Draw nodes in e.g. a Chord ring - java

I have a set of nodes that I would like to put into a ring. They all have a numeric property which I would like to use a reference when putting into a ring.
E.g, node with param 32 comes after node with para 22.
What I really need is a library (or something like that) which can make it possible to have the correct "distance" between the nodes, e.g: between 22 and 32 is 10 "units", and between 32 and 35 is 3 "units" where "units" may be an empty numeric slot.

Sounds like you need a sorted list where the end links to the start. I know of no standard implementation, but it would be pretty easy to implement one yourself.
Something like a doubly linked list with the head and tail connected would work. Add operations would have to traverse the list to find the appropriate position to insert into, making insert an O(n) operation. This would make your list perform realtivly poorly, with pretty much all standard list operations being O(n).
You could implement a distanceToNext and/or distanceToPrevious pretty easily by just getting the values of the current and next/previous nodes and returning the difference.
Edit:
Just realised from the question title that you are probably looking for some GUI library to draw these and I just hinted at the model you might use. I'll have a think about the GUI.
Edit 2:
Your problem boils down to how do you draw a polygon when you only know the length of the sides. I asked on the maths stack exchange for you.

Related

How to calculate what entity is drawn first (2D java rendering using Slick2D)

Explanation:
EDIT3: MASSIVE CLEAN UP as this was not clearly explained.
I'm trying to build up a 2D level out of tiles and entities. Where the entities are for example trees that can be cut. I need to store the data (how many chops are left for example) for each entity. I want them to have a more dynamic position (doubles) and a more dynamic sprite-width and height. My tiles are 32x32 pixels whilst my trees are not going to be one tile but a sprite with greater height than width.
I want objects that are closer to the top of the level to be drawn before the other objects. In this case a character behind the tree will cannot be rendered in or in front of the tree. This case also applies to other objects of the same kind (like trees).
I think it might be too inefficient to loop through the entities and calculate each entity's position since there may be a LOT of entites in the level.
As I've done some research I found that certain libraries allow the storage of both the object and it's position in a MAP (BiMap in google's Guava).
Questions:
Is this an inefficient manner.. but are there some changes that can
be applied to make the rendering more efficient (if so, what could be
optimized)?
Or is this an inefficient manner to render the entities and is
there a better way (if so, what other methods are there in Java)?
Or is there something else that I haven't listed?
EDIT2: I looked through the link I've posted in the edit below.
It seems that Google's Guava (I think that's all correct) has BiMaps. Is there an equivalent to this in regular Java? Otherwise Google's Library will probably be able to fix this for me. But I'd rather not install such a huge library for this one interface.
At last:
It's very much possible that the answer has been right in front of my nose here on StackOverflow or somewhere else on the internet. I've tried my best searching but found nothing.
If you've got any suggestions for search queries or any relevant links that might be of use to me I would appriciate it if you'd post them in the comments.
Thanks for taking the time to read through this/helping me ;)
EDIT:
I have looked at; Efficient mapping of game entity positions in Java .
I think it's narrowly related to this question. But I think it's just not what I'm looking for. I am going to look through the second answer very closely since that might be able to solve this for me.. but I'm not sure.
SOLUTION
The solution is to have an array, arraylist or another manner to keep track of your entities. Every tick/update you'll take all the object's Y coordinates and store them in another array/arraylist/map/other with the same size as where the entities are stored in. On every equivalent position to the entity you'll store it's Y. Then you'll order it with another loop or using http://www.leepoint.net/notes-java/data/arrays/70sorting.html .
Then when rendering:
for(int i = 0; i < entityArray.length; i++)
entityArray[i].render();
Off course you'll render it more efficiently by rendering only whats on or near your screen.
But that's basically how one does this in 2D top-view/front-view.
In my own 2d game attempts I come up with the following solution:
use an enum to specify different types of objects in game and give them priorities (sample order: grass, rivers, trees, critters, characters, clouds, birds, GUI)
make all visual objects implement interface which allows for getting this DrawPriority enum
use a sorted implementation of list with comparator based on the enum
use the list to draw all elements
That way the order computing is not very expensive, because it is done only on Visual Object insertion (which is in my case done while loading a level).
.. And since you will already using a comparator, do a x/y comparison when the enum priority values are the same. This should solve your y-order draw problem.

Quadtree with HashMap

I am considering using a HashMap as the backing structure for a QuadTree. I believe I can use Morton sequencing to uniquely identify each square of my area of interest. I know that my QuadTree will have a height of at most 16. From my calculations, that would be lead to a matrix of 65,536 x 65,536 which should give me at most 4,294,967,296 cells. Does anyone know if that is too many elements for a HashMap? I could always write up a QuadTree using a Tree but I thought that I could get better performance with a HashMap.
Morton sequence of height 1 == (2x2) == 4
Morton sequence of height 2 == (4x4) == 16
Morton sequence of height 3 == (8x8) == 64
Morton Sequencing example for a tree of max height 3.
Here is what I know:
I will get data in lat/lon over a know rectangular area.
The data will not completely cover the whole area and will likely be
consolidated into chunks somewhere in that area. (worse case is data in all 4,294,967,296 cells)
The resolution of the data ends up breaking down the area into 65k by 65k rectangle.
I also know that I will likely get 10 to 1 queries to insert/update of
the data.
Hashmap is not a good idea.
There is a better solution, used in navigation systems:
Assign each Quadtree cell a letter: A (Left,upper), B(right, upper) , C and D.
Now you can adress each quad cell via a String:
ABACE: this identifies the cell in level 5. (A->B->A->C->E)
Search internet for details on that specific Quadtree coding.
Dont forgett: You decide the sub division rule (when to subdivide a cell into smaller ones), and that decides how many cells you get. The number you give is far to high.
It is only an theroetical calculation which reminds me 1:1 on Google Maps Quad tree.
Further it is import to know which type of Quadtree you need for your Application:
Point Quadtree, Region Quadtree (bounbding box), Line Quadtree.
If you know any existing Quadtree implementation in java. please post a comment, or edit this answer.
Further you cannot implement a one for all solution.
You have to know aproxmetly how many elements you will suport.
The theroretical maximum , which is not equal to the expected maximum, is not a good approach.
You have to know that because you must decide whether to store that in main memory, or on disk, this also influences the structure of the quadtree. The "ABCD" solution is suitable
for dynamic loading from disk.
The google approach stores images in the quadtree, this is different from points you want to store, so i doubt that your calculation is realistic.
If you want to store all streets of all countries in the world, you can estimate that
number because the number of points are known (Either OpenStreetMap, TomTom (Teelatlas), or (Nokia Maps) Navteq.
If you realized that you have to store the quadtree on disk, then proably the size is open, and limited by only the disk space.
I think that implementing a Quad Tree as a Tree will give you better results. Actually implementing such a big database in a HashMap is a bad idea anyways. Because if you have a lot of collisions, the performance of a HashMap decreases badly.
And apparently you know exactly how much data you have. In that case, a HashMap is totally redundant. A HashMap is meant for when you do not know how much data there is. But in this case, you know that every node of the tree has four elements. So why even bother using a HashMap.?
Also, your table is apparently at least 4GB large. On most systems, that just barely fits in your memory. And since there is also Java VM overhead, why do you store this in memory? It would be better to find a datastructure that works well on disks. One such datastructure for spatial data (which I assume you are having, since you are using a quad tree), is an R-Tree.
Whoa, we're getting a number of concepts here all at once. First of all, what are you trying to reach? Store a quad tree? A matrix of cells? Hash lookups?
If you want a quad tree, why use a hash map? You know there could be at most 4 child nodes to each node. A hash map is useful for an arbitrary number of key-value mappings where quick lookup is necessary. If you're only going to have 4, a hash might not even be important. Also, while you can nest maps, it's a bit unwieldy. You're better off using some data structure or writing your own.
Also, what are you trying to reach with the quad tree? Quickly looking up a cell in the matrix? Some coordinate mapping function might serve you much better there.
Finally, I'm not so much worried about that amount of nodes in a hash map, as I am by the amount purely on its own. 65536² cells would end up being 4 GiB of memory even at one byte per cell.
I think it would be best to pedal all the way back to the question "what is my goal with this data", then find out which data structures could help you with that (keepign requirements such as lookups in mind) while managing to fit it in memory.
Definitely use directly linked nodes for both space and speed reasons.
With data this big I'd avoid Java altogether. You'll be constantly at the mercy of the garbage collector. Go for a language closer to the metal: C or C++, Pascal/Delphi, Ada, etc.
Put the four child pointers in an array so that you can refer to leaves as packed arrays of 2-bit indices (a nice reason to use Ada, which will let you define such things with no bit fiddling at all). I guess this is Morton sequencing. I did not know that term.
This method of indexing children in itself is a reason to avoid Java. Including a child array in a node class instance will cost you a pointer plus an array size field: 8 or 16 bytes per node that aren't needed in some other languages. With 4 billion cells, that's a lot.
In fact you should do the math. If you use implicit leaf cells, you still have 1 billion nodes to represent. If you use 32-bit indices to reference them (to save memory vice 64-bit pointers), the minimum is 16 bytes per node. Say node attributes are a mere 4 bytes. Then you have 20 Gigabytes just for a full tree even with none of the Java overhead.
Better have a good budget for RAM.
It is true that most typical quad-trees will simply use nodes with four child node pointers and traverse that, without any mention of hashmaps. However, it is also possible to write an efficient quadtree-like spatial indexing method that stores all its nodes in a big hashmap.
The benefit is that by using the Morton sequence (or another similarly generated value) as the key, you become able to retrieve nodes at any level with only one pointer dereference.
In "traditional" quadtree implementations we get cache misses due to repeated pointer dereferencing while looking up nodes, and this becomes the main bottleneck. So provided that the cost of encoding the coordinate space and getting a hash is lower than the cost of dereferencing the node pointers along the search path, such an implementation could be faster. Particularly if the map is very deep (having sparse locations requiring high precision).
You don't really need the Morton sequence, and you hardly need to think of it as a quadtree when doing this. A very simple example implementation:
In order to retrieve a quad of some level, use { x, y, level } as the hashmap key, where x and y are quantized to that level. You only need to include the level in the key if you are storing several levels in the same map.
Whether this is still a quadtree is up for discussion, but the functionality is the same.

Which Java data object to use for multidimensional range matching?

Project Background:
I am writing a map tile overlay class for java that can use gdal2tile.py tiles. Basically I will end up with thousands of jpg files that are in a file structure like
"Zoom Level/X coordinate/Y coordinate"
The coordinates are ints but will not necessarily start at 0 or 1.
I will have to search for tiles that are within a certain range to find out which ones I need to render.
My Problem:
I tried iterating using the file structure itself but it is wicked slow (not surprising).
I tried iterating using an ArrayList of strings of the file structure and .contains() but it seems to be even slower (not too surprising).
Optimally I would like to use a data structure that would let me choose a range on multiple dimensions so that I can call something like.
Tiles.getWhere(Zoom Level,min X,max X,min Y,maxY);
I assume that some sort of Collection or TreeMap would be the right choice but I'm not experienced enough with Java to know for sure and I'd prefer not to have to benchmark a lot of different approaches.
I could use SQLite to do it but that seems like overkill.
My Question:
What is the most efficient way to check for the existence of datasets given multiple dimensional constraints?
May be you are looking for a map with multiple keys.
Commons-collections provides a map with multiple lookup keys:
http://commons.apache.org/collections/apidocs/org/apache/commons/collections/map/MultiKeyMap.html
a map guarantees a O(1) insertion and O(1) selection timings.
Thinking of your problem I could find out three directions to which you could aim your search next (this is not a hand-by-hand guide but rather a out-of-the-box brain opener for a stucked situation you have faced):
1) Usage of Java built in structures. Yes, indeed, a list is the worst case of a searching method. A Map, as the name suggests, is far more convenient for maps. It is not only the name, but the indexing to a Map is signifigantly less time consuming compared to a List. You can imagine your map as a cube, where you have to handle about half of the dots inside it, if you use List and probably only a narrow layer of it when you search by indexing a Map. There is a magnitude of difference. So, my answer here: Map is a key word towards the correct direction (assuming you want to do it in this way after reading on my answer).
2) Usage of a Map Server solution. This is probably too far from your approach, but entire frameworks are made for solving your type of question. An example is GeoServer. It has a ready made solution for the entire problem. It is a stable solution for the great big problem possibly in your hand: showing a map to a user from a source.
3) Sticking to the GDAL framework you were using, you could select slightly different py-file, like gdal_proximity.py and - wow! - you have a searching possibility in your hand! This particular one searches by a center point and a distance, but will do the stuff you need =)
There is a starting point, how I would make it. Could this serve for something?
Sounds to me like you are looking for something like an Interval Tree.
http://en.wikipedia.org/wiki/Interval_tree
I have implemented one of these in the past but only in one dimension. The Wikipedia reference mentions extensions to more dimensions.
Paul

What is the most efficent way to create a tree in java?

I am creating a tree in java to model the Extensive-form of a game for an AI. The tree will be an 25-ary tree (a tree in which each branch at most has 25 child branches) because at each turn of the game there are 25 different moves. Because the number of new branches that have to be created in each new layer of the tree is 25^n I'm very concerned with making this efficient. (I intend to remorselessly cut of branches to keep them from growing in order to keep things from getting bogged down). What is the best way to model such a tree when efficiency is such a concern? My first impression is to have a node object where each node has a parent node and an array of child nodes but this means creating a lot of objects. Ultimately these are my questions:
Is this the fastest way create and manage my tree?
What is a good way to figure out how much time any given algorithm or process in a program is going to take? (the only one I've thought of so far is to create a date before the process and then after and compare the # of milliseconds that have passed)
Any other thoughts are also welcome. My question implies and is related to a great number of other questions, i would expect. If i have been ambiguous or unclear please comment to let me know instead of down-voting and storming off as this isn't productive.
Realistically, the way you described is the best approach. It'll perform reasonably well compared to anything else you could do and will be straightforward to implement.
Time and again people are asking questions about how to do something "efficiently". The best answer is nearly always, "don't even bother trying". Unless your improvement is an algorithmic one, it's unlikely to make much difference anyway, and especially in a case like this, the extra effort and complexity isn't worth whatever miniscule gain you might be able to achieve.
Putting it another way, and to borrow a quote (though I can't remember the originator), the first rule of optimization is: don't.
Having said that, if you really feel the need to squeeze every last drop of speed, you could try caching and re-using objects (instead of discarding them completely, keep track of them in a free object store, and then when you need to create a new object, first check the free object store to check if there is an existing one). As always, you'll need to measure performance before and after to see if it really helps (chances are it won't help much, unless physical memory is really constrained, in which case garbage collection can become expensive).
I agree with the previous comment about only optimizing once you have implemented the rest of the application.
On the other hand, I do realize a few things that may be of importance:
Branching factor of 25: Although not ridiculously huge, it is still large with respect to other problems. For a tree, you will definitely have to have a list for each node to indicate the list of SubNodes. You can do this either by making a Node class which has a collection of nodes within it, or have an external Map that maps a given node to a list of children nodes.
Removing and adding of elements will be done: This lends itself to a LinkedList implementation of the stored children since you don't want to perform costly removes and adds. A HashSet may work also, but the problem is that you may need more memory.
Iteration of the elements may or may not be done: If you want to iterate over the entire list at each step, LinkedLists are fine. If you want to prioritize the nodes then you may be saving memory by using a priority queue data structure. Priority queues are especially helpful if you are going to implement a heuristic function and evaluate which child to move to at any given node.
Thats all I have so far, but I'll keep updating if I think of more things, or if you update your content.

Java TreeNode: How to prevent getChildCount from doing expensive operation?

I'm writing a Java Tree in which tree nodes could have children that take a long time to compute (in this case, it's a file system, where there may be network timeouts that prevent getting a list of files from an attached drive).
The problem I'm finding is this:
getChildCount() is called before the user specifically requests opening a particular branch of the tree. I believe this is done so the JTree knows whether to show a + icon next to the node.
An accurate count of children from getChildCount() would need to perform the potentially expensive operation
If I fake the value of getChildCount(), the tree only allocates space for that many child nodes before asking for an enumeration of the children. (If I return '1', I'll only see 1 child listed, despite that there are more)
The enumeration of the children can be expensive and time-consuming, I'm okay with that. But I'm not okay with getChildCount() needing to know the exact number of children.
Any way I can work around this?
Added: The other problem is that if one of the nodes represents a floppy drive (how archaic!), the drive will be polled before the user asks for its files; if there's no disk in the drive, this results in a system error.
Update: Unfortunately, implementing the TreeWillExpand listener isn't the solution. That can allow you to veto an expansion, but the number of nodes shown is still restricted by the value returned by TreeNode.getChildCount().
http://java.sun.com/docs/books/tutorial/uiswing/components/tree.html#data
scroll a little down, there is the exact tutorial on how to create lazy loading nodes for the jtree, complete with examples and documentation
I'm not sure if it's entirely applicable, but I recently worked around problems with a slow tree by pre-computing the answers to methods that would normally require going through the list of children. I only recompute them when children are added or removed or updated. In my case, some of the methods would have had to go recursively down the tree to figure out things like 'how many bytes are stored' for each node.
If you need a lot of access to a particular feature of your data structure that is expensive to compute, it may make sense to pre-compute it.
In the case of TreeNodes, this means that your TreeNodes would have to store their Child count. To explain it a bit more in detail: when you create a node n0 this node has a childcount (cc) of 0. When you add a node n1 as a child of this one, you n1.cc + cc++.
The tricky bit is the remove operation. You have to keep backlinks to parents and go up the hierarchy to subtract the cc of your current node.
In case you just want to have the a hasChildren feature for your nodes or override getChildCount, a boolean might be enough and would not force you to go up the whole hierarchy in case of removal. Or you could remove the backlinks and just say that you lose precision on remove operations. The TreeNode interface actually doesn't force you to provide a remove operation, but you probably want one anyway.
Well, that's the deal. In order to come up with precomputed precise values, you will have to keep backlinks of some sorts. If you don't you'd better call your method hasHadChildren or the more amusing isVirgin.
There are a few parts to the solution:
Like Lorenzo Boccaccia said, use the TreeWillExpandListener
Also, need to call nodesWereInserted on the tree, so the proper number of nodes will be displayed. See this code
I have determined that if you don't know the child count, TreeNode.getChildCount() needs to return at least 1 (it can't return 0)

Categories