I have a Big O notation question. Say I have a Java program that does the following things:
Read an Array of Integers into a HashMap that keeps track of how many occurrences of the Integers exists in the array. [1,2,3,1] would be [1->2, 2->1, 3->1].
Then I grab the Keys from the HashMap and place them in an Array:
Set<Integer> keys = dictionary.keySet();
Integer[] keysToSort = new Integer[keys.size()];
keys.toArray(keysToSort);
Sort the keyArray using Arrays.sort.
Then iterate through the sorted keyArray grabbing the corresponding value from the HashMap, in order to display or format the results.
I think I know the following:
Step 1 is O(n)
Step 3 is O(n log n) if I'm to believe the Java API
Step 4 is O(n)
Step 2: When doing this type of calculation I should know how Java implements the Set class toArray method. I would assume that it iterates through the HashMap retrieving the Keys. If that's the case I'll assume its O(n).
If sequential operations dictate I add each part then the final calculation would be
O(n + n·log n + n+n) = O(3n+n·log n).
Skip the constants and you have O(n+n log n). Can this be reduced any further or am I just completely wrong?
I believe O(n + nlogn) can be further simplified to just O(nlogn). This is because the n becomes asymptotically insignificant compared to the nlogn because they are different orders of complexity. The nlogn is of a higher order than n. This can be verified on the wikipedia page by scrolling down to the Order of Common Functions section.
When using complex data structures like hash maps you do need to know how it retrieves the object, not all data structures have the same retrieval process or time to retrieve elements.
This might help you with the finding the Big O of complex data types in Java:
http://www.coderfriendly.com/wp-content/uploads/2009/05/java_collections_v2.pdf
Step 2 takes O(capacity of the map).
Step 1 and 4 can get bad if you have many keys with same hash code (i.e. O(number of those keys) for a single lookup or change, multiply with the number of those lookups/changes).
O(n + n·log n) = O(n·log n)
You are correct to worry a little about step 2. As far as I can tell the Java API does not specify running times for these operations.
As for O(n + n log n) Treebranch is right. You can reduce that to O(n log n) the reason being that for some base value n0 n log n > c*n forall c /= 0, n > n0 this is obviously the case, since no matter what number you chose for c you could use an n0 set to 2^c+1
First,
Step 1 is only O(n) if inserting integers into a HashMap is O(1). In Perl, the worse case for inserting into a hash is O(N) for N items (aka amortised O(1)), and that's if you discount the length of the key (which is acceptable here). HashMap could be less efficient depending on how it addresses certain issues.
Second,
O(N) is O(N log N), so O(N + N log N) is O(N log N).
One thing big O doesn't tell you is that how big the scaling factor is. It also assume you have an ideal machine. The reason this is imporant is that read from a file is likely to be far more expensive than everything else you do.
If you actually time this you will get something which is startup cost + read time. The startup cost is likely to be the largest for even one million records. The read time will be propertional to the number of bytes read (i.e. the length of the numbers can matter) If you have 100 million the read time is likely to be more important. If you have one billion records, alot will depend on the number of unique entries rather than the total number of entries. The number of unique entries is limited to ~2 billion.
BTW: To perform the counting more efficiently, try TIntIntHashMap which can minimise object creation making it several times faster.
Of course I am only talking about real machines which big O doesn't consider ;)
The point I am making is that you can do a big O calculation but it will not be informative as to how a real application will behave.
Related
I recently had a coding test during an interview. I was told:
There is a large unsorted array of one million ints. User wants to retrieve K largest elements. What algorithm would you implement?
During this, I was strongly hinted that I needed to sort the array.
So, I suggested to use built-in sort() or maybe a custom implementation if performance really mattered. I was then told that using a Collection or array to store the k largest and for-loop it is possible to achieve approximately O(N), in hindsight, I think it's O(N*k) because each iteration needs to compare to the K sized array to find the smallest element to replace, while the need to sort the array would cause the code to be at least O(N log N).
I then reviewed this link on SO that suggests priority queue of K numbers, removing the smallest number every time a larger element is found, which would also give O(N log N). Write a program to find 100 largest numbers out of an array of 1 billion numbers
Is the for-loop method bad? How should I justify pros/cons of using the for-loop or the priorityqueue/sorting methods? I'm thinking that if the array is already sorted, it could help by not needing to iterate through the whole array again, i.e. if some other method of retrieval is called on the sorted array, it should be constant time. Is there some performance factor when running the actual code that I didn't consider when theorizing pseudocode?
Another way of solving this is using Quickselect. This should give you a total average time complexity of O(n). Consider this:
Find the kth largest number x using Quickselect (O(n))
Iterate through the array again (or just through the right-side partition) (O(n)) and save all elements ≥ x
Return your saved elements
(If there are repeated elements, you can avoid them by keeping count of how many duplicates of x you need to add to the result.)
The difference between your problem and the one in the SO question you linked to is that you have only one million elements, so they can definitely be kept in memory to allow normal use of Quickselect.
There is a large unsorted array of one million ints. The user wants to retrieve the K largest elements.
During this, I was strongly hinted that I needed to sort the array.
So, I suggested using a built-in sort() or maybe a custom
implementation
That wasn't really a hint I guess, but rather a sort of trick to deceive you (to test how strong your knowledge is).
If you choose to approach the problem by sorting the whole source array using the built-in Dual-Pivot Quicksort, you can't obtain time complexity better than O(n log n).
Instead, we can maintain a PriorytyQueue which would store the result. And while iterating over the source array for each element we need to check whether the queue has reached the size K, if not the element should be added to the queue, otherwise (is size equals to K) we need to compare the next element against the lowest element in the queue - if the next element is smaller or equal we should ignore it if it is greater the lowest element has to be removed and the new element needs to be added.
The time complexity of this approach would be O(n log k) because adding a new element into the PriorytyQueue of size k costs O(k) and in the worst-case scenario this operation can be performed n times (because we're iterating over the array of size n).
Note that the best case time complexity would be Ω(n), i.e. linear.
So the difference between sorting and using a PriorytyQueue in terms of Big O boils down to the difference between O(n log n) and O(n log k). When k is much smaller than n this approach would give a significant performance gain.
Here's an implementation:
public static int[] getHighestK(int[] arr, int k) {
Queue<Integer> queue = new PriorityQueue<>();
for (int next: arr) {
if (queue.size() == k && queue.peek() < next) queue.remove();
if (queue.size() < k) queue.add(next);
}
return toIntArray(queue);
}
public static int[] toIntArray(Collection<Integer> source) {
return source.stream().mapToInt(Integer::intValue).toArray();
}
main()
public static void main(String[] args) {
System.out.println(Arrays.toString(getHighestK(new int[]{3, -1, 3, 12, 7, 8, -5, 9, 27}, 3)));
}
Output:
[9, 12, 27]
Sorting in O(n)
We can achieve worst case time complexity of O(n) when there are some constraints regarding the contents of the given array. Let's say it contains only numbers in the range [-1000,1000] (sure, you haven't been told that, but it's always good to clarify the problem requirements during the interview).
In this case, we can use Counting sort which has linear time complexity. Or better, just build a histogram (first step of Counting Sort) and look at the highest-valued buckets until you've seen K counts. (i.e. don't actually expand back to a fully sorted array, just expand counts back into the top K sorted elements.) Creating a histogram is only efficient if the array of counts (possible input values) is smaller than the size of the input array.
Another possibility is when the given array is partially sorted, consisting of several sorted chunks. In this case, we can use Timsort which is good at finding sorted runs. It will deal with them in a linear time.
And Timsort is already implemented in Java, it's used to sort objects (not primitives). So we can take advantage of the well-optimized and thoroughly tested implementation instead of writing our own, which is great. But since we are given an array of primitives, using built-in Timsort would have an additional cost - we need to copy the contents of the array into a list (or array) of wrapper type.
This is a classic problem that can be solved with so-called heapselect, a simple variation on heapsort. It also can be solved with quickselect, but like quicksort has poor quadratic worst-case time complexity.
Simply keep a priority queue, implemented as binary heap, of size k of the k smallest values. Walk through the array, and insert values into the heap (worst case O(log k)). When the priority queue is too large, delete the minimum value at the root (worst case O(log k)). After going through the n array elements, you have removed the n-k smallest elements, so the k largest elements remain. It's easy to see the worst-case time complexity is O(n log k), which is faster than O(n log n) at the cost of only O(k) space for the heap.
Here is one idea. I will think for creating array (int) with max size (2147483647) as it is max value of int (2147483647). Then for every number in for-each that I get from the original array just put the same index (as the number) +1 inside the empty array that I created.
So in the end of this for each I will have something like [1,0,2,0,3] (array that I created) which represent numbers [0, 2, 2, 4, 4, 4] (initial array).
So to find the K biggest elements you can make backward for over the created array and count back from K to 0 every time when you have different element then 0. If you have for example 2 you have to count this number 2 times.
The limitation of this approach is that it works only with integers because of the nature of the array...
Also the representation of int in java is -2147483648 to 2147483647 which mean that in the array that need to be created only the positive numbers can be placed.
NOTE: if you know that there is max number of the int then you can lower the created array size with that max number. For example if the max int is 1000 then your array which you need to create is with size 1000 and then this algorithm should perform very fast.
I think you misunderstood what you needed to sort.
You need to keep the K-sized list sorted, you don't need to sort the original N-sized input array. That way the time complexity would be O(N * log(K)) in the worst case (assuming you need to update the K-sized list almost every time).
The requirements said that N was very large, but K is much smaller, so O(N * log(K)) is also smaller than O(N * log(N)).
You only need to update the K-sized list for each record that is larger than the K-th largest element before it. For a randomly distributed list with N much larger than K, that will be negligible, so the time complexity will be closer to O(N).
For the K-sized list, you can take a look at the implementation of Is there a PriorityQueue implementation with fixed capacity and custom comparator? , which uses a PriorityQueue with some additional logic around it.
There is an algorithm to do this in worst-case time complexity O(n*log(k)) with very benign time constants (since there is just one pass through the original array, and the inner part that contributes to the log(k) is only accessed relatively seldomly if the input data is well-behaved).
Initialize a priority queue implemented with a binary heap A of maximum size k (internally using an array for storage). In the worst case, this has O(log(k)) for inserting, deleting and searching/manipulating the minimum element (in fact, retrieving the minimum is O(1)).
Iterate through the original unsorted array, and for each value v:
If A is not yet full then
insert v into A,
else, if v>min(A) then (*)
insert v into A,
remove the lowest value from A.
(*) Note that A can return repeated values if some of the highest k values occur repeatedly in the source set. You can avoid that by a search operation to make sure that v is not yet in A. You'd also want to find a suitable data structure for that (as the priority queue has linear complexity), i.e. a secondary hash table or balanced binary search tree or something like that, both of which are available in java.util.
The java.util.PriorityQueue helpfully guarantees the time complexity of its operations:
this implementation provides O(log(n)) time for the enqueing and dequeing methods (offer, poll, remove() and add); linear time for the remove(Object) and contains(Object) methods; and constant time for the retrieval methods (peek, element, and size).
Note that as laid out above, we only ever remove the lowest (first) element from A, so we enjoy the O(log(k)) for that. If you want to avoid duplicates as mentioned above, then you also need to search for any new value added to it (with O(k)), which opens you up to a worst-case overall scenario of O(n*k) instead of O(n*log(k)) in case of a pre-sorted input array, where every single element v causes the inner loop to fire.
I am trying to understand the speed of the Binary Search algorithm.
I understand it needs to operate on a sorted array.
However if the array comes in unsorted and performing the sorting. Wouldn't the sorting be part of the Binary Search and thus its performance would be slower?
I am confused because I think that there is very little chance to use this algorithm if the data does not come in sorted.
And if my code needs to sort it then why isn't it counting towards the search algorithm.
Sorry if I am confusing,
Thank you for helping.
You can't just point at an algorithm and say: It's got O(n^2) complexity!
That's what people usually say, sure. But that's shorthand. They're omitting things; assuming that the listener / reader will make assumptions.
You need to fully describe the exact algorithm, the conditions under which it is applied, and the precise definition of n and any other variable.
Then, you can answer that question. The problem you're having here is that the definition of 'what is the performance of binary search' is unclear. If you assume it means X whilst your buddy assumes it means Y, and you then argue about the answers, you're not actually having a constructive debate at all. You're just tilting at windmills; the real problem is that neither of you figured out the problem is communicating the basics.
Given that there is some confusion here, I'll give you 3 different more or less equally sensible more fleshed out definitions, along with the actual answer for each such definition. Hint, for one of them, 'binary search' isn't the fastest algorithm!
Given [1] a list that is already sorted, and [2] a single value, write me an algorithm that determines if this value is in the list or not.
The best answer would be: A binary sort algorithm, and its complexity would be O(log n).
Given [1] a list that is not sorted, and [2] a single value, write me an algorithm that determines if this value is in the list or not.
The best answer would be: Just iterate through the list. Its complexity would be O(n), and binary sort is not part of this answer at all.
given [1] a list that is not sorted, and [2] a list of tests, whereby each individual test is defined by a single value, but they all use the same input unsorted list, write an algorithm that will, for each test, determine if the value for that test is in the list or not, and then give me the amortized complexity (basically, the complexity of the whole thing, divided by the # of tests we ran).
Then the best answer would be: First sort the list, spending O(n log n) time to do so, but we get to amortize that over the test case count, and then use binary search for each individual test, adding an O(log n) complexity to each test. If we term n the size of the input list and t the number of tests we have, this gets us:
O( (n log n)/t + O(log n) )
Which is the actual answer to the question, complex as it may look. But, if t is large or even considered effectively infinite in size, OR we add one more rider to the question:
The list from [1] is given to you in advance and, within reasonable time and memory limits, you may preprocess this data without needing to amortize these costs across your test cases
then that boils down to just O(log n), as the large value for t makes that (n log n) / t factor approach zero.
In communicating this to your buddy, given that we don't talk in entire scientific papers, one might then say: "The algorithmic complexity of the binary sort algorithm is O(log n)", even if that omits a gigantic chunk of the full story.
You interpret the question as per the second case (input is unsorted, the input comprises both the list and the value to search for, no multi-test clause). Someone who says 'binary search is O(log n)' is labouring under either the first or third. You're both right.
NB: The third definition seems unusually complicated. However, it matches common scenarios. For example, 'we have compiled a list of folks living in town and their phone numbers, and we want to print them in a giant book with the aim of letting recipients of this book look up phone numbers. We expect over the lifetime of a single print run that the 100,000 citizens of the township will eaech do on average about 50 lookups, for a grand total of 5 million lookups for this single list. That gives you t= 5 million, n = 200,000 (let's say 200k people live here, half of which get a phonebook). Plug those numbers in and sorting the phonebook wins by a landslide vs. releasing the phonebook in arbitrary, unsorted order. Even if, yes, you start 'down' the effort of sorting it and won't make up for that loss until a few folks have speedily looked up a few phone numbers to make up for your efforts in sorting it before printing the book.
Yes. If
the data comes in unsorted
you only need to search for one element
...then you would have to first sort the data to use binary search, which would take a total of O(n log n + log n) = O(n log n) time.
But once the data is sorted, you can then binary search on that data as many times as you want. You don't have to sort it again each time.
I have large number of strings, I need to print unique strings in sorted order.
TreeSet stores them in sorted order but insertion time is O(Logn) for each insertion. HashSet takes O(1) time to add but then I will have to get list of the set and then sort using Collections.sort() which takes O(nLogn) (I assumes there is no memory overhead here since only the references of Strings will be copied in the new collection i.e. List). Is it fair to say overall any choice is same since at the end total time will be same?
That depends on how close you look. Yes, the asymptotic time complexity is O(n log n) in either case, but the constant factors differ. So it's not like one method can get a 100 times faster than the other, but it's certainly possible that one method is twice a fast as the other.
For most parts of a program, a factor of 2 is totally irrelevant, but if your program actually spends a significant part of its running time in this algorithm, it would be a good idea to implement both approaches, and measure their performance.
Measuring is the way to go, but if you're talking purely theoretically and ignoring read from after sorting, then consider for number of strings = x:
HashSet:
x * O(1) add operations + 1 O(n log n) (where n is x) sort operation = approximately O(n + n log n) (ok, that's a gross oversimplification, but..)
TreeSet:
x * O(log n) (where n increases from 1 to x) + O(0) sort operation = approximately O(n log (n/2)) (also a gross oversimplification, but..)
And continuing in the oversimplification vein, O(n + n log n) > O(n log (n/2)). Maybe TreeSet is the way to go?
If you distinguish the total number of strings (n) and number of unique strings (m), you get more detailed results for both approaches:
Hash set + sort: O(n) + O(m log m)
TreeSet: O(n log m)
So if n is much bigger than m, using a hash set and sorting the result should be slightly better.
You should take into account which methods will be executed more frequently and base your decision on that.
Apart from HashSet and TreeSet you can use LinkedHashSet which provides better performance for sorted sets. If you want to learn more about their differences in performance I suggest your read 6 Differences between TreeSet HashSet and LinkedHashSet in Java
Let me start off by saying that this is not a homework question. I am trying to design a cache whose eviction policy depends on entries that occurred the most in the cache. In software terms, assume we have an array with different elements and we just want to find the element that occurred the most. For example: {1,2,2,5,7,3,2,3} should return 2. Since I am working with hardware, the naive O(n^2) solution would require a tremendous hardware overhead. The smarter solution of using a hash table works well for software because the hash table size can change but in hardware, I will have a fixed size hash table, probably not that big, so collisions will lead to wrong decisions. My question is, in software, can we solve the above problem in O(n) time complexity and O(1) space?
There can't be an O(n) time, O(1) space solution, at least not for the generic case.
As amit points out, by solving this, we find the solution to the element distinctness problem (determining whether all the elements of a list are distinct), which has been proven to take Θ(n log n) time when not using elements to index the computer's memory. If we were to use elements to index the computer's memory, given an unbounded range of values, this requires at least Θ(n) space. Given the reduction of this problem to that one, the bounds for that problem enforces identical bounds on this problem.
However, practically speaking, the range would mostly be bounded, if for no other reason than the type one typically uses to store each element in has a fixed size (e.g. a 32-bit integer). If this is the case, this would allow for an O(n) time, O(1) space solution, albeit possibly too slow and using too much space due to the large constant factors involved (as the time and space complexity would depend on the range of values).
2 options:
Counting sort
Keeping an array of the number of occurrences of each element (the array index being the element), outputting the most frequent.
If you have a bounded range of values, this approach would be O(1) space (and O(n) time). But technically so would the hash table approach, so the constant factors here is presumably too large for this to be acceptable.
Related options are radix sort (has an in-place variant, similar to quicksort) and bucket sort.
Quicksort
Repeatedly partitioning the data based on a selected pivot (through swapping) and recursing on the partitions.
After sorting we can just iterate through the array, keeping track of the maximum number of consecutive elements.
This would take O(n log n) time and O(1) space.
As you say maximum element in your cache may e a very big number but following is one of the solution.
Iterate over the array.
Lets say maximum element that the array holds is m.
For each index i get the element it holds let it be array[i]
Now go to the index array[i] and add m to it.
Do above for all the indexes in array.
Finally iterate over the array and return index with maximum element.
TC -> O(N)
SC -> O(1)
It may not be feasible for large m as in your case. But see if you can optimize or alter this algo.
A solution on top off my head :
As the numbers can be large , so i consider hashing , instead of storing them directly in array .
Let there are n numbers 0 to n-1 .
Suppose the number occcouring maximum times , occour K times .
Let us create n/k buckets , initially all empty.
hash(num) tells whether num is present in any of the bucket .
hash_2(num) stores number of times num is present in any of the bucket .
for(i = 0 to n-1)
if the number is already present in one of the buckets , increase the count of input[i] , something like Hash_2(input[i]) ++
else find an empty bucket , insert input[i] in 1st empty bucket . Hash(input[i]) = true
else , if all buckets full , decrease count of all numbers in buckets by 1 , don't add input[i] in any of buckets .
If count of any number becomes zero [see hash_2(number)], Hash(number) = false .
This way , finally you will get atmost k elements , and the required number is one of them , so you need to traverse the input again O(N) to finally find the actual number .
The space used is O(K) and time complexity is O(N) , considering implementaion of hash O(1).
So , the performance really depends on K . If k << n , this method perform poorly .
I don't think this answers the question as stated in the title, but actually you can implement a cache with the Least-Frequently-Used eviction policy having constant average time for put, get and remove operations. If you maintain your data structure properly, there's no need to scan all items in order to find the item to evict.
The idea is having a hash table which maps keys to value records. A value record contains the value itself plus a reference to a "counter node". A counter node is a part of a doubly linked list, and consists of:
An access counter
The set of keys having this access count (as a hash set)
next pointer
prev pointer
The list is maintained such that it's always sorted by the access counter (where the head is min), and the counter values are unique. A node with access counter C contains all keys having this access count. Note that this doesn't increment the overall space complexity of the data structure.
A get(K) operation involves promoting K by migrating it to another counter record (either a new one or the next one in the list).
An eviction operation triggered by a put operation roughly consists of checking the head of the list, removing an arbitrary key from its key set, and then removing it from the hash table.
It is possible if we make reasonable (to me, anyway) assumptions about your data set.
As you say you could do it if you could hash, because you can simply count-by-hash. The problem is that you may get non-unique hashes. You mention 20bit numbers, so presumably 2^20 possible values and a desire for a small and fixed amount of working memory for the actual hash counts. This, one presumes, will therefore lead to hash collisions and thus a breakdown of the hashing algorithm. But you can fix this by doing more than one pass with complementary hashing algorithms.
Because these are memory addresses, it's likely not all of the bits are actually going to be capable of being set. For example if you only ever allocate word (4 byte) chunks you can ignore the two least significant bits. I suspect, but don't know, that you're actually only dealing with larger allocation boundaries so it may be even better than this.
Assuming word aligned; that means we have 18 bits to hash.
Next, you presumably have a maximum cache size which is presumably pretty small. I'm going to assume that you're allocating a maximum of <=256 items because then we can use a single byte for the count.
Okay, so to make our hashes we break up the number in the cache into two nine bit numbers, in order of significance highest to lowest and discard the last two bits as discussed above. Take the first of these chunks and use it as a hash to give a first part count. Then we take the second of these chunks and use it as a hash but this time we only count if the first part hash matches the one we identified as having the highest hash. The one left with the highest hash is now uniquely identified as having the highest count.
This runs in O(n) time and requires a 512 byte hash table for counting. If that's too large a table you could divide into three chunks and use a 64 byte table.
Added later
I've been thinking about this and I've realised it has a failure condition: if the first pass counts two groups as having the same number of elements, it cannot effectively distinguish between them. Oh well
Assumption: all the element is integer,for other data type we can also achieve this if we using hashCode()
We can achieve a time complexity O(nlogn) and space is O(1).
First, sort the array , time complexity is O(nlog n) (we should use in - place sorting algorithm like quick sort in order to maintain the space complexity)
Using four integer variable, current which indicates the value we are referring to,count , which indicate the number of occurrences of current, result which indicates the finale result and resultCount, which indicate the number of occurrences of result
Iterating from start to end of the array data
int result = 0;
int resultCount = -1;
int current = data[0];
int count = 1;
for(int i = 1; i < data.length; i++){
if(data[i] == current){
count++;
}else{
if(count > resultCount){
result = current;
resultCount = count;
}
current = data[i];
count = 1;
}
}
if(count > resultCount){
result = current;
resultCount = count;
}
return result;
So, in the end, there is only 4 variables is used.
I've seen some interesting claims on SO re Java hashmaps and their O(1) lookup time. Can someone explain why this is so? Unless these hashmaps are vastly different from any of the hashing algorithms I was bought up on, there must always exist a dataset that contains collisions.
In which case, the lookup would be O(n) rather than O(1).
Can someone explain whether they are O(1) and, if so, how they achieve this?
A particular feature of a HashMap is that unlike, say, balanced trees, its behavior is probabilistic. In these cases its usually most helpful to talk about complexity in terms of the probability of a worst-case event occurring would be. For a hash map, that of course is the case of a collision with respect to how full the map happens to be. A collision is pretty easy to estimate.
pcollision = n / capacity
So a hash map with even a modest number of elements is pretty likely to experience at least one collision. Big O notation allows us to do something more compelling. Observe that for any arbitrary, fixed constant k.
O(n) = O(k * n)
We can use this feature to improve the performance of the hash map. We could instead think about the probability of at most 2 collisions.
pcollision x 2 = (n / capacity)2
This is much lower. Since the cost of handling one extra collision is irrelevant to Big O performance, we've found a way to improve performance without actually changing the algorithm! We can generalzie this to
pcollision x k = (n / capacity)k
And now we can disregard some arbitrary number of collisions and end up with vanishingly tiny likelihood of more collisions than we are accounting for. You could get the probability to an arbitrarily tiny level by choosing the correct k, all without altering the actual implementation of the algorithm.
We talk about this by saying that the hash-map has O(1) access with high probability
You seem to mix up worst-case behaviour with average-case (expected) runtime. The former is indeed O(n) for hash tables in general (i.e. not using a perfect hashing) but this is rarely relevant in practice.
Any dependable hash table implementation, coupled with a half decent hash, has a retrieval performance of O(1) with a very small factor (2, in fact) in the expected case, within a very narrow margin of variance.
In Java, how HashMap works?
Using hashCode to locate the corresponding bucket [inside buckets container model].
Each bucket is a LinkedList (or a Balanced Red-Black Binary Tree under some conditions starting from Java 8) of items residing in that bucket.
The items are scanned one by one, using equals for comparison.
When adding more items, the HashMap is resized (doubling the size) once a certain load percentage is reached.
So, sometimes it will have to compare against a few items, but generally, it's much closer to O(1) than O(n) / O(log n).
For practical purposes, that's all you should need to know.
Remember that o(1) does not mean that each lookup only examines a single item - it means that the average number of items checked remains constant w.r.t. the number of items in the container. So if it takes on average 4 comparisons to find an item in a container with 100 items, it should also take an average of 4 comparisons to find an item in a container with 10000 items, and for any other number of items (there's always a bit of variance, especially around the points at which the hash table rehashes, and when there's a very small number of items).
So collisions don't prevent the container from having o(1) operations, as long as the average number of keys per bucket remains within a fixed bound.
I know this is an old question, but there's actually a new answer to it.
You're right that a hash map isn't really O(1), strictly speaking, because as the number of elements gets arbitrarily large, eventually you will not be able to search in constant time (and O-notation is defined in terms of numbers that can get arbitrarily large).
But it doesn't follow that the real time complexity is O(n)--because there's no rule that says that the buckets have to be implemented as a linear list.
In fact, Java 8 implements the buckets as TreeMaps once they exceed a threshold, which makes the actual time O(log n).
O(1+n/k) where k is the number of buckets.
If implementation sets k = n/alpha then it is O(1+alpha) = O(1) since alpha is a constant.
If the number of buckets (call it b) is held constant (the usual case), then lookup is actually O(n).
As n gets large, the number of elements in each bucket averages n/b. If collision resolution is done in one of the usual ways (linked list for example), then lookup is O(n/b) = O(n).
The O notation is about what happens when n gets larger and larger. It can be misleading when applied to certain algorithms, and hash tables are a case in point. We choose the number of buckets based on how many elements we're expecting to deal with. When n is about the same size as b, then lookup is roughly constant-time, but we can't call it O(1) because O is defined in terms of a limit as n → ∞.
Elements inside the HashMap are stored as an array of linked list (node), each linked list in the array represents a bucket for unique hash value of one or more keys.
While adding an entry in the HashMap, the hashcode of the key is used to determine the location of the bucket in the array, something like:
location = (arraylength - 1) & keyhashcode
Here the & represents bitwise AND operator.
For example: 100 & "ABC".hashCode() = 64 (location of the bucket for the key "ABC")
During the get operation it uses same way to determine the location of bucket for the key. Under the best case each key has unique hashcode and results in a unique bucket for each key, in this case the get method spends time only to determine the bucket location and retrieving the value which is constant O(1).
Under the worst case, all the keys have same hashcode and stored in same bucket, this results in traversing through the entire list which leads to O(n).
In the case of java 8, the Linked List bucket is replaced with a TreeMap if the size grows to more than 8, this reduces the worst case search efficiency to O(log n).
We've established that the standard description of hash table lookups being O(1) refers to the average-case expected time, not the strict worst-case performance. For a hash table resolving collisions with chaining (like Java's hashmap) this is technically O(1+α) with a good hash function, where α is the table's load factor. Still constant as long as the number of objects you're storing is no more than a constant factor larger than the table size.
It's also been explained that strictly speaking it's possible to construct input that requires O(n) lookups for any deterministic hash function. But it's also interesting to consider the worst-case expected time, which is different than average search time. Using chaining this is O(1 + the length of the longest chain), for example Θ(log n / log log n) when α=1.
If you're interested in theoretical ways to achieve constant time expected worst-case lookups, you can read about dynamic perfect hashing which resolves collisions recursively with another hash table!
It is O(1) only if your hashing function is very good. The Java hash table implementation does not protect against bad hash functions.
Whether you need to grow the table when you add items or not is not relevant to the question because it is about lookup time.
This basically goes for most hash table implementations in most programming languages, as the algorithm itself doesn't really change.
If there are no collisions present in the table, you only have to do a single look-up, therefore the running time is O(1). If there are collisions present, you have to do more than one look-up, which drives down the performance towards O(n).
It depends on the algorithm you choose to avoid collisions. If your implementation uses separate chaining then the worst case scenario happens where every data element is hashed to the same value (poor choice of the hash function for example). In that case, data lookup is no different from a linear search on a linked list i.e. O(n). However, the probability of that happening is negligible and lookups best and average cases remain constant i.e. O(1).
Only in theoretical case, when hashcodes are always different and bucket for every hash code is also different, the O(1) will exist. Otherwise, it is of constant order i.e. on increment of hashmap, its order of search remains constant.
Academics aside, from a practical perspective, HashMaps should be accepted as having an inconsequential performance impact (unless your profiler tells you otherwise.)
Of course the performance of the hashmap will depend based on the quality of the hashCode() function for the given object. However, if the function is implemented such that the possibility of collisions is very low, it will have a very good performance (this is not strictly O(1) in every possible case but it is in most cases).
For example the default implementation in the Oracle JRE is to use a random number (which is stored in the object instance so that it doesn't change - but it also disables biased locking, but that's an other discussion) so the chance of collisions is very low.