Related
This question already has answers here:
Non-class functions in Java
(4 answers)
Closed 2 years ago.
When declaring methods in Java, do they need to be a part of a class? I am familiar with the idea of a Utility Class:
"Utility Class, also known as Helper class, is a class, which contains just static methods, it is stateless and cannot be instantiated. It contains a bunch of related methods, so they can be reused across the application."
However, can one just create a method separate from any class altogether? (I'd assume scope becomes public by default and declaring anything else for scope might result in an error).
If this is not possible, perhaps that would explain the need for Utility Classes, but I wasn't sure as I hadn't thought about this before - I assumed naturally you could make functions separate from any specific class, but I had been looking through various code samples and couldn't find a specific example where this was occurring.
Part of the reason I am asking this is I was reviewing this article (and mentioned in point 2):
https://www.geeksforgeeks.org/lambda-expressions-java-8/
In it, it states: Lambda expressions are added in Java 8 and provide below functionalities.
1) Enable to treat functionality as a method argument, or code as data.
2) A function that can be created without belonging to any class.
3) A lambda expression can be passed around as if it was an object and executed on demand.
Java is a sort of purely class-based programming language. So, Yes, it and everything needs to be a part of a class.
You are right, you can make a Utility class making methods public static in this way methods can be called without instantiating the class.
Answer to question in the comment:
Why would someone write Object.method() instead of just method()?
Object class is a standard class in java.lang package. You should not create your class named Object otherwise you will need to specify java.lang.Object everywhere you use java.lang.Object.
Now you probably meant
Why would someone write MyUtilClass.method() instead of just method()?
Suppose you have a class MyUtilClass as follows
public class MyUtilClass {
public static int utilMethodA() {
return 1;
}
public static boolean utilMethodB() {
int value = utilMethodA();
if(value == 1)
return true;
else
return false;
}
}
And suppose you have another class MyClass as
public class MyClass {
public void classMethod() {
int value = MyUtilClass.utilMethodA();
}
}
Here if you see in MyUtilClass, utilMethodB() uses utilMethodA() without writing MyUtilClass.utilMethodA() (however, we could write it that way also). Here we did not need to write it as MyUtilClass.utilMethodA() because compiler can find the utilMethodA() without fully specifying it's class because it is present inside it's own class.
Now, In Myclass's myMethod(), we must specify MyUtilClass.utilMethodA() (without it, it won't work), because the compiler has no way of figuring out that you meant to call utilMethodA() of MyUtilClass. There could be hundreds of classes with a method named utilMethodA(), the compiler has no way of finding out which one of the hundred methods you want to call.
Note:-
Also, you can do static import of MyUtilClass.myMethod() like
import static my.package.name.MyUtilClass.myMethodA()
and then use utilMethodA() inside MyClass without prefixing MyUtilClass (but you already informed compile by static import that you will be using utilMethodA() of MyUtilClass right?)
Looks cool to you? No!
This is rather a bad way because
It makes code looks unobvious. In a large class, it may seem that
method utilMethodA() is a local method defined somewhere in
MyClass.
Also, it can generate ambiguity to the compiler if more than one static import of utilMethodA() is done. As compiler has no way of figuring out which of the two you intend to use.
(Edit) Regarding Lambda Expression
Lambda expression is pretty cool stuff added in Java 8. They are basically a kind of function. They provide you the power to define a function right where they need to be used. For example in this link that you provided, see the example shown below syntax of lambda, there the statement
ArrayList<Integer> arrL = new ArrayList<Integer>();
arrL.add(1);
arrL.add(2);
arrL.add(3);
arrL.add(4);
arrL.forEach(n -> { if (n%2 == 0) System.out.println(n); });
Basically, what we are doing here is, we are defining a function, if n is multiple of 2, we print n. We are doing it forEach element of arrL. Did you see, we defined the function to be executed on each element right inside a function call forEach(). That's the beauty of lambda expression.
Now, coming to your question,
So the primary benefit of lambda (besides syntax) is to make it easier to implement functional interfaces (compared to what alternative)?
Yes, sort of. Easy in terms of not creating a separate class implementing the interface and then implementing the abstract method and then calling that implemented method.
This becomes lots of work, especially if you need to call that method only once for example,
Consider the Functional Interface FuncInterface defined as in the link in your question:
interface FuncInterface {
// An abstract function
void abstractFun(int x);
// A non-abstract (or default) function
default void normalFun() {
System.out.println("Hello");
}
}
Now, you want two kind of implementation to your functional interface:
One that provides twice of the passed int x.
Another one that provides square of passed int x.
So, you make two implementations of it:
First FuncInterfaceTwiceImpl
public class FuncInferFaceTwiceImpl implements FuncInterface {
#Override
public void abstractFun(int x) {
System.out.println(2 * x);
}
}
Second, FuncInterfaceSquareImpl as
public class FuncInterfaceSquareImpl implements FuncInterface {
#Override
public void abstractFun(int x) {
System.out.println(x * x);
}
}
Now, you call them as
public class MyClass {
public static void main(String[] args) {
FuncInterface interfaceTwiceObject = new FuncInferFaceTwiceImpl();
interfaceTwiceObject.abstractFun(5);
FuncInterface interfaceSquareObject = new FuncInterfaceSquareImpl();
interfaceSquareObject.abstractFun(5);
}
}
It prints
10
25
Now, what you had to do?
You had to create two separate Classes (in separate new files or
could have made private classes in the same file that of MyClass),
each implementing the abstract method.
Then you instantiated objects of each class and called them
respectively in the main function.
What if this is the only place where you had to call this twice and square thing? You had to make two classes just to use them only once. This effort is too much!!
What if you want to call it without creating new classes and implementing methods in a class?
What if I tell you only provide me the method body, I will do the work for you without you to bother about implementing interface and overriding methods?
Here comes the Lambda magic. Instead of making any impl classes just
head straight towards the main method
Instantiate two objects of FuncInterface providing only method body in Lambda expression.
Call abstract method from objects just like below
public class MyClass {
public static void main(String[] args) {
FuncInterface interfaceTwiceObject = (n) -> System.out.println(2*n);
interfaceTwiceObject.abstractFun(5);
FuncInterface interfaceSquareObject = (n) -> System.out.println(n*n);
interfaceSquareObject.abstractFun(5);
}
}
And boom, the output is
10
25
Just one more time where Lambda saved your day!!
Yes all methods in Java have to be part of a class. You cannot create a method (static or otherwise) which is not associated with a class.
EDIT
Before I answer your question, I will point out that lambda expressions were introduced in Java 8 through the concept of SAM types. In addition, a bit of syntactic sugar was also introduced to facilitate the creation of these types.
When you hear the term "Lambda expression" in Java, you should always remember that they are expressions. Your confusion stems from thinking that lambda expressions evaluate to a pure function not associated with a class or object; well this is simply not the case in Java and I will show you why.
Lambda expressions are not functions
I can now see where your confusion comes from because that article you are reading made a false claim when they say that lambda expression is:
A function that can be created without belonging to any class.
This is simply not true. A lambda expression in Java is not a function. Take the example they give for instance.
interface FuncInterface
{
// An abstract function
void abstractFun(int x);
// A non-abstract (or default) function
default void normalFun()
{
System.out.println("Hello");
}
}
class Test
{
public static void main(String args[])
{
// lambda expression to implement above
// functional interface. This interface
// by default implements abstractFun()
FuncInterface fobj = (int x)->System.out.println(2*x);
// This calls above lambda expression and prints 10.
fobj.abstractFun(5);
}
}
Proof
Now take the comment they have in the main method:
lambda expression to implement above functional interface
From the start they admit that the next line of code implements a functional interface. However functions in Java do not implement interfaces, only classes or other interfaces can do that!
Now, they even go ahead and "call" this function:
This calls above lambda expression and prints 10.
except instead of directly invoking the function (as anyone would if this was really a function), they use the property accessor notation (.) to access the actual method they wanted to call, which means what we have here is not a function, but actually an instance of an anonymous class.
Furthermore, since this object actually contains another method (normalFun), one might ask the question, which one do I use when I want to pass this "function" to another method? This is not a question that is commonly (if ever) asked in the context of lambda functions because there is only one thing to do with a lambda function and that is to call it.
In closing
Java has lambda expressions, not lambda functions.
What makes it a lambda expression is simply the syntactic sugar introduced in Java 8 that uses the () -> { } notation. Unfortunately, many fans of functional programming began associating the term "Lambda function" with objects created using this syntax, and this has led to the confusion you have expressed in your question.
To rehash what I answered previously, all functions in Java are part of a class, and you cannot have a function which is not associated with an object, nor can you create a function outside a class.
HTH
Why is it not possible to override static methods?
If possible, please use an example.
Overriding depends on having an instance of a class. The point of polymorphism is that you can subclass a class and the objects implementing those subclasses will have different behaviors for the same methods defined in the superclass (and overridden in the subclasses). A static method is not associated with any instance of a class so the concept is not applicable.
There were two considerations driving Java's design that impacted this. One was a concern with performance: there had been a lot of criticism of Smalltalk about it being too slow (garbage collection and polymorphic calls being part of that) and Java's creators were determined to avoid that. Another was the decision that the target audience for Java was C++ developers. Making static methods work the way they do had the benefit of familiarity for C++ programmers and was also very fast, because there's no need to wait until runtime to figure out which method to call.
Personally I think this is a flaw in the design of Java. Yes, yes, I understand that non-static methods are attached to an instance while static methods are attached to a class, etc etc. Still, consider the following code:
public class RegularEmployee {
private BigDecimal salary;
public void setSalary(BigDecimal salary) {
this.salary = salary;
}
public static BigDecimal getBonusMultiplier() {
return new BigDecimal(".02");
}
public BigDecimal calculateBonus() {
return salary.multiply(getBonusMultiplier());
}
/* ... presumably lots of other code ... */
}
public class SpecialEmployee extends RegularEmployee {
public static BigDecimal getBonusMultiplier() {
return new BigDecimal(".03");
}
}
This code will not work as you might expect. Namely, SpecialEmployee's get a 2% bonus just like regular employees. But if you remove the "static"s, then SpecialEmployee's get a 3% bonus.
(Admittedly, this example is poor coding style in that in real life you would likely want the bonus multiplier to be in a database somewhere rather than hard-coded. But that's just because I didn't want to bog down the example with a lot of code irrelevant to the point.)
It seems quite plausible to me that you might want to make getBonusMultiplier static. Perhaps you want to be able to display the bonus multiplier for all the categories of employees, without needing to have an instance of an employee in each category. What would be the point of searching for such example instances? What if we are creating a new category of employee and don't have any employees assigned to it yet? This is quite logically a static function.
But it doesn't work.
And yes, yes, I can think of any number of ways to rewrite the above code to make it work. My point is not that it creates an unsolvable problem, but that it creates a trap for the unwary programmer, because the language does not behave as I think a reasonable person would expect.
Perhaps if I tried to write a compiler for an OOP language, I would quickly see why implementing it so that static functions can be overriden would be difficult or impossible.
Or perhaps there is some good reason why Java behaves this way. Can anyone point out an advantage to this behavior, some category of problem that is made easier by this? I mean, don't just point me to the Java language spec and say "see, this is documented how it behaves". I know that. But is there a good reason why it SHOULD behave this way? (Besides the obvious "making it work right was too hard"...)
Update
#VicKirk: If you mean that this is "bad design" because it doesn't fit how Java handles statics, my reply is, "Well, duh, of course." As I said in my original post, it doesn't work. But if you mean that it is bad design in the sense that there would be something fundamentally wrong with a language where this worked, i.e. where statics could be overridden just like virtual functions, that this would somehow introduce an ambiguity or it would be impossible to implement efficiently or some such, I reply, "Why? What's wrong with the concept?"
I think the example I give is a very natural thing to want to do. I have a class that has a function that does not depend on any instance data, and which I might very reasonably want to call independent of an instance, as well as wanting to call from within an instance method. Why should this not work? I've run into this situation a fair number of times over the years. In practice I get around it by making the function virtual, and then creating a static method whose only purpose in life is to be a static method that passes the call on to the virtual method with a dummy instance. That seems like a very roundabout way to get there.
The short answer is: it is entirely possible, but Java doesn't do it.
Here is some code which illustrates the current state of affairs in Java:
File Base.java:
package sp.trial;
public class Base {
static void printValue() {
System.out.println(" Called static Base method.");
}
void nonStatPrintValue() {
System.out.println(" Called non-static Base method.");
}
void nonLocalIndirectStatMethod() {
System.out.println(" Non-static calls overridden(?) static:");
System.out.print(" ");
this.printValue();
}
}
File Child.java:
package sp.trial;
public class Child extends Base {
static void printValue() {
System.out.println(" Called static Child method.");
}
void nonStatPrintValue() {
System.out.println(" Called non-static Child method.");
}
void localIndirectStatMethod() {
System.out.println(" Non-static calls own static:");
System.out.print(" ");
printValue();
}
public static void main(String[] args) {
System.out.println("Object: static type Base; runtime type Child:");
Base base = new Child();
base.printValue();
base.nonStatPrintValue();
System.out.println("Object: static type Child; runtime type Child:");
Child child = new Child();
child.printValue();
child.nonStatPrintValue();
System.out.println("Class: Child static call:");
Child.printValue();
System.out.println("Class: Base static call:");
Base.printValue();
System.out.println("Object: static/runtime type Child -- call static from non-static method of Child:");
child.localIndirectStatMethod();
System.out.println("Object: static/runtime type Child -- call static from non-static method of Base:");
child.nonLocalIndirectStatMethod();
}
}
If you run this (I did it on a Mac, from Eclipse, using Java 1.6) you get:
Object: static type Base; runtime type Child.
Called static Base method.
Called non-static Child method.
Object: static type Child; runtime type Child.
Called static Child method.
Called non-static Child method.
Class: Child static call.
Called static Child method.
Class: Base static call.
Called static Base method.
Object: static/runtime type Child -- call static from non-static method of Child.
Non-static calls own static.
Called static Child method.
Object: static/runtime type Child -- call static from non-static method of Base.
Non-static calls overridden(?) static.
Called static Base method.
Here, the only cases which might be a surprise (and which the question is about) appear to be the first case:
"The run-time type is not used to determine which static methods are called, even when called with an object instance (obj.staticMethod())."
and the last case:
"When calling a static method from within an object method of a class, the static method chosen is the one accessible from the class itself and not from the class defining the run-time type of the object."
Calling with an object instance
The static call is resolved at compile-time, whereas a non-static method call is resolved at run-time. Notice that although static methods are inherited (from parent) they are not overridden (by child). This could be a surprise if you expected otherwise.
Calling from within an object method
Object method calls are resolved using the run-time type, but static (class) method calls are resolved using the compile-time (declared) type.
Changing the rules
To change these rules, so that the last call in the example called Child.printValue(), static calls would have to be provided with a type at run-time, rather than the compiler resolving the call at compile-time with the declared class of the object (or context). Static calls could then use the (dynamic) type hierarchy to resolve the call, just as object method calls do today.
This would easily be doable (if we changed Java :-O), and is not at all unreasonable, however, it has some interesting considerations.
The main consideration is that we need to decide which static method calls should do this.
At the moment, Java has this "quirk" in the language whereby obj.staticMethod() calls are replaced by ObjectClass.staticMethod() calls (normally with a warning). [Note: ObjectClass is the compile-time type of obj.] These would be good candidates for overriding in this way, taking the run-time type of obj.
If we did it would make method bodies harder to read: static calls in a parent class could potentially be dynamically "re-routed". To avoid this we would have to call the static method with a class name -- and this makes the calls more obviously resolved with the compile-time type hierarchy (as now).
The other ways of invoking a static method are more tricky: this.staticMethod() should mean the same as obj.staticMethod(), taking the run-time type of this. However, this might cause some headaches with existing programs, which call (apparently local) static methods without decoration (which is arguably equivalent to this.method()).
So what about unadorned calls staticMethod()? I suggest they do the same as today, and use the local class context to decide what to do. Otherwise great confusion would ensue. Of course it means that method() would mean this.method() if method was a non-static method, and ThisClass.method() if method were a static method. This is another source of confusion.
Other considerations
If we changed this behaviour (and made static calls potentially dynamically non-local), we would probably want to revisit the meaning of final, private and protected as qualifiers on static methods of a class. We would then all have to get used to the fact that private static and public final methods are not overridden, and can therefore be safely resolved at compile-time, and are "safe" to read as local references.
Actually we were wrong.
Despite Java doesn't allow you to override static methods by default, if you look thoroughly through documentation of Class and Method classes in Java, you can still find a way to emulate static methods overriding by following workaround:
import java.lang.reflect.InvocationTargetException;
import java.math.BigDecimal;
class RegularEmployee {
private BigDecimal salary = BigDecimal.ONE;
public void setSalary(BigDecimal salary) {
this.salary = salary;
}
public static BigDecimal getBonusMultiplier() {
return new BigDecimal(".02");
}
public BigDecimal calculateBonus() {
return salary.multiply(this.getBonusMultiplier());
}
public BigDecimal calculateOverridenBonus() {
try {
// System.out.println(this.getClass().getDeclaredMethod(
// "getBonusMultiplier").toString());
try {
return salary.multiply((BigDecimal) this.getClass()
.getDeclaredMethod("getBonusMultiplier").invoke(this));
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (IllegalArgumentException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
} catch (NoSuchMethodException e) {
e.printStackTrace();
} catch (SecurityException e) {
e.printStackTrace();
}
return null;
}
// ... presumably lots of other code ...
}
final class SpecialEmployee extends RegularEmployee {
public static BigDecimal getBonusMultiplier() {
return new BigDecimal(".03");
}
}
public class StaticTestCoolMain {
static public void main(String[] args) {
RegularEmployee Alan = new RegularEmployee();
System.out.println(Alan.calculateBonus());
System.out.println(Alan.calculateOverridenBonus());
SpecialEmployee Bob = new SpecialEmployee();
System.out.println(Bob.calculateBonus());
System.out.println(Bob.calculateOverridenBonus());
}
}
Resulting output:
0.02
0.02
0.02
0.03
what we were trying to achieve :)
Even if we declare third variable Carl as RegularEmployee and assign to it instance of SpecialEmployee, we will still have call of RegularEmployee method in first case and call of SpecialEmployee method in second case
RegularEmployee Carl = new SpecialEmployee();
System.out.println(Carl.calculateBonus());
System.out.println(Carl.calculateOverridenBonus());
just look at output console:
0.02
0.03
;)
Static methods are treated as global by the JVM, there are not bound to an object instance at all.
It could conceptually be possible if you could call static methods from class objects (like in languages like Smalltalk) but it's not the case in Java.
EDIT
You can overload static method, that's ok. But you can not override a static method, because class are no first-class object. You can use reflection to get the class of an object at run-time, but the object that you get does not parallel the class hierarchy.
class MyClass { ... }
class MySubClass extends MyClass { ... }
MyClass obj1 = new MyClass();
MySubClass obj2 = new MySubClass();
ob2 instanceof MyClass --> true
Class clazz1 = obj1.getClass();
Class clazz2 = obj2.getClass();
clazz2 instanceof clazz1 --> false
You can reflect over the classes, but it stops there. You don't invoke a static method by using clazz1.staticMethod(), but using MyClass.staticMethod(). A static method is not bound to an object and there is hence no notion of this nor super in a static method. A static method is a global function; as a consequence there is also no notion of polymorphism and, therefore, method overriding makes no sense.
But this could be possible if MyClass was an object at run-time on which you invoke a method, as in Smalltalk (or maybe JRuby as one comment suggest, but I know nothing of JRuby).
Oh yeah... one more thing. You can invoke a static method through an object obj1.staticMethod() but that really syntactic sugar for MyClass.staticMethod() and should be avoided. It usually raises a warning in modern IDE. I don't know why they ever allowed this shortcut.
Method overriding is made possible by dynamic dispatching, meaning that the declared type of an object doesn't determine its behavior, but rather its runtime type:
Animal lassie = new Dog();
lassie.speak(); // outputs "woof!"
Animal kermit = new Frog();
kermit.speak(); // outputs "ribbit!"
Even though both lassie and kermit are declared as objects of type Animal, their behavior (method .speak()) varies because dynamic dispatching will only bind the method call .speak() to an implementation at run time - not at compile time.
Now, here's where the static keyword starts to make sense: the word "static" is an antonym for "dynamic". So the reason why you can't override static methods is because there is no dynamic dispatching on static members - because static literally means "not dynamic". If they dispatched dynamically (and thus could be overriden) the static keyword just wouldn't make sense anymore.
Yes. Practically Java allows overriding static method, and No theoretically if you Override a static method in Java then it will compile and run smoothly but it will lose Polymorphism which is the basic property of Java. You will Read Everywhere that it is not possible to try yourself compiling and running. you will get your answer. e.g. If you Have Class Animal and a static method eat() and you Override that static method in its Subclass lets called it Dog. Then when wherever you Assign a Dog object to an Animal Reference and call eat() according to Java Dog's eat() should have been called but in static Overriding Animals' eat() will Be Called.
class Animal {
public static void eat() {
System.out.println("Animal Eating");
}
}
class Dog extends Animal{
public static void eat() {
System.out.println("Dog Eating");
}
}
class Test {
public static void main(String args[]) {
Animal obj= new Dog();//Dog object in animal
obj.eat(); //should call dog's eat but it didn't
}
}
Output Animal Eating
According to Polymorphism Principle of Java, the Output Should be Dog Eating.
But the result was different because to support Polymorphism Java uses Late Binding that means methods are called only at the run-time but not in the case of static methods. In static methods compiler calls methods at the compile time rather than the run-time, so we get methods according to the reference and not according to the object a reference a containing that's why You can say Practically it supports static overring but theoretically, it doesn't.
In Java (and many OOP languages, but I cannot speak for all; and some do not have static at all) all methods have a fixed signature - the parameters and types. In a virtual method, the first parameter is implied: a reference to the object itself and when called from within the object, the compiler automatically adds this.
There is no difference for static methods - they still have a fixed signature. However, by declaring the method static you have explicitly stated that the compiler must not include the implied object parameter at the beginning of that signature. Therefore, any other code that calls this must must not attempt to put a reference to an object on the stack. If it did do that, then the method execution would not work since the parameters would be in the wrong place - shifted by one - on the stack.
Because of this difference between the two; virtual methods always have a reference to the context object (i.e. this) so then it is possible to reference anything within the heap that belong to that instance of the object. But with static methods, since there is no reference passed, that method cannot access any object variables and methods since the context is not known.
If you wish that Java would change the definition so that a object context is passed in for every method, static or virtual, then you would in essence have only virtual methods.
As someone asked in a comment to the op - what is your reason and purpose for wanting this feature?
I do not know Ruby much, as this was mentioned by the OP, I did some research. I see that in Ruby classes are really a special kind of object and one can create (even dynamically) new methods. Classes are full class objects in Ruby, they are not in Java. This is just something you will have to accept when working with Java (or C#). These are not dynamic languages, though C# is adding some forms of dynamic. In reality, Ruby does not have "static" methods as far as I could find - in that case these are methods on the singleton class object. You can then override this singleton with a new class and the methods in the previous class object will call those defined in the new class (correct?). So if you called a method in the context of the original class it still would only execute the original statics, but calling a method in the derived class, would call methods either from the parent or sub-class. Interesting and I can see some value in that. It takes a different thought pattern.
Since you are working in Java, you will need to adjust to that way of doing things. Why they did this? Well, probably to improve performance at the time based on the technology and understanding that was available. Computer languages are constantly evolving. Go back far enough and there is no such thing as OOP. In the future, there will be other new ideas.
EDIT: One other comment. Now that I see the differences and as I Java/C# developer myself, I can understand why the answers you get from Java developers may be confusing if you are coming from a language like Ruby. Java static methods are not the same as Ruby class methods. Java developers will have a hard time understanding this, as will conversely those who work mostly with a language like Ruby/Smalltalk. I can see how this would also be greatly confusing by the fact that Java also uses "class method" as another way to talk about static methods but this same term is used differently by Ruby. Java does not have Ruby style class methods (sorry); Ruby does not have Java style static methods which are really just old procedural style functions, as found in C.
By the way - thanks for the question! I learned something new for me today about class methods (Ruby style).
Well... the answer is NO if you think from the perspective of how an overriden method should behave in Java. But, you don't get any compiler error if you try to override a static method. That means, if you try to override, Java doesn't stop you doing that; but you certainly don't get the same effect as you get for non-static methods. Overriding in Java simply means that the particular method would be called based on the run time type of the object and not on the compile time type of it (which is the case with overriden static methods). Okay... any guesses for the reason why do they behave strangely? Because they are class methods and hence access to them is always resolved during compile time only using the compile time type information. Accessing them using object references is just an extra liberty given by the designers of Java and we should certainly not think of stopping that practice only when they restrict it :-)
Example: let's try to see what happens if we try overriding a static method:-
class SuperClass {
// ......
public static void staticMethod() {
System.out.println("SuperClass: inside staticMethod");
}
// ......
}
public class SubClass extends SuperClass {
// ......
// overriding the static method
public static void staticMethod() {
System.out.println("SubClass: inside staticMethod");
}
// ......
public static void main(String[] args) {
// ......
SuperClass superClassWithSuperCons = new SuperClass();
SuperClass superClassWithSubCons = new SubClass();
SubClass subClassWithSubCons = new SubClass();
superClassWithSuperCons.staticMethod();
superClassWithSubCons.staticMethod();
subClassWithSubCons.staticMethod();
// ...
}
}
Output:-
SuperClass: inside staticMethod
SuperClass: inside staticMethod
SubClass: inside staticMethod
Notice the second line of the output. Had the staticMethod been overriden this line should have been identical to the third line as we're invoking the 'staticMethod()' on an object of Runtime Type as 'SubClass' and not as 'SuperClass'. This confirms that the static methods are always resolved using their compile time type information only.
I like and double Jay's comment (https://stackoverflow.com/a/2223803/1517187).
I agree that this is the bad design of Java.
Many other languages support overriding static methods, as we see in previous comments.
I feel Jay has also come to Java from Delphi like me.
Delphi (Object Pascal) was one of the languages implementing OOP before Java and one of the first languages used for commercial application development.
It is obvious that many people had experience with that language since it was in the past the only language to write commercial GUI products. And - yes, we could in Delphi override static methods. Actually, static methods in Delphi are called "class methods", while Delphi had the different concept of "Delphi static methods" which were methods with early binding. To override methods you had to use late binding, declare "virtual" directive. So it was very convenient and intuitive and I would expect this in Java.
In general it doesn't make sense to allow 'overriding' of static methods as there would be no good way to determine which one to call at runtime. Taking the Employee example, if we call RegularEmployee.getBonusMultiplier() - which method is supposed to be executed?
In the case of Java, one could imagine a language definition where it is possible to 'override' static methods as long as they are called through an object instance. However, all this would do is to re-implement regular class methods, adding redundancy to the language without really adding any benefit.
overriding is reserved for instance members to support polymorphic behaviour. static class members do not belong to a particular instance. instead, static members belong to the class and as a result overriding is not supported because subclasses only inherit protected and public instance members and not static members. You may want to define an inerface and research factory and/or strategy design patterns to evaluate an alternate approach.
By overriding we can create a polymorphic nature depending on the object type. Static method has no relation with object. So java can not support static method overriding.
By overriding, you achieve dynamic polymorphism.
When you say overriding static methods, the words you are trying to use are contradictory.
Static says - compile time, overriding is used for dynamic polymorphism.
Both are opposite in nature, and hence can't be used together.
Dynamic polymorphic behavior comes when a programmer uses an object and accessing an instance method. JRE will map different instance methods of different classes based on what kind of object you are using.
When you say overriding static methods, static methods we will access by using the class name, which will be linked at compile time, so there is no concept of linking methods at runtime with static methods. So the term "overriding" static methods itself doesn't make any meaning.
Note: even if you access a class method with an object, still java compiler is intelligent enough to find it out, and will do static linking.
Overriding in Java simply means that the particular method would be called based on the runtime type
of the object and not on the compile-time type of it (which is the case with overridden static methods). As static methods are class methods they are not instance methods so they have nothing to do with the fact which reference is pointing to which Object or instance, because due to the nature of static method it belongs to a specific class. You can redeclare it in the subclass but that subclass won't know anything about the parent class' static methods because, as I said, it is specific to only that class in which it has been declared. Accessing them using object references is just an extra liberty given by the designers of Java and we should certainly not think of stopping that practice only when they restrict it
more details and example
http://faisalbhagat.blogspot.com/2014/09/method-overriding-and-method-hiding.html
What good will it do to override static methods. You cannot call static methods through an instance.
MyClass.static1()
MySubClass.static1() // If you overrode, you have to call it through MySubClass anyway.
EDIT : It appears that through an unfortunate oversight in language design, you can call static methods through an instance. Generally nobody does that. My bad.
Answer of this question is simple, the method or variable marked as static belongs to the class only, So that static method cannot be inherited in the sub class because they belong to the super class only.
Easy solution: Use singleton instance. It will allow overrides and inheritance.
In my system, I have SingletonsRegistry class, which returns instance for passed Class. If instance is not found, it is created.
Haxe language class:
package rflib.common.utils;
import haxe.ds.ObjectMap;
class SingletonsRegistry
{
public static var instances:Map<Class<Dynamic>, Dynamic>;
static function __init__()
{
StaticsInitializer.addCallback(SingletonsRegistry, function()
{
instances = null;
});
}
public static function getInstance(cls:Class<Dynamic>, ?args:Array<Dynamic>)
{
if (instances == null) {
instances = untyped new ObjectMap<Dynamic, Dynamic>();
}
if (!instances.exists(cls))
{
if (args == null) args = [];
instances.set(cls, Type.createInstance(cls, args));
}
return instances.get(cls);
}
public static function validate(inst:Dynamic, cls:Class<Dynamic>)
{
if (instances == null) return;
var inst2 = instances[cls];
if (inst2 != null && inst != inst2) throw "Can\'t create multiple instances of " + Type.getClassName(cls) + " - it's singleton!";
}
}
A Static method, variable, block or nested class belongs to the entire class rather than an object.
A Method in Java is used to expose the behaviour of an Object / Class. Here, as the method is static (i.e, static method is used to represent the behaviour of a class only.) changing/ overriding the behaviour of entire class will violate the phenomenon of one of the fundamental pillar of Object oriented programming i.e, high cohesion. (remember a constructor is a special kind of method in Java.)
High Cohesion - One class should have only one role. For example: A car class should produce only car objects and not bike, trucks, planes etc. But the Car class may have some features(behaviour) that belongs to itself only.
Therefore, while designing the java programming language. The language designers thought to allow developers to keep some behaviours of a class to itself only by making a method static in nature.
The below piece code tries to override the static method, but will not encounter any compilation error.
public class Vehicle {
static int VIN;
public static int getVehileNumber() {
return VIN;
}}
class Car extends Vehicle {
static int carNumber;
public static int getVehileNumber() {
return carNumber;
}}
This is because, here we are not overriding a method but we are just re-declaring it. Java allows re-declaration of a method (static/non-static).
Removing the static keyword from getVehileNumber() method of Car class will result into compilation error, Since, we are trying to change the functionality of static method which belongs to Vehicle class only.
Also, If the getVehileNumber() is declared as final then the code will not compile, Since the final keyword restricts the programmer from re-declaring the method.
public static final int getVehileNumber() {
return VIN; }
Overall, this is upto software designers for where to use the static methods.
I personally prefer to use static methods to perform some actions without creating any instance of a class. Secondly, to hide the behaviour of a class from outside world.
Here is a simple explanation. A static method is associated with a class while an instance method is associated with a particular object. Overrides allow calling the different implementation of the overridden methods associated with the particular object. So it is counter-intuitive to override static method which is not even associated with objects but the class itself in the first place. So static methods cannot be overridden based on what object is calling it, it will always be associated with the class where it was created.
Now seeing above answers everyone knows that we can't override static methods, but one should not misunderstood about the concept of accessing static methods from subclass.
We can access static methods of super class with subclass reference if this static method has not been hidden by new static method defined in sub class.
For Example, see below code:-
public class StaticMethodsHiding {
public static void main(String[] args) {
SubClass.hello();
}
}
class SuperClass {
static void hello(){
System.out.println("SuperClass saying Hello");
}
}
class SubClass extends SuperClass {
// static void hello() {
// System.out.println("SubClass Hello");
// }
}
Output:-
SuperClass saying Hello
See Java oracle docs and search for What You Can Do in a Subclass for details about hiding of static methods in sub class.
Thanks
The following code shows that it is possible:
class OverridenStaticMeth {
static void printValue() {
System.out.println("Overriden Meth");
}
}
public class OverrideStaticMeth extends OverridenStaticMeth {
static void printValue() {
System.out.println("Overriding Meth");
}
public static void main(String[] args) {
OverridenStaticMeth osm = new OverrideStaticMeth();
osm.printValue();
System.out.println("now, from main");
printValue();
}
}
Why is it not possible to override static methods?
If possible, please use an example.
Overriding depends on having an instance of a class. The point of polymorphism is that you can subclass a class and the objects implementing those subclasses will have different behaviors for the same methods defined in the superclass (and overridden in the subclasses). A static method is not associated with any instance of a class so the concept is not applicable.
There were two considerations driving Java's design that impacted this. One was a concern with performance: there had been a lot of criticism of Smalltalk about it being too slow (garbage collection and polymorphic calls being part of that) and Java's creators were determined to avoid that. Another was the decision that the target audience for Java was C++ developers. Making static methods work the way they do had the benefit of familiarity for C++ programmers and was also very fast, because there's no need to wait until runtime to figure out which method to call.
Personally I think this is a flaw in the design of Java. Yes, yes, I understand that non-static methods are attached to an instance while static methods are attached to a class, etc etc. Still, consider the following code:
public class RegularEmployee {
private BigDecimal salary;
public void setSalary(BigDecimal salary) {
this.salary = salary;
}
public static BigDecimal getBonusMultiplier() {
return new BigDecimal(".02");
}
public BigDecimal calculateBonus() {
return salary.multiply(getBonusMultiplier());
}
/* ... presumably lots of other code ... */
}
public class SpecialEmployee extends RegularEmployee {
public static BigDecimal getBonusMultiplier() {
return new BigDecimal(".03");
}
}
This code will not work as you might expect. Namely, SpecialEmployee's get a 2% bonus just like regular employees. But if you remove the "static"s, then SpecialEmployee's get a 3% bonus.
(Admittedly, this example is poor coding style in that in real life you would likely want the bonus multiplier to be in a database somewhere rather than hard-coded. But that's just because I didn't want to bog down the example with a lot of code irrelevant to the point.)
It seems quite plausible to me that you might want to make getBonusMultiplier static. Perhaps you want to be able to display the bonus multiplier for all the categories of employees, without needing to have an instance of an employee in each category. What would be the point of searching for such example instances? What if we are creating a new category of employee and don't have any employees assigned to it yet? This is quite logically a static function.
But it doesn't work.
And yes, yes, I can think of any number of ways to rewrite the above code to make it work. My point is not that it creates an unsolvable problem, but that it creates a trap for the unwary programmer, because the language does not behave as I think a reasonable person would expect.
Perhaps if I tried to write a compiler for an OOP language, I would quickly see why implementing it so that static functions can be overriden would be difficult or impossible.
Or perhaps there is some good reason why Java behaves this way. Can anyone point out an advantage to this behavior, some category of problem that is made easier by this? I mean, don't just point me to the Java language spec and say "see, this is documented how it behaves". I know that. But is there a good reason why it SHOULD behave this way? (Besides the obvious "making it work right was too hard"...)
Update
#VicKirk: If you mean that this is "bad design" because it doesn't fit how Java handles statics, my reply is, "Well, duh, of course." As I said in my original post, it doesn't work. But if you mean that it is bad design in the sense that there would be something fundamentally wrong with a language where this worked, i.e. where statics could be overridden just like virtual functions, that this would somehow introduce an ambiguity or it would be impossible to implement efficiently or some such, I reply, "Why? What's wrong with the concept?"
I think the example I give is a very natural thing to want to do. I have a class that has a function that does not depend on any instance data, and which I might very reasonably want to call independent of an instance, as well as wanting to call from within an instance method. Why should this not work? I've run into this situation a fair number of times over the years. In practice I get around it by making the function virtual, and then creating a static method whose only purpose in life is to be a static method that passes the call on to the virtual method with a dummy instance. That seems like a very roundabout way to get there.
The short answer is: it is entirely possible, but Java doesn't do it.
Here is some code which illustrates the current state of affairs in Java:
File Base.java:
package sp.trial;
public class Base {
static void printValue() {
System.out.println(" Called static Base method.");
}
void nonStatPrintValue() {
System.out.println(" Called non-static Base method.");
}
void nonLocalIndirectStatMethod() {
System.out.println(" Non-static calls overridden(?) static:");
System.out.print(" ");
this.printValue();
}
}
File Child.java:
package sp.trial;
public class Child extends Base {
static void printValue() {
System.out.println(" Called static Child method.");
}
void nonStatPrintValue() {
System.out.println(" Called non-static Child method.");
}
void localIndirectStatMethod() {
System.out.println(" Non-static calls own static:");
System.out.print(" ");
printValue();
}
public static void main(String[] args) {
System.out.println("Object: static type Base; runtime type Child:");
Base base = new Child();
base.printValue();
base.nonStatPrintValue();
System.out.println("Object: static type Child; runtime type Child:");
Child child = new Child();
child.printValue();
child.nonStatPrintValue();
System.out.println("Class: Child static call:");
Child.printValue();
System.out.println("Class: Base static call:");
Base.printValue();
System.out.println("Object: static/runtime type Child -- call static from non-static method of Child:");
child.localIndirectStatMethod();
System.out.println("Object: static/runtime type Child -- call static from non-static method of Base:");
child.nonLocalIndirectStatMethod();
}
}
If you run this (I did it on a Mac, from Eclipse, using Java 1.6) you get:
Object: static type Base; runtime type Child.
Called static Base method.
Called non-static Child method.
Object: static type Child; runtime type Child.
Called static Child method.
Called non-static Child method.
Class: Child static call.
Called static Child method.
Class: Base static call.
Called static Base method.
Object: static/runtime type Child -- call static from non-static method of Child.
Non-static calls own static.
Called static Child method.
Object: static/runtime type Child -- call static from non-static method of Base.
Non-static calls overridden(?) static.
Called static Base method.
Here, the only cases which might be a surprise (and which the question is about) appear to be the first case:
"The run-time type is not used to determine which static methods are called, even when called with an object instance (obj.staticMethod())."
and the last case:
"When calling a static method from within an object method of a class, the static method chosen is the one accessible from the class itself and not from the class defining the run-time type of the object."
Calling with an object instance
The static call is resolved at compile-time, whereas a non-static method call is resolved at run-time. Notice that although static methods are inherited (from parent) they are not overridden (by child). This could be a surprise if you expected otherwise.
Calling from within an object method
Object method calls are resolved using the run-time type, but static (class) method calls are resolved using the compile-time (declared) type.
Changing the rules
To change these rules, so that the last call in the example called Child.printValue(), static calls would have to be provided with a type at run-time, rather than the compiler resolving the call at compile-time with the declared class of the object (or context). Static calls could then use the (dynamic) type hierarchy to resolve the call, just as object method calls do today.
This would easily be doable (if we changed Java :-O), and is not at all unreasonable, however, it has some interesting considerations.
The main consideration is that we need to decide which static method calls should do this.
At the moment, Java has this "quirk" in the language whereby obj.staticMethod() calls are replaced by ObjectClass.staticMethod() calls (normally with a warning). [Note: ObjectClass is the compile-time type of obj.] These would be good candidates for overriding in this way, taking the run-time type of obj.
If we did it would make method bodies harder to read: static calls in a parent class could potentially be dynamically "re-routed". To avoid this we would have to call the static method with a class name -- and this makes the calls more obviously resolved with the compile-time type hierarchy (as now).
The other ways of invoking a static method are more tricky: this.staticMethod() should mean the same as obj.staticMethod(), taking the run-time type of this. However, this might cause some headaches with existing programs, which call (apparently local) static methods without decoration (which is arguably equivalent to this.method()).
So what about unadorned calls staticMethod()? I suggest they do the same as today, and use the local class context to decide what to do. Otherwise great confusion would ensue. Of course it means that method() would mean this.method() if method was a non-static method, and ThisClass.method() if method were a static method. This is another source of confusion.
Other considerations
If we changed this behaviour (and made static calls potentially dynamically non-local), we would probably want to revisit the meaning of final, private and protected as qualifiers on static methods of a class. We would then all have to get used to the fact that private static and public final methods are not overridden, and can therefore be safely resolved at compile-time, and are "safe" to read as local references.
Actually we were wrong.
Despite Java doesn't allow you to override static methods by default, if you look thoroughly through documentation of Class and Method classes in Java, you can still find a way to emulate static methods overriding by following workaround:
import java.lang.reflect.InvocationTargetException;
import java.math.BigDecimal;
class RegularEmployee {
private BigDecimal salary = BigDecimal.ONE;
public void setSalary(BigDecimal salary) {
this.salary = salary;
}
public static BigDecimal getBonusMultiplier() {
return new BigDecimal(".02");
}
public BigDecimal calculateBonus() {
return salary.multiply(this.getBonusMultiplier());
}
public BigDecimal calculateOverridenBonus() {
try {
// System.out.println(this.getClass().getDeclaredMethod(
// "getBonusMultiplier").toString());
try {
return salary.multiply((BigDecimal) this.getClass()
.getDeclaredMethod("getBonusMultiplier").invoke(this));
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (IllegalArgumentException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
} catch (NoSuchMethodException e) {
e.printStackTrace();
} catch (SecurityException e) {
e.printStackTrace();
}
return null;
}
// ... presumably lots of other code ...
}
final class SpecialEmployee extends RegularEmployee {
public static BigDecimal getBonusMultiplier() {
return new BigDecimal(".03");
}
}
public class StaticTestCoolMain {
static public void main(String[] args) {
RegularEmployee Alan = new RegularEmployee();
System.out.println(Alan.calculateBonus());
System.out.println(Alan.calculateOverridenBonus());
SpecialEmployee Bob = new SpecialEmployee();
System.out.println(Bob.calculateBonus());
System.out.println(Bob.calculateOverridenBonus());
}
}
Resulting output:
0.02
0.02
0.02
0.03
what we were trying to achieve :)
Even if we declare third variable Carl as RegularEmployee and assign to it instance of SpecialEmployee, we will still have call of RegularEmployee method in first case and call of SpecialEmployee method in second case
RegularEmployee Carl = new SpecialEmployee();
System.out.println(Carl.calculateBonus());
System.out.println(Carl.calculateOverridenBonus());
just look at output console:
0.02
0.03
;)
Static methods are treated as global by the JVM, there are not bound to an object instance at all.
It could conceptually be possible if you could call static methods from class objects (like in languages like Smalltalk) but it's not the case in Java.
EDIT
You can overload static method, that's ok. But you can not override a static method, because class are no first-class object. You can use reflection to get the class of an object at run-time, but the object that you get does not parallel the class hierarchy.
class MyClass { ... }
class MySubClass extends MyClass { ... }
MyClass obj1 = new MyClass();
MySubClass obj2 = new MySubClass();
ob2 instanceof MyClass --> true
Class clazz1 = obj1.getClass();
Class clazz2 = obj2.getClass();
clazz2 instanceof clazz1 --> false
You can reflect over the classes, but it stops there. You don't invoke a static method by using clazz1.staticMethod(), but using MyClass.staticMethod(). A static method is not bound to an object and there is hence no notion of this nor super in a static method. A static method is a global function; as a consequence there is also no notion of polymorphism and, therefore, method overriding makes no sense.
But this could be possible if MyClass was an object at run-time on which you invoke a method, as in Smalltalk (or maybe JRuby as one comment suggest, but I know nothing of JRuby).
Oh yeah... one more thing. You can invoke a static method through an object obj1.staticMethod() but that really syntactic sugar for MyClass.staticMethod() and should be avoided. It usually raises a warning in modern IDE. I don't know why they ever allowed this shortcut.
Method overriding is made possible by dynamic dispatching, meaning that the declared type of an object doesn't determine its behavior, but rather its runtime type:
Animal lassie = new Dog();
lassie.speak(); // outputs "woof!"
Animal kermit = new Frog();
kermit.speak(); // outputs "ribbit!"
Even though both lassie and kermit are declared as objects of type Animal, their behavior (method .speak()) varies because dynamic dispatching will only bind the method call .speak() to an implementation at run time - not at compile time.
Now, here's where the static keyword starts to make sense: the word "static" is an antonym for "dynamic". So the reason why you can't override static methods is because there is no dynamic dispatching on static members - because static literally means "not dynamic". If they dispatched dynamically (and thus could be overriden) the static keyword just wouldn't make sense anymore.
Yes. Practically Java allows overriding static method, and No theoretically if you Override a static method in Java then it will compile and run smoothly but it will lose Polymorphism which is the basic property of Java. You will Read Everywhere that it is not possible to try yourself compiling and running. you will get your answer. e.g. If you Have Class Animal and a static method eat() and you Override that static method in its Subclass lets called it Dog. Then when wherever you Assign a Dog object to an Animal Reference and call eat() according to Java Dog's eat() should have been called but in static Overriding Animals' eat() will Be Called.
class Animal {
public static void eat() {
System.out.println("Animal Eating");
}
}
class Dog extends Animal{
public static void eat() {
System.out.println("Dog Eating");
}
}
class Test {
public static void main(String args[]) {
Animal obj= new Dog();//Dog object in animal
obj.eat(); //should call dog's eat but it didn't
}
}
Output Animal Eating
According to Polymorphism Principle of Java, the Output Should be Dog Eating.
But the result was different because to support Polymorphism Java uses Late Binding that means methods are called only at the run-time but not in the case of static methods. In static methods compiler calls methods at the compile time rather than the run-time, so we get methods according to the reference and not according to the object a reference a containing that's why You can say Practically it supports static overring but theoretically, it doesn't.
In Java (and many OOP languages, but I cannot speak for all; and some do not have static at all) all methods have a fixed signature - the parameters and types. In a virtual method, the first parameter is implied: a reference to the object itself and when called from within the object, the compiler automatically adds this.
There is no difference for static methods - they still have a fixed signature. However, by declaring the method static you have explicitly stated that the compiler must not include the implied object parameter at the beginning of that signature. Therefore, any other code that calls this must must not attempt to put a reference to an object on the stack. If it did do that, then the method execution would not work since the parameters would be in the wrong place - shifted by one - on the stack.
Because of this difference between the two; virtual methods always have a reference to the context object (i.e. this) so then it is possible to reference anything within the heap that belong to that instance of the object. But with static methods, since there is no reference passed, that method cannot access any object variables and methods since the context is not known.
If you wish that Java would change the definition so that a object context is passed in for every method, static or virtual, then you would in essence have only virtual methods.
As someone asked in a comment to the op - what is your reason and purpose for wanting this feature?
I do not know Ruby much, as this was mentioned by the OP, I did some research. I see that in Ruby classes are really a special kind of object and one can create (even dynamically) new methods. Classes are full class objects in Ruby, they are not in Java. This is just something you will have to accept when working with Java (or C#). These are not dynamic languages, though C# is adding some forms of dynamic. In reality, Ruby does not have "static" methods as far as I could find - in that case these are methods on the singleton class object. You can then override this singleton with a new class and the methods in the previous class object will call those defined in the new class (correct?). So if you called a method in the context of the original class it still would only execute the original statics, but calling a method in the derived class, would call methods either from the parent or sub-class. Interesting and I can see some value in that. It takes a different thought pattern.
Since you are working in Java, you will need to adjust to that way of doing things. Why they did this? Well, probably to improve performance at the time based on the technology and understanding that was available. Computer languages are constantly evolving. Go back far enough and there is no such thing as OOP. In the future, there will be other new ideas.
EDIT: One other comment. Now that I see the differences and as I Java/C# developer myself, I can understand why the answers you get from Java developers may be confusing if you are coming from a language like Ruby. Java static methods are not the same as Ruby class methods. Java developers will have a hard time understanding this, as will conversely those who work mostly with a language like Ruby/Smalltalk. I can see how this would also be greatly confusing by the fact that Java also uses "class method" as another way to talk about static methods but this same term is used differently by Ruby. Java does not have Ruby style class methods (sorry); Ruby does not have Java style static methods which are really just old procedural style functions, as found in C.
By the way - thanks for the question! I learned something new for me today about class methods (Ruby style).
Well... the answer is NO if you think from the perspective of how an overriden method should behave in Java. But, you don't get any compiler error if you try to override a static method. That means, if you try to override, Java doesn't stop you doing that; but you certainly don't get the same effect as you get for non-static methods. Overriding in Java simply means that the particular method would be called based on the run time type of the object and not on the compile time type of it (which is the case with overriden static methods). Okay... any guesses for the reason why do they behave strangely? Because they are class methods and hence access to them is always resolved during compile time only using the compile time type information. Accessing them using object references is just an extra liberty given by the designers of Java and we should certainly not think of stopping that practice only when they restrict it :-)
Example: let's try to see what happens if we try overriding a static method:-
class SuperClass {
// ......
public static void staticMethod() {
System.out.println("SuperClass: inside staticMethod");
}
// ......
}
public class SubClass extends SuperClass {
// ......
// overriding the static method
public static void staticMethod() {
System.out.println("SubClass: inside staticMethod");
}
// ......
public static void main(String[] args) {
// ......
SuperClass superClassWithSuperCons = new SuperClass();
SuperClass superClassWithSubCons = new SubClass();
SubClass subClassWithSubCons = new SubClass();
superClassWithSuperCons.staticMethod();
superClassWithSubCons.staticMethod();
subClassWithSubCons.staticMethod();
// ...
}
}
Output:-
SuperClass: inside staticMethod
SuperClass: inside staticMethod
SubClass: inside staticMethod
Notice the second line of the output. Had the staticMethod been overriden this line should have been identical to the third line as we're invoking the 'staticMethod()' on an object of Runtime Type as 'SubClass' and not as 'SuperClass'. This confirms that the static methods are always resolved using their compile time type information only.
I like and double Jay's comment (https://stackoverflow.com/a/2223803/1517187).
I agree that this is the bad design of Java.
Many other languages support overriding static methods, as we see in previous comments.
I feel Jay has also come to Java from Delphi like me.
Delphi (Object Pascal) was one of the languages implementing OOP before Java and one of the first languages used for commercial application development.
It is obvious that many people had experience with that language since it was in the past the only language to write commercial GUI products. And - yes, we could in Delphi override static methods. Actually, static methods in Delphi are called "class methods", while Delphi had the different concept of "Delphi static methods" which were methods with early binding. To override methods you had to use late binding, declare "virtual" directive. So it was very convenient and intuitive and I would expect this in Java.
In general it doesn't make sense to allow 'overriding' of static methods as there would be no good way to determine which one to call at runtime. Taking the Employee example, if we call RegularEmployee.getBonusMultiplier() - which method is supposed to be executed?
In the case of Java, one could imagine a language definition where it is possible to 'override' static methods as long as they are called through an object instance. However, all this would do is to re-implement regular class methods, adding redundancy to the language without really adding any benefit.
overriding is reserved for instance members to support polymorphic behaviour. static class members do not belong to a particular instance. instead, static members belong to the class and as a result overriding is not supported because subclasses only inherit protected and public instance members and not static members. You may want to define an inerface and research factory and/or strategy design patterns to evaluate an alternate approach.
By overriding we can create a polymorphic nature depending on the object type. Static method has no relation with object. So java can not support static method overriding.
By overriding, you achieve dynamic polymorphism.
When you say overriding static methods, the words you are trying to use are contradictory.
Static says - compile time, overriding is used for dynamic polymorphism.
Both are opposite in nature, and hence can't be used together.
Dynamic polymorphic behavior comes when a programmer uses an object and accessing an instance method. JRE will map different instance methods of different classes based on what kind of object you are using.
When you say overriding static methods, static methods we will access by using the class name, which will be linked at compile time, so there is no concept of linking methods at runtime with static methods. So the term "overriding" static methods itself doesn't make any meaning.
Note: even if you access a class method with an object, still java compiler is intelligent enough to find it out, and will do static linking.
Overriding in Java simply means that the particular method would be called based on the runtime type
of the object and not on the compile-time type of it (which is the case with overridden static methods). As static methods are class methods they are not instance methods so they have nothing to do with the fact which reference is pointing to which Object or instance, because due to the nature of static method it belongs to a specific class. You can redeclare it in the subclass but that subclass won't know anything about the parent class' static methods because, as I said, it is specific to only that class in which it has been declared. Accessing them using object references is just an extra liberty given by the designers of Java and we should certainly not think of stopping that practice only when they restrict it
more details and example
http://faisalbhagat.blogspot.com/2014/09/method-overriding-and-method-hiding.html
What good will it do to override static methods. You cannot call static methods through an instance.
MyClass.static1()
MySubClass.static1() // If you overrode, you have to call it through MySubClass anyway.
EDIT : It appears that through an unfortunate oversight in language design, you can call static methods through an instance. Generally nobody does that. My bad.
Answer of this question is simple, the method or variable marked as static belongs to the class only, So that static method cannot be inherited in the sub class because they belong to the super class only.
Easy solution: Use singleton instance. It will allow overrides and inheritance.
In my system, I have SingletonsRegistry class, which returns instance for passed Class. If instance is not found, it is created.
Haxe language class:
package rflib.common.utils;
import haxe.ds.ObjectMap;
class SingletonsRegistry
{
public static var instances:Map<Class<Dynamic>, Dynamic>;
static function __init__()
{
StaticsInitializer.addCallback(SingletonsRegistry, function()
{
instances = null;
});
}
public static function getInstance(cls:Class<Dynamic>, ?args:Array<Dynamic>)
{
if (instances == null) {
instances = untyped new ObjectMap<Dynamic, Dynamic>();
}
if (!instances.exists(cls))
{
if (args == null) args = [];
instances.set(cls, Type.createInstance(cls, args));
}
return instances.get(cls);
}
public static function validate(inst:Dynamic, cls:Class<Dynamic>)
{
if (instances == null) return;
var inst2 = instances[cls];
if (inst2 != null && inst != inst2) throw "Can\'t create multiple instances of " + Type.getClassName(cls) + " - it's singleton!";
}
}
A Static method, variable, block or nested class belongs to the entire class rather than an object.
A Method in Java is used to expose the behaviour of an Object / Class. Here, as the method is static (i.e, static method is used to represent the behaviour of a class only.) changing/ overriding the behaviour of entire class will violate the phenomenon of one of the fundamental pillar of Object oriented programming i.e, high cohesion. (remember a constructor is a special kind of method in Java.)
High Cohesion - One class should have only one role. For example: A car class should produce only car objects and not bike, trucks, planes etc. But the Car class may have some features(behaviour) that belongs to itself only.
Therefore, while designing the java programming language. The language designers thought to allow developers to keep some behaviours of a class to itself only by making a method static in nature.
The below piece code tries to override the static method, but will not encounter any compilation error.
public class Vehicle {
static int VIN;
public static int getVehileNumber() {
return VIN;
}}
class Car extends Vehicle {
static int carNumber;
public static int getVehileNumber() {
return carNumber;
}}
This is because, here we are not overriding a method but we are just re-declaring it. Java allows re-declaration of a method (static/non-static).
Removing the static keyword from getVehileNumber() method of Car class will result into compilation error, Since, we are trying to change the functionality of static method which belongs to Vehicle class only.
Also, If the getVehileNumber() is declared as final then the code will not compile, Since the final keyword restricts the programmer from re-declaring the method.
public static final int getVehileNumber() {
return VIN; }
Overall, this is upto software designers for where to use the static methods.
I personally prefer to use static methods to perform some actions without creating any instance of a class. Secondly, to hide the behaviour of a class from outside world.
Here is a simple explanation. A static method is associated with a class while an instance method is associated with a particular object. Overrides allow calling the different implementation of the overridden methods associated with the particular object. So it is counter-intuitive to override static method which is not even associated with objects but the class itself in the first place. So static methods cannot be overridden based on what object is calling it, it will always be associated with the class where it was created.
Now seeing above answers everyone knows that we can't override static methods, but one should not misunderstood about the concept of accessing static methods from subclass.
We can access static methods of super class with subclass reference if this static method has not been hidden by new static method defined in sub class.
For Example, see below code:-
public class StaticMethodsHiding {
public static void main(String[] args) {
SubClass.hello();
}
}
class SuperClass {
static void hello(){
System.out.println("SuperClass saying Hello");
}
}
class SubClass extends SuperClass {
// static void hello() {
// System.out.println("SubClass Hello");
// }
}
Output:-
SuperClass saying Hello
See Java oracle docs and search for What You Can Do in a Subclass for details about hiding of static methods in sub class.
Thanks
The following code shows that it is possible:
class OverridenStaticMeth {
static void printValue() {
System.out.println("Overriden Meth");
}
}
public class OverrideStaticMeth extends OverridenStaticMeth {
static void printValue() {
System.out.println("Overriding Meth");
}
public static void main(String[] args) {
OverridenStaticMeth osm = new OverrideStaticMeth();
osm.printValue();
System.out.println("now, from main");
printValue();
}
}
This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
How can a class have a member of its own type, isnt this infinite recursion?
The Code:
public class Test2{
private Test2 subject = new Test2(); //Create Test2 object in Test2
private int num;
}
The Questions:
Why does Java permit the above code to be executed, but C++ doesn't?
Does the code above create infinite number of objects? Since Test2 itself contains a Test2 object which again contains a Test2 object which itself has a Test2 object and so on.
The key difference between the two languages regarding your problem is that Java is a language with reference semantics (with the exception of primitive types), and C++ a language with value semantics that allows reference semantics through references and pointers.
Syntax that looks similar in both language has complete different meanings, when in Java you create a reference (Test2 x = new Test2();) the equivalent construct in C++ would be using a pointer (Test2 *x = new Test2();).
A key difference is that it is simple to provide reference semantics on top of value semantics through the use of pointers, but it is impossible to provide value semantics on top of (pure) reference semantics. Some of the implications of this statement include not being able to control the layout of objects in Java in memory or the locality of data (for anything other than primitive types and arrays of primitive types), while on the other direction the finer control of objects in C++ allows you to mimic Java objects.
Re question 2 - if you run this code, you get a StackOverflowException => Yes it creates an inifinite number of objects (well it tries...)
public class Test2 {
private Test2 subject = new Test2(); //Create Test2 object in Test2
public static void main(String[] args) throws Exception {
Test2 t = new Test2();
}
}
subject here is a reference to an instance of Test2. If you try to run it, the code will quickly run out of some resource (probably stack space, maybe heap space).
Why does Java permit the above code to be executed but C++ doesn't?
Since 2011, C++ also allows class members to be initalised in their declarations.
However, it wouldn't allow this case: you can only instantiate complete types, and a class type is incomplete within the class definition, so it would have to be initialised in the constructor, or by a call to a function:
class Test;
Test * make_test();
class Test {
// Test is incomplete, so "new Test" is not possible here
Test * test = make_test();
};
// Test is complete, so we can instantiate it here
Test * make_test() {return new Test;}
Java doesn't have a concept of incomplete types, so the class can be instantiated anywhere you're allowed to instantiate any class.
Does the code above create infinite objects?
Yes, trying to instantiate such a class would throw your program into a recursive death spiral.
If you declare subject as being static, you would get an eager initialization version of the Singleton pattern, which will not get you to out of resources.
since you can have multiple constructors its allowed.
if you only have one constructor this would indeed result in an infinite loop.
public class Test{
private Test a;
public Test(String s){
this.a=new Test();
}
public Test(){
}
}
I know this is pointless: I just find it funny and I want to inquire more about the mechanics of what happens when you create a class that inherits itself, resulting in a stack overflow crash. It's amazing that Java allows you to make such a construct to begin with.
I am just guessing, but is the JVM putting itself into an infinite loop trying to resolve the class before instancing it, or is it actually instancing multiple copies of the class endlessly?
I should have been more specific; I am using an inner class to derive from enclosing class.
public class Outside {
private int outsideValue;
public class Inside extends Outside {
private int insideValue;
public Inside(int val) {
insideValue = val;
}
}
public Outside() {
Inside o = new Inside(0);
}
}
public class Main {
public static void main(String args[]) {
Outside o = new Outside();
}
}
Remember that, since Inside extends Outside, it has an implicit call to super() which is the constructor of Outside (which in turn calls the constructor of Inside) and so it goes around.
The code you posted is conceptually not different from the following program:
class A {
B b = new B();
}
class B extends A {
}
public class Test {
public static void main(String[] args) {
new A(); // Create an A...
// ... which creates a B
// ... which extends A thus implicitly creates an A
// ... which creates a B
// ...
}
}
In its final form this problem has nothing to do with cyclic inheritance and inner classes. It's just an infinite recursion caused by unbound recursive constructor call. The same effect can be shown by the following simple example:
public class A {
public A() {
new A();
}
}
Note that this code is perfectly valid, since Java doesn't apply any restrictions on recursive calls.
In your case it's slightly more complicated due to inheritance, but if you recall that constructor of subclass implicitly call a constructor of superclass, it should be clear that these calls form infinite recursion.
Try in an IDE like eclipse, it wont allow you to do so. ie gives an error like this.
Cycle detected: the type Test cannot extend/implement itself or one of its own member types
The example you posted could get problematic if we change it a bit more:
public class Outside {
public class Inside extends Outside {
public Inside(int val) {
}
}
private Inside i;
public Outside() {
i = new Inside();
}
}
But this is not really related to the fact that Inside is an inner class of Outside, it could have happened with separate top-level-classes identically.
The java compiler is not going to enter into an infinite loop when trying to enter a cyclic inheritance chain. After all, every inheritance chain is a eventually finite graph (and, computationally speaking, with a very small number of nodes and edges.) More precisely, the inheritance graph from subclass A to (eventual) superclass Z must be a line (not the other way around, though), and the compiler can easily determine if it is a line or not.
It does not take much for a program to determine if such a small graph is cyclic or not, or if it is a line or not, which is what the compiler does. So the compiler does not go into an infinite loop, and the JVM never runs out of stack space since 1) neither the compiler runs on the JVM, nor 2) the JVM get to executes (since nothing gets to compile and the compiler never invokes under such conditions the JVM anyways.)
I'm not aware of any languages that permit such cyclic inheritance graphs (but I've been doing nothing but Java for 11 years, so my memory of anything other than Java is mushy.) I cannot see, furthermore, the use of such a construct (in modeling or real life). Might be theoretically interesting, though.
edit
Ok, I ran your code and indeed it causes an stack overflow. You were right. I'm gonna have to sit and really study this to understand why the compiler allows such a construct.
Nice find!!!!
Extending oneself generates an error of cyclic inheritance (which java doesn't allow). Your code sample does compile and is valid.
Due to Vladimir Ivanov's persistence, I will fix my edit.
Your code throws a StackOverflowError because of the following.
Inside o = new Inside(0);
Since Inside extends Outside, Inside first calls the super() method implicitly (since you've not called it yourself). Outside() constructor initializes Inside o and the cycle runs again, until the stack is full and it overflow (there's too many Inside and Outside inside the heap stack).
Hope this helps especially Vladimir Ivanov.
You can get the answer by:
Class.forName("MyClass");
This way it gets resolved but not instantiated. So you can chack if resolution itself causes the crash.
I guess it depends on the JVM you use.
When I try to compile :
class A extends A {
}
I get :
$ javac A.java
A.java:1: cyclic inheritance involving A
class A extends A {
^
1 error
So Java don't let you do this kind of thing. For information, java version "1.6.0_24"