpl.java | 262|
|n.oxf.processor.validation.MSVValidationProcessor$3|readImpl
|MSVValidationProcessor.java | 221|
|essor.impl.ProcessorOutputImpl$TopLevelOutputFilter|read
|ProcessorOutputImpl.java | 257|
|org.orbeon.oxf.processor.impl.ProcessorOutputImpl |read
|ProcessorOutputImpl.java | 394|
|mpl.ProcessorOutputImpl$ConcreteRuntimeOutputFilter|read
|ProcessorOutputImpl.java | 241|
|org.orbeon.oxf.processor.impl.ProcessorOutputImpl |read
|ProcessorOutputImpl.java | 394|
|org.orbeon.oxf.processor.ProcessorImpl |readInputAsSAX
|ProcessorImpl.java | 262|
|rg.orbeon.oxf.processor.converter.TextConverterBase|readInput
|TextConverterBase.java | 113|
|rg.orbeon.oxf.processor.converter.TextConverterBase|access$000
|TextConverterBase.java | 39|
|.orbeon.oxf.processor.converter.TextConverterBase$1|readImpl
|TextConverterBase.java | 91|
|---8<--------8<--------8<--------8<--------8<--------8<--------8<--------8<--------8<--------8<--------8<--------8<---| |nServlet$$anonfun$service$1$$anonfun$apply$mcV$sp$1|apply
|OrbeonServlet.scala | 72| |org.orbeon.oxf.util.ScalaUtils$
|withRootException |ScalaUtils.scala | 83|
|orbeon.oxf.servlet.OrbeonServlet$$anonfun$service$1|apply$mcV$sp
|OrbeonServlet.scala | 72|
|orbeon.oxf.servlet.OrbeonServlet$$anonfun$service$1|apply
|OrbeonServlet.scala | 72|
|orbeon.oxf.servlet.OrbeonServlet$$anonfun$service$1|apply
|OrbeonServlet.scala | 72|
|org.orbeon.oxf.util.DynamicVariable |withValue
|DynamicVariable.scala | 42|
|org.orbeon.oxf.servlet.OrbeonServlet |service
|OrbeonServlet.scala | 71| |javax.servlet.http.HttpServlet
|service |HttpServlet.java | 727|
|org.apache.catalina.core.ApplicationFilterChain |internalDoFilter
|ApplicationFilterChain.java | 303|
|org.apache.catalina.core.ApplicationFilterChain |doFilter
|ApplicationFilterChain.java | 208|
|org.apache.tomcat.websocket.server.WsFilter |doFilter
|WsFilter.java | 52|
|org.apache.catalina.core.ApplicationFilterChain |internalDoFilter
|ApplicationFilterChain.java | 241|
|org.apache.catalina.core.ApplicationFilterChain |doFilter
|ApplicationFilterChain.java | 208|
|org.orbeon.oxf.servlet.FormRunnerAuthFilter |doFilter
|FormRunnerAuthFilter.scala | 26|
|org.apache.catalina.core.ApplicationFilterChain |internalDoFilter
|ApplicationFilterChain.java | 241|
|org.apache.catalina.core.ApplicationFilterChain |doFilter
|ApplicationFilterChain.java | 208|
|.LimiterFilter$$anonfun$doFilter$1$$anonfun$apply$2|apply$mcV$sp
|LimiterFilter.scala | 92|
|.LimiterFilter$$anonfun$doFilter$1$$anonfun$apply$2|apply
|LimiterFilter.scala | 92|
|.LimiterFilter$$anonfun$doFilter$1$$anonfun$apply$2|apply
|LimiterFilter.scala | 92|
|org.orbeon.oxf.logging.LifecycleLogger$ |withEvent
|LifecycleLogger.scala | 124|
|rbeon.oxf.servlet.LimiterFilter$$anonfun$doFilter$1|apply
|LimiterFilter.scala | 91|
|rbeon.oxf.servlet.LimiterFilter$$anonfun$doFilter$1|apply
|LimiterFilter.scala | 72| |scala.Option
|foreach |Option.scala | 257|
|org.orbeon.oxf.servlet.LimiterFilter |doFilter
|LimiterFilter.scala | 72|
|org.apache.catalina.core.ApplicationFilterChain |internalDoFilter
|ApplicationFilterChain.java | 241|
|org.apache.catalina.core.ApplicationFilterChain |doFilter
|ApplicationFilterChain.java | 208|
|org.apache.catalina.core.StandardWrapperValve |invoke
|StandardWrapperValve.java | 220|
|org.apache.catalina.core.StandardContextValve |invoke
|StandardContextValve.java | 122|
|org.apache.catalina.authenticator.AuthenticatorBase|invoke
|AuthenticatorBase.java | 501|
|org.apache.catalina.core.StandardHostValve |invoke
|StandardHostValve.java | 170|
|org.apache.catalina.valves.ErrorReportValve |invoke
|ErrorReportValve.java | 98|
|org.apache.catalina.valves.AccessLogValve |invoke
|AccessLogValve.java | 950|
|org.apache.catalina.core.StandardEngineValve |invoke
|StandardEngineValve.java | 116|
|org.apache.catalina.connector.CoyoteAdapter |service
|CoyoteAdapter.java | 408|
|org.apache.coyote.http11.AbstractHttp11Processor |process
|AbstractHttp11Processor.java |1040|
|e.coyote.AbstractProtocol$AbstractConnectionHandler|process
|AbstractProtocol.java | 607|
|.apache.tomcat.util.net.JIoEndpoint$SocketProcessor|run
|JIoEndpoint.java | 313|
|java.util.concurrent.ThreadPoolExecutor |runWorker
|ThreadPoolExecutor.java |1145|
|java.util.concurrent.ThreadPoolExecutor$Worker |run
|ThreadPoolExecutor.java | 615| |java.lang.Thread
|run |Thread.java | 744|
+-------------------------------------------------

Categories