algorithm for visualizing gravity distortion (2D) - java

I'm working on an Android game and would like to implement a 2D grid to visualize the effects of gravity on the playing field. I'd like to distort the grid based on various objects on my playing field. The effect I'm looking for is similar to the following from the Processing library:
Except that my grid will be simpler- 2D, and viewed strictly from the top, as if looking down at the playfield.
Can someone point me to an algorithm for drawing such a grid?
The one idea that I came up with was to draw the lines as if they were "particles"- start at one end of the screen and draw the line in multiple segments, treating each segment as a particle, calculating the effect of gravity at each segment's location.
The application is intended to run on Android.
Thanks

I would draw each line as a separate segment, as you mentioned. If the grid is sparse, it might be fastest.
If you are viewing the grid from above, you would need to calculate x and y coordinate displacements. The easiest way would be to actually do displacement along the z axis and then fake perspective with x_result = x/z and y_result = y/z . You set z=1 and make sure to vary it only relatively slightly (+- 0.1 for instance).
Your z should be proportional to the sum of 1/(distance to the sphere)^2. This simulates how gravity works - it tapers off with square of the distance. Great news - square of the distance means to calculate delta_x^2 + delta_y^2 - so you save yourself that square root calculation == faster.

Related

Determining IF & WHERE a line intersects with a 2D plane (in 3D space)

The following problem im working on is for one of my favorite past-times: game development.
Problem:
We're in 3D space. I'm trying to determine if a line between two vectors in said space is passing through a circle; the latter of which consists of: center vector, radius, yaw & pitch.
In order to determine that, my aim is to convert the circle to a plane which can either be infinite or just have the diameter of the circle for all it's sides.
Should the line between the two vectors in fact pass through that plane, i am left with the simple task of determining wether that intersection point is within the radius of the circle, in which case i can return either true or false.
What's already working:
I have my circles set up and the general framework is there. The circles are appearing/rendered in the 3D space exactly as specified, great!
What was already tried:
Copied some github gist codes and tried to make them work for my purposes. I kinda worked, sometimes at least. Unfortunately due to the nature of how the code was written, i had no idea what it was doing and just scrapped all of that.
Researched the topic a lot, too. But due to me not really understanding the language people speak when talking about line/plane intersections, i could have read the answer without recognizing it as such.
Question:
I'm stuck at line intersections. No idea where to go and how it works logically! So, where do i go from here and how can one comprehend all of this?
Note:
I did tag this issue as "java", but i'm not looking for spoon-fed code. It's a logical issue i'm trying to get past. If explained well enough, i will make the code work with trial and error!
Say if your circle is a circle in the XY plane with its centre on (0,0,0) and radius 1. How would you solve that?
You would check the values of X and Y when Z is equal to zero. And X squared plus Y squared would be less than 1 (radius squared) if the line passes through the circle.
In other words, you could transform the 3D coordinates to a simpler reference frame. So I think you need to learn transformation of 3D coordinates, which is really not too hard to do. You need to rotate the 3D space around until the centre vector only has a Z component, and yaw and pitch are zero. And then offset the coordinates so the circle centre is in (0, 0, 0). Then apply the same transformation to the line. You could lastly scale by radius, but to be honest that is not so important since the circle math is easy.

Rendering a "Slice" of a Sphere in Java - Efficiency

I'm attempting to render a hemisphere in java. However, I'm wanting to render the slice that is defined by 2 angles - Azimuth and Elevation. Since I'm defining a slice, I cannot (to my knowledge) use any built in primitives. If the azimuth range is defined 0-360 and the elevation range is defined as 0-70, this will be a hemisphere with an upside-down cone-shaped hole in the top.
When rendering this inside "cone", I have chosen to do it as triangles in 5 degree increments. This means that with a 360 degree cone, there are 73 different vertices (if I did the math correctly: 360/5degree slices with the origin or tip of the cone being shared with all sides, and all other vertices shared by adjacent triangle slices)
My question:
Is it more efficient to render these as a single polygon with with many vertices, or many triangles with only 3 vertices each. If I do a single polygon, will I still have to include all three points for each triangle, or if it is a shared vertex, would I only include it once? Sorry, my graphics rendering knowledge is limited. Also sorry for being so verbose; I'm hoping someone may spot something erroneous in my thought process which may clear things up either way.
First - Use Google to find an algorithm to create a sphere that is not a primitive.
Second - Somewhere down the chain - triangles will be used. Most likely by the underlying library. But for you - it depends upon whether or not you plan to chop up the created region. If you are not going to subdivide the region further I would just make it one polygon. Actually, after thinking about it for a second - you can always divide up the polygon afterwards too. So just make it one polygon.
I thought about it some more and decided to amend this answer. There are two ways you can create a polygon in openGL. You can either create it as a triangular mesh or as an outline polygon. So if you were asking "Should I use a triangular mesh or an outline polygon" I would say use the triangular mesh. It is a lot easier to break up the triangular mesh than a polygon outline since, to break the mesh, all you have to do is to just stop at one of the points, include the last two points in the new object, and continue on down the triangular mesh. An outline polygon requires you to go both left and right around the polygon to locate the two points where the break occurs. If that is clear. If not say so.
Update: 12:05pm
When making a polygon you can use a triangular mesh or a polygon outline. The outline is mainly good for 2D whereas the triangular mesh works in both 2D and 3D systems. If you have any kind of a polygon at all bigger than just three points then it is a good idea to put them all into an array. This allows you to use the built-in routines that take an array and simply go through it to build your polygon. By putting everything into an array you also make it easier on yourself to add new points or remove points or adjust points. All you do is to change the array entry and then call the same routine to draw everything again. (Which should be just a single call to a function.)

Checking depth/z when rendering triangular faces in 3d space

My question can be simplified to the following: If a 3d triangle is being projected and rendered to a 2d viewing plane, how can the z value of each pixel being rendered be calculated in order to be stored to a buffer?
I currently have a working Java program that is capable of rendering 3d triangles to the 2d view as a solid color, and the camera can be moved, rotated, etc. with no problem, working exactly how one would expect it to, but if I try to render two triangles over each other, the one closer to the camera being expected to obscure the farther one, this isn't always the case. A Z buffer seems like the best idea as to how to remedy this issue, storing the z value of each pixel I render to the screen, and then if there's another pixel trying to be rendered to the same coordinate, I compare it to the z value of the current pixel when deciding which one to render. The issue I'm now facing is as follows:
How do I determine the z value of each pixel I render? I've thought about it, and there seem to be a few possibilities. One option involves finding the equation of the plane(ax + by + cz + d = 0) on which the face lies, then some sort of interpolation of each pixel in the triangle being rendered(e.g. halfway x-wise on the 2d rendered triangle -> halfway x-wise through the 3d triangle, same for the y, then solve for z using the plane's equation), though I'm not certain this would work. The other option I thought of is iterating through each point, with a given quantum, of the 3d triangle, then render each point individually, using the z of that point(which I'd also probably have to find through the plane's equation).
Again, I'm currently mainly considering using interpolation, so the pseudo-code would look like(if I have the plane's equation as "ax + by + cz + d = 0"):
xrange = (pixel.x - 2dtriangle.minX)/(2dtriangle.maxX - 2dtriangle.minX)
yrange = (pixel.y - 2dtriangle.minY)/(2dtriangle.maxY - 2dtriangle.minY)
x3d = (3dtriangle.maxX - 3dtriangle.minX) * xrange + 3dtriangle.minX
y3d = (3dtriangle.maxY - 3dtriangle.minY) * yrange + 3dtriangel.minY
z = (-d - a*x3d - b*y3d)/c
Where pixel.x is the x value of the pixel being rendered, 2dtraingle.minX and 2dtriangle.maxX are the minimum and maximum x values of the triangle being rendered(i.e. of its bounding box) after having been projected onto the 2d view, and it's min/max Y variables are the same, but for its Y. 3dtriangle.minX and 3dtriangle.maxX are the minimum and maximum x values of the 3d triangle before having been projected onto the 2d view, a, b, c, and d are the coefficients of the equation of the plane on which the 3d triangle lies, and z is the corresponding z value of the pixel being rendered.
Will that method work? If there's any ambiguity please let me know in the comments before closing the question! Thank you.
The best solution would be calculating the depth for each vertex of the triangle. Then we are able to get the depth of each pixel the same way we do for the colors when rendering a triangle with Gouraud shading. Doing that simultaneously with rendering allows to check the depth easily.
If we have a situation like this:
And we start to draw lines from the top to the bottom. We calculate the slopes from the point one to the others, and add the correct amount of depth every time we move to the next line... And so on.
You did't provide your rendering method, so can't say anything specific to it, but you should take a look at some tutorials related to Gouraud shading. Do some simple modifications to them and you should be able to use it with depth values.
Well, hopefully this helps!

Convert Latitude and Longitude values to a custom sized grid

I am making a java program that classifies a set of lat/lng coordinates to a specific rectangle of a custom size, so in effect, map the surface of the earth into a custom grid and be able to identify what rectangle/ polygon a point lies in.
The way to do this I am looking into is by using a map projection (possibly Mercator).
For example, assuming I want to classify a long/lat into 'squares' of 100m x 100m,
44.727549, 10.419704 and 44.727572, 10.420460 would classify to area X
and
44.732496, 10.528092 and 44.732999, 10.529465 would classify to area Y as they are within 100m apart.
(this assumes they lie within the same boundary of course)
Im not too worried about distortion as I will not need to display the map, but I do need to be able to tell what polygon a set of coordinates belong to.
Is this possible? Any suggestions welcome. Thanks.
Edit
Omitting projection of the poles is also an acceptable loss
Here is my final solution (in PHP), creates a bin for every square 100m :
function get_static_pointer_table_id($lat, $lng)
{
$earth_circumference = 40000; // km
$lat_bin = round($lat / 0.0009);
$lng_length = $earth_circumference * cos(deg2rad($lat));
$number_of_bins_on_lng = $lng_length * 10;
$lng_bin = round($number_of_bins_on_lng * $lng / 360);
//the 'bin' unique identifier
return $lat_bin . "_" . $lng_bin;
}
If I understand correctly, you are looking for
a way to divide the surface of the earth into approximately 100m x 100m squares
a way to find the square in which a point lies
Question 1 is mission impossible with squares but much less so with polygons. A very simple way to create the polygons would to use the coordinates themselves. If each polygon is 0.0009° in latitude and longitude, you will have approximately square 100m x 100m grid on the equator, put the slices will become very thin close to the poles.
Question 2 depends on the approximation used to solve the challenge outlined above. If you use the very simple method above, then placing each coordinate into a bin is just a division by 0.0009 (and rounding down to the closest integer).
So, first you will have to decide what you can compromise. Is it important to have equal area in the polygons, equal longitudinal distance, equal latitude distance, etc.? Is it important to have four corners in the polygon? Is it important to have similar or almost similar polygons close to the poles and close to the equator? Once you know the limitations set by your application, choosing the projection becomes easier.
What you are trying to do here is a projection onto a flat surface of an ellipsoid. So as long as your points are close together, and, well, you don't mind getting the answer slightly wrong you can assume that your projection plane intersects in the centre of your collection of points, and, each degree of lat and lon are a constant number of metres. Then the problem is a simple planar calculation.
This is wrong, of course. I would actually recommend that you look into map projections, pick one that makes sense, and go for that. Remember that you can move the centre of the projection to the centre to your set of points which will reduce distortion.
I suspect that PROJ.4 might help you in terms of libraries. There also must be a good Java one but that is not my speciality.
Finally you can could assume that the earth is a sphere and do your calculations on the sphere. Or, if you really want to get it right you can pick a standard earth ellipsoid and do the calculations on that.

Polygon "Fixing" Algorithm

I bring you a maybe complex question which i would love your help with. Allow me to go straight to the point:
I desire an algorithm or logic in which i draw a shape using my mouse (for example a square) and it becomes a perfect square, with all the 4 sides in straight lines and perfectly regular. A human-drawn square is hardly perfect, but i wish that after it goes through the "filter" of this algorithm ,it becomes such.
A fine example of what i wish is in the game Trine, where the Wizard works by a similar principle: You draw a shape in the screen and it becomes the closest shape, that is, if you draw something similar to a square it becomes a perfect square box, but if you draw a triangle it becomes a perfect triangular box. Its like it detects what kind of shape it is and then draws a better version of it.
I want this for a game, just so you know what is the goal of all this.
Please help me figure out either the algorithm or logic behind this, or at least tell me what is the name of this kind of action (:
P.S. i added a simple image so it becomes even more clear what i intend =)
If I had to implement this task, I would store the recognizable patterns, and would try to make a match for them.
Take the minX, maxX, minY, maxY values form the user-drawn points, that will help you to scale the pattern. Choose the scaling so that the aspect ratio for the pattern would be the average of the X and Y aspect ratios.
The patterns can consist of certain number of straight lines. The pattern matches if
There are no points outside of the threshold
There is at least one user-drawn point close to each key points in the pattern
If you have the pattern matched, you will have the key points for your pattern (calculating the center of your pattern, and the size/aspect ratio). Then you can replace the user-drawn points with your image - that may be totally different from the pattern used to match (imagine a circle).
There are many ways to do this. One way that you could do it is to create a neural net that recognizes these shapes. I would generate variations of circles, squares, lines, and triangles with random perturbations to replicate "hand-drawn" versions. Then you would want to represent this as a two-dimensional array (where locations that have been drawn on would be 1's and locations that haven't been drawn on, would contain 0's). You can then convert this two-dimensional array into an input vector of n x n elements. The output of the neural net would be a vector with four elements, each one representing either a line, circle, square, or triangle. You would then train this neural net using your randomly-perturbed images until you end up with a neural net that recognizes the input with an error that is under some error-threshold. This is actually quite similar to recognizing handwritten digits.
Other ways include:
Shape contexts.
k-means clustering
Support vector machines
You don't have just an arbitrary shape, you also have the shape's path. So try counting corners. Decide on a angle threshold that will represent a corner. For each point, sample the next consecutive x number of points. Measure the angle between the first half and second half. If the angle surpasses your threshold, consider it a corner. (Obviously select the point that give you the best angle with the least amount of error, not just the first one that surpasses the threshold.) Mark the location of the corners and draw your shape to match.
Ellipses & lines: if no angles are detected, sample a few segments. Measure the orientation. If they are very similar, then line. If very different, then ellipse. If ellipse, find the bounding box and draw inside.

Categories